code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def __UpperCAmelCase ( lowercase = 50_00_00_00 ): """simple docstring""" _UpperCAmelCase = set() _UpperCAmelCase = int((limit - 24) ** (1 / 2) ) _UpperCAmelCase = set(range(3 ,prime_square_limit + 1 ,2 ) ) primes.add(2 ) for p in range(3 ,prime_square_limit + 1 ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,prime_square_limit + 1 ,lowerCAmelCase__ ) ) ) for primea in primes: _UpperCAmelCase = primea * primea for primea in primes: _UpperCAmelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _UpperCAmelCase = primea * primea * primea * primea _UpperCAmelCase = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
365
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = set(SCREAMING_SNAKE_CASE__ ), [start] while stack: _UpperCAmelCase = stack.pop() explored.add(SCREAMING_SNAKE_CASE__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE__ ) return explored UpperCAmelCase__ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
366
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def __UpperCAmelCase ( lowercase ): """simple docstring""" def decorator(lowercase ): _UpperCAmelCase = getattr(lowerCamelCase_ ,"""handle_key""" ,[] ) handle += [key] setattr(lowerCamelCase_ ,"""handle_key""" ,lowerCamelCase_ ) return func return decorator def __UpperCAmelCase ( *lowercase ): """simple docstring""" def decorator(lowercase ): _UpperCAmelCase = getattr(lowerCamelCase_ ,"""handle_key""" ,[] ) handle += keys setattr(lowerCamelCase_ ,"""handle_key""" ,lowerCamelCase_ ) return func return decorator class a ( _a ): def __new__( cls : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = super().__new__(cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , """key_handler""" ): setattr(__lowerCAmelCase , """key_handler""" , {} ) setattr(__lowerCAmelCase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(__lowerCAmelCase , """handle_key""" , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def lowerCAmelCase_ ( cls : Optional[Any] ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(__lowerCAmelCase ) _UpperCAmelCase = cls.key_handler.get(__lowerCAmelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def __UpperCAmelCase ( cls ): """simple docstring""" return KeyHandler(cls.__name__ ,cls.__bases__ ,cls.__dict__.copy() )
367
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a ( datasets.BuilderConfig ): _snake_case : Dict = None def __UpperCAmelCase ( lowercase ,lowercase ,): """simple docstring""" import pyspark def generate_fn(): _UpperCAmelCase = df.select("""*""" ,pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _UpperCAmelCase = df_with_partition_id.select("""*""" ).where(f'''part_id = {partition_id}''' ).drop("""part_id""" ) _UpperCAmelCase = partition_df.collect() _UpperCAmelCase = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a ( _BaseExamplesIterable ): def __init__( self : List[str] , __lowerCAmelCase : "pyspark.sql.DataFrame" , __lowerCAmelCase : Optional[int]=None , ): _UpperCAmelCase = df _UpperCAmelCase = partition_order or range(self.df.rdd.getNumPartitions() ) _UpperCAmelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Any ): yield from self.generate_examples_fn() def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : np.random.Generator ): _UpperCAmelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCamelCase__ ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase__ ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = self.split_shard_indices_by_worker(UpperCamelCase__ , UpperCamelCase__ ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase__ ) @property def lowerCAmelCase_ ( self : str ): return len(self.partition_order ) class a ( datasets.DatasetBuilder ): _snake_case : Optional[Any] = SparkConfig def __init__( self : List[str] , __lowerCAmelCase : "pyspark.sql.DataFrame" , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , **__lowerCAmelCase : List[str] , ): import pyspark _UpperCAmelCase = pyspark.sql.SparkSession.builder.getOrCreate() _UpperCAmelCase = df _UpperCAmelCase = working_dir super().__init__( cache_dir=UpperCamelCase__ , config_name=str(self.df.semanticHash() ) , **UpperCamelCase__ , ) def lowerCAmelCase_ ( self : List[str] ): def create_cache_and_write_probe(__lowerCAmelCase : Any ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCamelCase__ ) _UpperCAmelCase = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCamelCase__ , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _UpperCAmelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCamelCase__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCAmelCase_ ( self : Dict ): return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : datasets.download.download_manager.DownloadManager ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Any ): import pyspark def get_arrow_batch_size(__lowerCAmelCase : Tuple ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _UpperCAmelCase = self.df.count() _UpperCAmelCase = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _UpperCAmelCase = ( self.df.limit(UpperCamelCase__ ) .repartition(1 ) .mapInArrow(UpperCamelCase__ , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _UpperCAmelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _UpperCAmelCase = min(UpperCamelCase__ , int(approx_total_size / max_shard_size ) ) _UpperCAmelCase = self.df.repartition(UpperCamelCase__ ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int , ): import pyspark _UpperCAmelCase = ParquetWriter if file_format == """parquet""" else ArrowWriter _UpperCAmelCase = os.path.join(self._working_dir , os.path.basename(UpperCamelCase__ ) ) if self._working_dir else fpath _UpperCAmelCase = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _UpperCAmelCase = self.config.features _UpperCAmelCase = self._writer_batch_size _UpperCAmelCase = self._fs.storage_options def write_arrow(__lowerCAmelCase : Any ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _UpperCAmelCase = pyspark.TaskContext().taskAttemptId() _UpperCAmelCase = next(UpperCamelCase__ , UpperCamelCase__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) _UpperCAmelCase = 0 _UpperCAmelCase = writer_class( features=UpperCamelCase__ , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=UpperCamelCase__ , storage_options=UpperCamelCase__ , embed_local_files=UpperCamelCase__ , ) _UpperCAmelCase = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCamelCase__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _UpperCAmelCase , _UpperCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 _UpperCAmelCase = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=UpperCamelCase__ , storage_options=UpperCamelCase__ , embed_local_files=UpperCamelCase__ , ) _UpperCAmelCase = pa.Table.from_batches([batch] ) writer.write_table(UpperCamelCase__ ) if writer._num_bytes > 0: _UpperCAmelCase , _UpperCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCamelCase__ ) ): _UpperCAmelCase = os.path.join(os.path.dirname(UpperCamelCase__ ) , os.path.basename(UpperCamelCase__ ) ) shutil.move(UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase = ( self.df.mapInArrow(UpperCamelCase__ , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : "datasets.SplitGenerator" , __lowerCAmelCase : str = "arrow" , __lowerCAmelCase : Optional[Union[str, int]] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : List[str] , ): self._validate_cache_dir() _UpperCAmelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCamelCase__ ) _UpperCAmelCase = not is_remote_filesystem(self._fs ) _UpperCAmelCase = os.path.join if is_local else posixpath.join _UpperCAmelCase = """-TTTTT-SSSSS-of-NNNNN""" _UpperCAmelCase = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' _UpperCAmelCase = path_join(self._output_dir , UpperCamelCase__ ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = [] _UpperCAmelCase = [] for task_id, content in self._prepare_split_single(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCamelCase__ ) _UpperCAmelCase = total_num_examples _UpperCAmelCase = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: _UpperCAmelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _UpperCAmelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , ): rename( UpperCamelCase__ , fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace("""TTTTT-SSSSS""" , f'''{global_shard_id:05d}''' ).replace("""NNNNN""" , f'''{total_shards:05d}''' ) , ) _UpperCAmelCase = [] _UpperCAmelCase = 0 for i in range(len(UpperCamelCase__ ) ): _UpperCAmelCase , _UpperCAmelCase = task_id_and_num_shards[i] for shard_id in range(UpperCamelCase__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCamelCase__ , len(UpperCamelCase__ ) ).map(lambda __lowerCAmelCase : _rename_shard(*UpperCamelCase__ ) ).collect() else: # don't use any pattern _UpperCAmelCase = 0 _UpperCAmelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace(UpperCamelCase__ , """""" ) , ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : "datasets.SplitGenerator" , ): return SparkExamplesIterable(self.df )
368
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(snake_case_ ) * abs(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class a ( _a ): _snake_case : Dict = """ctrl""" _snake_case : int = ["""past_key_values"""] _snake_case : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , __lowerCAmelCase : Tuple=24_6534 , __lowerCAmelCase : str=256 , __lowerCAmelCase : Optional[int]=1280 , __lowerCAmelCase : List[Any]=8192 , __lowerCAmelCase : Tuple=48 , __lowerCAmelCase : Any=16 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Any=1e-6 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : Optional[int]=True , **__lowerCAmelCase : Optional[Any] , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = dff _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache super().__init__(**__lowerCAmelCase )
370
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = abs(__a ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCAmelCase ( lowercase ): """simple docstring""" return sum(int(__a ) for c in str(abs(__a ) ) ) def __UpperCAmelCase ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase ,lowercase ) -> None: _UpperCAmelCase = f'''{func.__name__}({value})''' _UpperCAmelCase = timeit(f'''__main__.{call}''' ,setup="""import __main__""" ) print(f'''{call:56} = {func(__a )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a ,__a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
371
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _snake_case : Any = StableDiffusionInstructPixaPixPipeline _snake_case : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _snake_case : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _snake_case : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _UpperCAmelCase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase = CLIPTextModel(__lowerCAmelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any]=0 ): _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ) if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase = sd_pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase = """french fries""" _UpperCAmelCase = sd_pipe(**__lowerCAmelCase , negative_prompt=__lowerCAmelCase ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase = [inputs["""prompt"""]] * 2 _UpperCAmelCase = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 _UpperCAmelCase = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.permute(0 , 3 , 1 , 2 ) _UpperCAmelCase = image.repeat(2 , 1 , 1 , 1 ) _UpperCAmelCase = sd_pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _UpperCAmelCase = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase = sd_pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = [round(__lowerCAmelCase , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(__lowerCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**__lowerCAmelCase ) _UpperCAmelCase = VaeImageProcessor(do_resize=__lowerCAmelCase , do_normalize=__lowerCAmelCase ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = pipe(**self.get_dummy_inputs_by_type(__lowerCAmelCase , input_image_type="""pt""" ) )[0] _UpperCAmelCase = components["""vae"""] _UpperCAmelCase = self.get_dummy_inputs_by_type(__lowerCAmelCase , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _UpperCAmelCase = vae.encode(inputs[image_param] ).latent_dist.mode() _UpperCAmelCase = pipe(**__lowerCAmelCase )[0] _UpperCAmelCase = np.abs(out - out_latents_inputs ).max() self.assertLess(__lowerCAmelCase , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str]=0 ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) _UpperCAmelCase = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) _UpperCAmelCase = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase ) _UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase ) _UpperCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = 0 def callback_fn(__lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : torch.FloatTensor ) -> None: _UpperCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _UpperCAmelCase = False _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() pipe(**__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCAmelCase_ ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__lowerCAmelCase , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase = inputs["""image"""].resize((504, 504) ) _UpperCAmelCase = """timbrooks/instruct-pix2pix""" _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( __lowerCAmelCase , safety_checker=__lowerCAmelCase , ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = pipe(**__lowerCAmelCase ) _UpperCAmelCase = output.images[0] _UpperCAmelCase = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) _UpperCAmelCase = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return round(float(moles / volume ) * nfactor ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class a : _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None UpperCAmelCase__ = namedtuple("""CoinsDistribResult""", """moves excess""") def __UpperCAmelCase ( lowercase ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(lowercase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(lowercase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 ,1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase ,lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class a ( lowercase_ ): _snake_case : Any = "speech_to_text" _snake_case : List[str] = ["past_key_values"] _snake_case : List[str] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , __lowerCAmelCase : Any=1_0000 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Any=2048 , __lowerCAmelCase : int=4 , __lowerCAmelCase : List[str]=6 , __lowerCAmelCase : List[Any]=2048 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : str=0.0 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Any="relu" , __lowerCAmelCase : str=256 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : str=True , __lowerCAmelCase : Any=1 , __lowerCAmelCase : Union[str, Any]=0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=6000 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Tuple=(5, 5) , __lowerCAmelCase : Any=1024 , __lowerCAmelCase : str=80 , __lowerCAmelCase : List[str]=1 , **__lowerCAmelCase : int , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = encoder_layers _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = max_source_positions _UpperCAmelCase = max_target_positions _UpperCAmelCase = num_conv_layers _UpperCAmelCase = list(a__ ) _UpperCAmelCase = conv_channels _UpperCAmelCase = input_feat_per_channel _UpperCAmelCase = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , **a__ , )
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
"""simple docstring""" import sys UpperCAmelCase__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __UpperCAmelCase ( lowercase = N ): """simple docstring""" _UpperCAmelCase = -sys.maxsize - 1 for i in range(len(lowerCamelCase_ ) - 12 ): _UpperCAmelCase = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _UpperCAmelCase = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
355
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class a : def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : List[str] ): raise NotImplementedError() def lowerCAmelCase_ ( self : List[str] ): raise NotImplementedError() class a ( lowerCAmelCase_ ): def __init__( self : Any , __lowerCAmelCase : "AutoTokenizer" , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Any ): _UpperCAmelCase = tokenizer _UpperCAmelCase = skip_prompt _UpperCAmelCase = decode_kwargs # variables used in the streaming process _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = True def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : str ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: _UpperCAmelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _UpperCAmelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): _UpperCAmelCase = text[self.print_len :] _UpperCAmelCase = [] _UpperCAmelCase = 0 # If the last token is a CJK character, we print the characters. elif len(_A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _UpperCAmelCase = text[self.print_len :] self.print_len += len(_A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _UpperCAmelCase = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(_A ) self.on_finalized_text(_A ) def lowerCAmelCase_ ( self : Any ): # Flush the cache, if it exists if len(self.token_cache ) > 0: _UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _UpperCAmelCase = text[self.print_len :] _UpperCAmelCase = [] _UpperCAmelCase = 0 else: _UpperCAmelCase = '' _UpperCAmelCase = True self.on_finalized_text(_A , stream_end=_A ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : bool = False ): print(_A , flush=_A , end="""""" if not stream_end else None ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[Any] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False class a ( lowerCAmelCase_ ): def __init__( self : int , __lowerCAmelCase : "AutoTokenizer" , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[float] = None , **__lowerCAmelCase : str ): super().__init__(_A , _A , **_A ) _UpperCAmelCase = Queue() _UpperCAmelCase = None _UpperCAmelCase = timeout def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : bool = False ): self.text_queue.put(_A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Union[str, Any] ): return self def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
from math import factorial def __UpperCAmelCase ( lowercase = 1_00 ): """simple docstring""" return sum(map(_A ,str(factorial(_A ) ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
357
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'layoutlmv3' def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple=5_0265 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=128 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=64 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class a ( lowerCAmelCase_ ): _snake_case : str = version.parse('1.12' ) @property def lowerCAmelCase_ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5 @property def lowerCAmelCase_ ( self : List[str] ): return 12 def lowerCAmelCase_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
30
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class a : def __init__( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any]=sys.maxsize ): _UpperCAmelCase = """bilinear""" _UpperCAmelCase = max_size _UpperCAmelCase = short_edge_length def __call__( self : List[str] , __lowerCAmelCase : str ): _UpperCAmelCase = [] for img in imgs: _UpperCAmelCase , _UpperCAmelCase = img.shape[:2] # later: provide list and randomly choose index for resize _UpperCAmelCase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _UpperCAmelCase = size * 1.0 / min(A__ , A__ ) if h < w: _UpperCAmelCase , _UpperCAmelCase = size, scale * w else: _UpperCAmelCase , _UpperCAmelCase = scale * h, size if max(A__ , A__ ) > self.max_size: _UpperCAmelCase = self.max_size * 1.0 / max(A__ , A__ ) _UpperCAmelCase = newh * scale _UpperCAmelCase = neww * scale _UpperCAmelCase = int(neww + 0.5 ) _UpperCAmelCase = int(newh + 0.5 ) if img.dtype == np.uinta: _UpperCAmelCase = Image.fromarray(A__ ) _UpperCAmelCase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _UpperCAmelCase = np.asarray(A__ ) else: _UpperCAmelCase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _UpperCAmelCase = nn.functional.interpolate( A__ , (newh, neww) , mode=self.interp_method , align_corners=A__ ).squeeze(0 ) img_augs.append(A__ ) return img_augs class a : def __init__( self : Tuple , __lowerCAmelCase : Dict ): _UpperCAmelCase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _UpperCAmelCase = cfg.INPUT.FORMAT _UpperCAmelCase = cfg.SIZE_DIVISIBILITY _UpperCAmelCase = cfg.PAD_VALUE _UpperCAmelCase = cfg.INPUT.MAX_SIZE_TEST _UpperCAmelCase = cfg.MODEL.DEVICE _UpperCAmelCase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _UpperCAmelCase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _UpperCAmelCase = lambda __lowerCAmelCase : (x - self.pixel_mean) / self.pixel_std def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = tuple(max(A__ ) for s in zip(*[img.shape for img in images] ) ) _UpperCAmelCase = [im.shape[-2:] for im in images] _UpperCAmelCase = [ nn.functional.pad( A__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(A__ , A__ ) ] return torch.stack(A__ ), torch.tensor(A__ ) def __call__( self : int , __lowerCAmelCase : str , __lowerCAmelCase : str=False ): with torch.no_grad(): if not isinstance(A__ , A__ ): _UpperCAmelCase = [images] if single_image: assert len(A__ ) == 1 for i in range(len(A__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(A__ , images.pop(A__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( A__ , torch.as_tensor(img_tensorize(images.pop(A__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _UpperCAmelCase = torch.tensor([im.shape[:2] for im in images] ) _UpperCAmelCase = self.aug(A__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _UpperCAmelCase = [self.normalizer(A__ ) for x in images] # now pad them to do the following operations _UpperCAmelCase , _UpperCAmelCase = self.pad(A__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _UpperCAmelCase = torch.true_divide(A__ , A__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" assert torch.isfinite(lowerCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" _UpperCAmelCase , _UpperCAmelCase = box_size tensor[:, 0].clamp_(min=0 ,max=lowerCAmelCase__ ) tensor[:, 1].clamp_(min=0 ,max=lowerCAmelCase__ ) tensor[:, 2].clamp_(min=0 ,max=lowerCAmelCase__ ) tensor[:, 3].clamp_(min=0 ,max=lowerCAmelCase__ )
358
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class a ( unittest.TestCase ): def __init__( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=13 , __lowerCAmelCase : int=7 , __lowerCAmelCase : int=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : int=99 , __lowerCAmelCase : Union[str, Any]=32 , __lowerCAmelCase : Any=5 , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Union[str, Any]=512 , __lowerCAmelCase : Optional[int]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Any=4 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_choices def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_attention_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class a ( __a , unittest.TestCase ): _snake_case : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase_ ( self : List[Any] ): for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("""albert-base-v2""" ) _UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ ) @require_flax class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) _UpperCAmelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase = model(a__ , attention_mask=a__ )[0] _UpperCAmelCase = (1, 11, 768) self.assertEqual(output.shape , a__ ) _UpperCAmelCase = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a__ , atol=1e-4 ) )
359
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class a ( lowerCamelCase__ ): _snake_case : Optional[int] = 'biogpt' def __init__( self : Tuple , __lowerCAmelCase : Optional[int]=4_2384 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : str=24 , __lowerCAmelCase : Dict=16 , __lowerCAmelCase : Optional[int]=4096 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Union[str, Any]=1024 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : Tuple=1e-1_2 , __lowerCAmelCase : str=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : int=0.0 , __lowerCAmelCase : str=0.0 , __lowerCAmelCase : Any=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : List[Any]=2 , **__lowerCAmelCase : Any , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A )
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" ,[ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" ,num_bytes=13_37 ,num_examples=42 ,dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" ,num_bytes=13_37 ,num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] ,) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = split_dict._to_yaml_list() assert len(__snake_case ) == len(__snake_case ) _UpperCAmelCase = SplitDict._from_yaml_list(__snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase = None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" ,[SplitInfo(), SplitInfo(dataset_name=__snake_case ), SplitInfo(dataset_name="""my_dataset""" )] ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( _snake_case , unittest.TestCase ): _snake_case : Tuple = KandinskyVaaPriorPipeline _snake_case : List[Any] = ['prompt'] _snake_case : int = ['prompt', 'negative_prompt'] _snake_case : Tuple = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] _snake_case : Any = False @property def lowerCAmelCase_ ( self : Tuple ): return 32 @property def lowerCAmelCase_ ( self : Optional[int] ): return 32 @property def lowerCAmelCase_ ( self : Dict ): return self.time_input_dim @property def lowerCAmelCase_ ( self : List[Any] ): return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self : Union[str, Any] ): return 100 @property def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def lowerCAmelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCAmelCase = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } _UpperCAmelCase = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _UpperCAmelCase = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _UpperCAmelCase = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.dummy_prior _UpperCAmelCase = self.dummy_image_encoder _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_image_processor _UpperCAmelCase = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) _UpperCAmelCase = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any=0 ): if str(UpperCamelCase__ ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(UpperCamelCase__ ) else: _UpperCAmelCase = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _UpperCAmelCase = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = """cpu""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**UpperCamelCase__ ) _UpperCAmelCase = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _UpperCAmelCase = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) _UpperCAmelCase = output.image_embeds _UpperCAmelCase = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] _UpperCAmelCase = image[0, -10:] _UpperCAmelCase = image_from_tuple[0, -10:] assert image.shape == (1, 32) _UpperCAmelCase = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = torch_device == """cpu""" _UpperCAmelCase = True _UpperCAmelCase = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = torch_device == """cpu""" _UpperCAmelCase = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
362
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
0
def __UpperCAmelCase ( lowercase ): """simple docstring""" # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(SCREAMING_SNAKE_CASE_ ) # # convert them to integers for i in range(len(SCREAMING_SNAKE_CASE_ ) ): _UpperCAmelCase = int(sequence[i] ,2 ) return sequence def __UpperCAmelCase ( lowercase ): """simple docstring""" # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = """0""" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = """1""" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class a ( _SCREAMING_SNAKE_CASE ): _snake_case : List[Any] = 42 class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : List[Any] , __lowerCAmelCase : Tuple = 6_5536 , __lowerCAmelCase : List[str] = None , __lowerCAmelCase : Dict = 2 , __lowerCAmelCase : Tuple = 2 , __lowerCAmelCase : Optional[int] = 0 , __lowerCAmelCase : Optional[Any] = "fourier" , __lowerCAmelCase : Optional[int] = True , __lowerCAmelCase : Tuple = False , __lowerCAmelCase : List[Any] = 0.0 , __lowerCAmelCase : Dict = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __lowerCAmelCase : Union[str, Any] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __lowerCAmelCase : Any = "UNetMidBlock1D" , __lowerCAmelCase : List[Any] = None , __lowerCAmelCase : int = (32, 32, 64) , __lowerCAmelCase : Any = None , __lowerCAmelCase : Optional[Any] = 8 , __lowerCAmelCase : str = 1 , __lowerCAmelCase : str = False , ): super().__init__() _UpperCAmelCase = sample_size # time if time_embedding_type == "fourier": _UpperCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__lowerCAmelCase , log=__lowerCAmelCase , flip_sin_to_cos=__lowerCAmelCase ) _UpperCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": _UpperCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=__lowerCAmelCase , downscale_freq_shift=__lowerCAmelCase ) _UpperCAmelCase = block_out_channels[0] if use_timestep_embedding: _UpperCAmelCase = block_out_channels[0] * 4 _UpperCAmelCase = TimestepEmbedding( in_channels=__lowerCAmelCase , time_embed_dim=__lowerCAmelCase , act_fn=__lowerCAmelCase , out_dim=block_out_channels[0] , ) _UpperCAmelCase = nn.ModuleList([] ) _UpperCAmelCase = None _UpperCAmelCase = nn.ModuleList([] ) _UpperCAmelCase = None # down _UpperCAmelCase = in_channels for i, down_block_type in enumerate(__lowerCAmelCase ): _UpperCAmelCase = output_channel _UpperCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels _UpperCAmelCase = i == len(__lowerCAmelCase ) - 1 _UpperCAmelCase = get_down_block( __lowerCAmelCase , num_layers=__lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__lowerCAmelCase ) # mid _UpperCAmelCase = get_mid_block( __lowerCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__lowerCAmelCase , add_downsample=__lowerCAmelCase , ) # up _UpperCAmelCase = list(reversed(__lowerCAmelCase ) ) _UpperCAmelCase = reversed_block_out_channels[0] if out_block_type is None: _UpperCAmelCase = out_channels else: _UpperCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(__lowerCAmelCase ): _UpperCAmelCase = output_channel _UpperCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(__lowerCAmelCase ) - 1 else final_upsample_channels ) _UpperCAmelCase = i == len(__lowerCAmelCase ) - 1 _UpperCAmelCase = get_up_block( __lowerCAmelCase , num_layers=__lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__lowerCAmelCase ) _UpperCAmelCase = output_channel # out _UpperCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _UpperCAmelCase = get_out_block( out_block_type=__lowerCAmelCase , num_groups_out=__lowerCAmelCase , embed_dim=block_out_channels[0] , out_channels=__lowerCAmelCase , act_fn=__lowerCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int = True , ): _UpperCAmelCase = timestep if not torch.is_tensor(__lowerCAmelCase ): _UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: _UpperCAmelCase = timesteps[None].to(sample.device ) _UpperCAmelCase = self.time_proj(__lowerCAmelCase ) if self.config.use_timestep_embedding: _UpperCAmelCase = self.time_mlp(__lowerCAmelCase ) else: _UpperCAmelCase = timestep_embed[..., None] _UpperCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _UpperCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _UpperCAmelCase = () for downsample_block in self.down_blocks: _UpperCAmelCase , _UpperCAmelCase = downsample_block(hidden_states=__lowerCAmelCase , temb=__lowerCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _UpperCAmelCase = self.mid_block(__lowerCAmelCase , __lowerCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _UpperCAmelCase = down_block_res_samples[-1:] _UpperCAmelCase = down_block_res_samples[:-1] _UpperCAmelCase = upsample_block(__lowerCAmelCase , res_hidden_states_tuple=__lowerCAmelCase , temb=__lowerCAmelCase ) # 5. post-process if self.out_block: _UpperCAmelCase = self.out_block(__lowerCAmelCase , __lowerCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__lowerCAmelCase )
365
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class a : @staticmethod def lowerCAmelCase_ ( *__lowerCAmelCase : int , **__lowerCAmelCase : List[str] ): pass def __UpperCAmelCase ( lowercase ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCAmelCase__ = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class a ( unittest.TestCase ): _snake_case : str = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = pipeline( """document-question-answering""" , model=__lowercase , tokenizer=__lowercase , image_processor=__lowercase ) _UpperCAmelCase = INVOICE_URL _UpperCAmelCase = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , """""" ) ) ) _UpperCAmelCase = '''What is the placebo?''' _UpperCAmelCase = [ { '''image''': load_image(__lowercase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str ): _UpperCAmelCase = dqa_pipeline(__lowercase , top_k=2 ) self.assertEqual( __lowercase , [ [ {"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase ), """start""": ANY(__lowercase ), """end""": ANY(__lowercase )}, {"""score""": ANY(__lowercase ), """answer""": ANY(__lowercase ), """start""": ANY(__lowercase ), """end""": ANY(__lowercase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) _UpperCAmelCase = INVOICE_URL _UpperCAmelCase = '''How many cats are there?''' _UpperCAmelCase = [ {'''score''': 0.0_001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] _UpperCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) _UpperCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , __lowercase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _UpperCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _UpperCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) # We can optionnally pass directly the words and bounding boxes _UpperCAmelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , words=__lowercase , boxes=__lowercase , top_k=2 ) self.assertEqual(__lowercase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) _UpperCAmelCase = INVOICE_URL _UpperCAmelCase = '''What is the invoice number?''' _UpperCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _UpperCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _UpperCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 16, """end""": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=50 , ) _UpperCAmelCase = INVOICE_URL _UpperCAmelCase = '''What is the invoice number?''' _UpperCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _UpperCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _UpperCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 23, """end""": 23}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=__lowercase ) _UpperCAmelCase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=__lowercase , revision="""3dc6de3""" , ) _UpperCAmelCase = INVOICE_URL _UpperCAmelCase = '''What is the invoice number?''' _UpperCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) _UpperCAmelCase = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) _UpperCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] ] * 2 , ) _UpperCAmelCase = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , """""" ) ) ) # This model should also work if `image` is set to None _UpperCAmelCase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 23, """end""": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=__lowercase ) _UpperCAmelCase = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=__lowercase , revision="""3dc6de3""" , max_seq_len=50 , ) _UpperCAmelCase = INVOICE_URL _UpperCAmelCase = '''What is the invoice number?''' _UpperCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) _UpperCAmelCase = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] ] * 2 , ) _UpperCAmelCase = list(zip(*apply_tesseract(load_image(__lowercase ) , __lowercase , """""" ) ) ) # This model should also work if `image` is set to None _UpperCAmelCase = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 16, """end""": 16}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 16, """end""": 16}, ] , ) @slow @require_torch def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) _UpperCAmelCase = INVOICE_URL _UpperCAmelCase = '''What is the invoice number?''' _UpperCAmelCase = dqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual(nested_simplify(__lowercase , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def lowerCAmelCase_ ( self : Any ): pass
366
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase__ = logging.get_logger(__name__) class a ( UpperCamelCase__ ): _snake_case : Any = ["""pixel_values"""] def __init__( self : Any , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Dict[str, int]] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[int, float] = 1 / 255 , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , **__lowerCAmelCase : Dict , ): super().__init__(**__a ) _UpperCAmelCase = size if size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase = get_size_dict(__a ) _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Optional[Any] , ): _UpperCAmelCase = get_size_dict(__a ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : int , ): _UpperCAmelCase = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : List[str] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[float, List[float]] , __lowerCAmelCase : Union[float, List[float]] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Dict , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : ImageInput , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : int = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[float] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowerCAmelCase : Dict , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__a ) if not is_batched(__a ): _UpperCAmelCase = [images] if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__a ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__a , __a ) for image in images] _UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
367
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase__ = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase__ = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = random.randint(0 ,len(lowerCAmelCase_ ) - 1 ) _UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] _UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = list(lowerCAmelCase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCAmelCase = random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,): """simple docstring""" _UpperCAmelCase = [] # Generate more children proportionally to the fitness score. _UpperCAmelCase = int(parent_a[1] * 1_00 ) + 1 _UpperCAmelCase = 10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): _UpperCAmelCase = population_score[random.randint(0 ,lowerCAmelCase_ )][0] _UpperCAmelCase = crossover(parent_a[0] ,lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_ ,lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_ ,lowerCAmelCase_ ) ) return pop def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = True ): """simple docstring""" # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _UpperCAmelCase = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCAmelCase = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. _UpperCAmelCase = [] for _ in range(lowerCAmelCase_ ): population.append("""""".join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCAmelCase = [evaluate(lowerCAmelCase_ ,lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. _UpperCAmelCase = sorted(lowerCAmelCase_ ,key=lambda lowercase : x[1] ,reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. _UpperCAmelCase = [ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )] ,lowerCAmelCase_ ,lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase__ = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) UpperCAmelCase__ = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
368
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path UpperCAmelCase__ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase__ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase__ = re.compile(r"""^\s*else:""") def __UpperCAmelCase ( lowercase ): """simple docstring""" if _re_test_backend.search(__SCREAMING_SNAKE_CASE ) is None: return None _UpperCAmelCase = [b[0] for b in _re_backend.findall(__SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( lowercase ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = 0 while line_index < len(__SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure _UpperCAmelCase = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _UpperCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ): _UpperCAmelCase = _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ).groups()[0] _UpperCAmelCase = re.findall("""\[([^\]]+)\]""" ,__SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _UpperCAmelCase = _re_import_struct_key_value.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: _UpperCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _UpperCAmelCase = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _UpperCAmelCase = lines[line_index] if _re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ) is not None: _UpperCAmelCase = _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(__SCREAMING_SNAKE_CASE ) is not None: _UpperCAmelCase = _re_between_brackets.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _UpperCAmelCase = [] while ( line_index < len(__SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _UpperCAmelCase = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" def find_duplicates(lowercase ): return [k for k, v in collections.Counter(__SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _UpperCAmelCase = [] for key in import_dict_objects.keys(): _UpperCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _UpperCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _UpperCAmelCase = "base imports" if key == "none" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [] for root, _, files in os.walk(__SCREAMING_SNAKE_CASE ): if "__init__.py" in files: _UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE ,"""__init__.py""" ) _UpperCAmelCase = parse_init(__SCREAMING_SNAKE_CASE ) if objects is not None: _UpperCAmelCase = analyze_results(*__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError("""\n\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [] for path, directories, files in os.walk(__SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(__SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__SCREAMING_SNAKE_CASE ) / folder).glob("""*.py""" ) ) ) == 0: continue _UpperCAmelCase = str((Path(__SCREAMING_SNAKE_CASE ) / folder).relative_to(__SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = short_path.replace(os.path.sep ,""".""" ) submodules.append(__SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue _UpperCAmelCase = str((Path(__SCREAMING_SNAKE_CASE ) / fname).relative_to(__SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(__SCREAMING_SNAKE_CASE ) return submodules UpperCAmelCase__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __UpperCAmelCase ( ): """simple docstring""" # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase = importlib.util.spec_from_file_location( """transformers""" ,os.path.join(__SCREAMING_SNAKE_CASE ,"""__init__.py""" ) ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,) _UpperCAmelCase = spec.loader.load_module() _UpperCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = "\n".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
0
"""simple docstring""" import torch from diffusers import DiffusionPipeline class a ( _SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) def __call__( self : Optional[int] ): _UpperCAmelCase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _UpperCAmelCase = 1 _UpperCAmelCase = self.unet(A_ , A_ ).sample _UpperCAmelCase = self.scheduler.step(A_ , A_ , A_ ).prev_sample _UpperCAmelCase = scheduler_output - scheduler_output + torch.ones_like(A_ ) return result
371
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class a ( lowerCAmelCase_ ): _snake_case : Dict = 'time_series_transformer' _snake_case : Optional[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "student_t" , __lowerCAmelCase : str = "nll" , __lowerCAmelCase : int = 1 , __lowerCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowerCAmelCase : Optional[Union[str, bool]] = "mean" , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : int = 32 , __lowerCAmelCase : int = 32 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "gelu" , __lowerCAmelCase : int = 64 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : int = 100 , __lowerCAmelCase : float = 0.02 , __lowerCAmelCase : int=True , **__lowerCAmelCase : List[str] , ): # time series specific configuration _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length or prediction_length _UpperCAmelCase = distribution_output _UpperCAmelCase = loss _UpperCAmelCase = input_size _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = scaling _UpperCAmelCase = num_dynamic_real_features _UpperCAmelCase = num_static_real_features _UpperCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) _UpperCAmelCase = cardinality else: _UpperCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) _UpperCAmelCase = embedding_dimension else: _UpperCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase = input_size * len(__lowerCAmelCase ) + self._number_of_features _UpperCAmelCase = d_model _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = decoder_layers _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = use_cache super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) _UpperCAmelCase = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _UpperCAmelCase = 1 if upper_limit > 0: _UpperCAmelCase = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 ,upper_limit + 1 ): for j in range(lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: UpperCAmelCase__ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") UpperCAmelCase__ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a : _snake_case : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) _snake_case : Optional[str] = field(default=lowerCAmelCase_ , metadata={'help': 'A folder containing the training data.'} ) _snake_case : Optional[str] = field(default=lowerCAmelCase_ , metadata={'help': 'A folder containing the validation data.'} ) _snake_case : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) _snake_case : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) _snake_case : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) _snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = {} if self.train_dir is not None: _UpperCAmelCase = self.train_dir if self.validation_dir is not None: _UpperCAmelCase = self.validation_dir _UpperCAmelCase = data_files if data_files else None @dataclass class a : _snake_case : str = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowerCAmelCase_ )} , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) _snake_case : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _snake_case : str = field(default=lowerCAmelCase_ , metadata={'help': 'Name or path of preprocessor config.'} ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) _snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) _snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={'help': 'Stride to use for the encoder.'} , ) class a : def __init__( self : Any , __lowerCAmelCase : Optional[Any]=192 , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : List[str]=0.6 ): _UpperCAmelCase = input_size _UpperCAmelCase = mask_patch_size _UpperCAmelCase = model_patch_size _UpperCAmelCase = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) _UpperCAmelCase = self.input_size // self.mask_patch_size _UpperCAmelCase = self.mask_patch_size // self.model_patch_size _UpperCAmelCase = self.rand_size**2 _UpperCAmelCase = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : int ): _UpperCAmelCase = np.random.permutation(self.token_count )[: self.mask_count] _UpperCAmelCase = np.zeros(self.token_count , dtype=__lowerCAmelCase ) _UpperCAmelCase = 1 _UpperCAmelCase = mask.reshape((self.rand_size, self.rand_size) ) _UpperCAmelCase = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = torch.stack([example["""pixel_values"""] for example in examples] ) _UpperCAmelCase = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" ,lowercase ,lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. _UpperCAmelCase = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,data_files=data_args.data_files ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,lowercase ) and data_args.train_val_split > 0.0: _UpperCAmelCase = ds["""train"""].train_test_split(data_args.train_val_split ) _UpperCAmelCase = split["""train"""] _UpperCAmelCase = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name_or_path ,**lowercase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path ,**lowercase ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase ,"""decoder_type""" ): _UpperCAmelCase = """simmim""" # adapt config _UpperCAmelCase = model_args.image_size if model_args.image_size is not None else config.image_size _UpperCAmelCase = model_args.patch_size if model_args.patch_size is not None else config.patch_size _UpperCAmelCase = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _UpperCAmelCase = AutoImageProcessor.from_pretrained(model_args.image_processor_name ,**lowercase ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoImageProcessor.from_pretrained(model_args.model_name_or_path ,**lowercase ) else: _UpperCAmelCase = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _UpperCAmelCase = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _UpperCAmelCase = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=lowercase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) else: logger.info("""Training new model from scratch""" ) _UpperCAmelCase = AutoModelForMaskedImageModeling.from_config(lowercase ) if training_args.do_train: _UpperCAmelCase = ds["""train"""].column_names else: _UpperCAmelCase = ds["""validation"""].column_names if data_args.image_column_name is not None: _UpperCAmelCase = data_args.image_column_name elif "image" in column_names: _UpperCAmelCase = """image""" elif "img" in column_names: _UpperCAmelCase = """img""" else: _UpperCAmelCase = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _UpperCAmelCase = Compose( [ Lambda(lambda lowercase : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size ,scale=(0.67, 1.0) ,ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ), ] ) # create mask generator _UpperCAmelCase = MaskGenerator( input_size=model_args.image_size ,mask_patch_size=data_args.mask_patch_size ,model_patch_size=model_args.patch_size ,mask_ratio=data_args.mask_ratio ,) def preprocess_images(lowercase ): _UpperCAmelCase = [transforms(lowercase ) for image in examples[image_column_name]] _UpperCAmelCase = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: _UpperCAmelCase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: _UpperCAmelCase = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase ) # Initialize our trainer _UpperCAmelCase = Trainer( model=lowercase ,args=lowercase ,train_dataset=ds["""train"""] if training_args.do_train else None ,eval_dataset=ds["""validation"""] if training_args.do_eval else None ,tokenizer=lowercase ,data_collator=lowercase ,) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase = trainer.evaluate() trainer.log_metrics("""eval""" ,lowercase ) trainer.save_metrics("""eval""" ,lowercase ) # Write model card and (optionally) push to hub _UpperCAmelCase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import numpy as np def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return np.where(vector > 0 ,lowercase ,(alpha * (np.exp(lowercase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" import collections import os import re from pathlib import Path UpperCAmelCase__ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase__ = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase__ = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase__ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase__ = re.compile(r"""^\s*else:""") def __UpperCAmelCase ( lowercase ): """simple docstring""" if _re_test_backend.search(lowercase ) is None: return None _UpperCAmelCase = [b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def __UpperCAmelCase ( lowercase ): """simple docstring""" with open(lowercase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = 0 while line_index < len(lowercase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure _UpperCAmelCase = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _UpperCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): _UpperCAmelCase = _re_one_line_import_struct.search(lowercase ).groups()[0] _UpperCAmelCase = re.findall(R"""\[([^\]]+)\]""" ,lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _UpperCAmelCase = _re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: _UpperCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _UpperCAmelCase = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _UpperCAmelCase = lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: _UpperCAmelCase = _re_import_struct_add_many.search(lowercase ).groups()[0].split(""", """ ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: _UpperCAmelCase = _re_between_brackets.search(lowercase ).groups()[0].split(""", """ ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _UpperCAmelCase = [] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _UpperCAmelCase = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" def find_duplicates(lowercase ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _UpperCAmelCase = [] for key in import_dict_objects.keys(): _UpperCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _UpperCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _UpperCAmelCase = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: _UpperCAmelCase = os.path.join(lowercase ,"""__init__.py""" ) _UpperCAmelCase = parse_init(lowercase ) if objects is not None: _UpperCAmelCase = analyze_results(*lowercase ) if len(lowercase ) > 0: _UpperCAmelCase = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowercase ) ) if len(lowercase ) > 0: raise ValueError("""\n\n""".join(lowercase ) ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob("""*.py""" ) ) ) == 0: continue _UpperCAmelCase = str((Path(lowercase ) / folder).relative_to(lowercase ) ) _UpperCAmelCase = short_path.replace(os.path.sep ,""".""" ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue _UpperCAmelCase = str((Path(lowercase ) / fname).relative_to(lowercase ) ) _UpperCAmelCase = short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowercase ) return submodules UpperCAmelCase__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def __UpperCAmelCase ( ): """simple docstring""" from transformers.utils import direct_transformers_import _UpperCAmelCase = direct_transformers_import(lowercase ) _UpperCAmelCase = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowercase ,"""__init__.py""" ) ,"""r""" ) as f: _UpperCAmelCase = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" ,lowercase ) ) ) _UpperCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowercase ) > 0: _UpperCAmelCase = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = 1.5 _UpperCAmelCase = int(factor * num_class_images ) _UpperCAmelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" ,indice_name="""laion_400m""" ,num_images=lowercase ,aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''' ,exist_ok=lowercase ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: _UpperCAmelCase = client.query(text=lowercase ) if len(lowercase ) >= factor * num_class_images or num_images > 1E4: break else: _UpperCAmelCase = int(factor * num_images ) _UpperCAmelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" ,indice_name="""laion_400m""" ,num_images=lowercase ,aesthetic_weight=0.1 ,) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = tqdm(desc="""downloading real regularization images""" ,total=lowercase ) with open(f'''{class_data_dir}/caption.txt''' ,"""w""" ) as fa, open(f'''{class_data_dir}/urls.txt''' ,"""w""" ) as fa, open( f'''{class_data_dir}/images.txt''' ,"""w""" ) as fa: while total < num_class_images: _UpperCAmelCase = class_images[count] count += 1 try: _UpperCAmelCase = requests.get(images["""url"""] ) if img.status_code == 2_00: _UpperCAmelCase = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''' ,"""wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser("""""" ,add_help=lowercase ) parser.add_argument("""--class_prompt""" ,help="""text prompt to retrieve images""" ,required=lowercase ,type=lowercase ) parser.add_argument("""--class_data_dir""" ,help="""path to save images""" ,required=lowercase ,type=lowercase ) parser.add_argument("""--num_class_images""" ,help="""number of images to download""" ,default=2_00 ,type=lowercase ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( lowercase ): """simple docstring""" for param in module.parameters(): _UpperCAmelCase = False def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = plt.imshow(lowercase ) fig.axes.get_xaxis().set_visible(lowercase ) fig.axes.get_yaxis().set_visible(lowercase ) plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = datetime.now() _UpperCAmelCase = current_time.strftime("""%H:%M:%S""" ) return timestamp
357
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'layoutlmv3' def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple=5_0265 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=128 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=64 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class a ( lowerCAmelCase_ ): _snake_case : str = version.parse('1.12' ) @property def lowerCAmelCase_ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5 @property def lowerCAmelCase_ ( self : List[str] ): return 12 def lowerCAmelCase_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
30
0
"""simple docstring""" import os def __UpperCAmelCase ( lowercase = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(lowercase ) ,lowercase ) ) as input_file: _UpperCAmelCase = [ [int(lowercase ) for element in line.split(""",""" )] for line in input_file.readlines() ] _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = len(matrix[0] ) _UpperCAmelCase = [[-1 for _ in range(lowercase )] for _ in range(lowercase )] for i in range(lowercase ): _UpperCAmelCase = matrix[i][0] for j in range(1 ,lowercase ): for i in range(lowercase ): _UpperCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 ,lowercase ): _UpperCAmelCase = min( minimal_path_sums[i][j] ,minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 ,-1 ,-1 ): _UpperCAmelCase = min( minimal_path_sums[i][j] ,minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
358
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase , _UpperCAmelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _UpperCAmelCase = result + left + right return input_list def __UpperCAmelCase ( lowercase ): """simple docstring""" if len(lowercase ) <= 1: return input_list _UpperCAmelCase = list(lowercase ) # iteration for two-way merging _UpperCAmelCase = 2 while p <= len(lowercase ): # getting low, high and middle value for merge-sort of single list for i in range(0 ,len(lowercase ) ,lowercase ): _UpperCAmelCase = i _UpperCAmelCase = i + p - 1 _UpperCAmelCase = (low + high + 1) // 2 _UpperCAmelCase = merge(lowercase ,lowercase ,lowercase ,lowercase ) # final merge of last two parts if p * 2 >= len(lowercase ): _UpperCAmelCase = i _UpperCAmelCase = merge(lowercase ,0 ,lowercase ,len(lowercase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": UpperCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": UpperCAmelCase__ = [] else: UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
359
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
0
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] ): return f'''gaussian_noise_s={seed}_shape={"_".join([str(__lowerCAmelCase ) for s in shape] )}.npy''' def lowerCAmelCase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : int=(4, 4, 64, 64) , __lowerCAmelCase : Dict=False ): _UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__lowerCAmelCase , __lowerCAmelCase ) ) , dtype=__lowerCAmelCase ) return image def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : List[str]="CompVis/stable-diffusion-v1-4" ): _UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase = """bf16""" if fpaa else None _UpperCAmelCase , _UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __lowerCAmelCase , subfolder="""unet""" , dtype=__lowerCAmelCase , revision=__lowerCAmelCase ) return model, params def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str=0 , __lowerCAmelCase : Tuple=(4, 77, 768) , __lowerCAmelCase : Any=False ): _UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__lowerCAmelCase , __lowerCAmelCase ) ) , dtype=__lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=__lowerCAmelCase ) _UpperCAmelCase = self.get_latents(__lowerCAmelCase , fpaa=__lowerCAmelCase ) _UpperCAmelCase = self.get_encoder_hidden_states(__lowerCAmelCase , fpaa=__lowerCAmelCase ) _UpperCAmelCase = model.apply( {"""params""": params} , __lowerCAmelCase , jnp.array(__lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__lowerCAmelCase , ).sample assert sample.shape == latents.shape _UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase = jnp.array(__lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : int ): _UpperCAmelCase , _UpperCAmelCase = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=__lowerCAmelCase ) _UpperCAmelCase = self.get_latents(__lowerCAmelCase , shape=(4, 4, 96, 96) , fpaa=__lowerCAmelCase ) _UpperCAmelCase = self.get_encoder_hidden_states(__lowerCAmelCase , shape=(4, 77, 1024) , fpaa=__lowerCAmelCase ) _UpperCAmelCase = model.apply( {"""params""": params} , __lowerCAmelCase , jnp.array(__lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__lowerCAmelCase , ).sample assert sample.shape == latents.shape _UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase = jnp.array(__lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-2 )
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=__lowerCAmelCase , ) assert hasattr(self , """env""" ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] ): # configuration for running training on smdistributed Model Parallel _UpperCAmelCase = { """enabled""": True, """processes_per_host""": 8, } _UpperCAmelCase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } _UpperCAmelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} _UpperCAmelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=__lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCAmelCase , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=__lowerCAmelCase , py_version="""py36""" , ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : int ): TrainingJobAnalytics(__lowerCAmelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] ): # create estimator _UpperCAmelCase = self.create_estimator(__lowerCAmelCase ) # run training estimator.fit() # result dataframe _UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __lowerCAmelCase )
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a ( unittest.TestCase ): def __init__( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int=7 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : Dict=18 , __lowerCAmelCase : str=30 , __lowerCAmelCase : List[str]=400 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : int=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , ): _UpperCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def lowerCAmelCase_ ( self : Dict ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : Union[str, Any] = DPTImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = DPTImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase_ ( self : Union[str, Any] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : List[str] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : str ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
363
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if digit_amount > 0: return round(number - int(lowercase ) ,lowercase ) return number - int(lowercase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
365
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # Checks if the entire collection has been sorted if len(lowercase ) <= 1 or n <= 1: return insert_next(lowercase ,n - 1 ) rec_insertion_sort(lowercase ,n - 1 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # Checks order between adjacent elements if index >= len(lowercase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _UpperCAmelCase , _UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowercase ,index + 1 ) if __name__ == "__main__": UpperCAmelCase__ = input("""Enter integers separated by spaces: """) UpperCAmelCase__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
366
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""DeiTFeatureExtractor"""] UpperCAmelCase__ = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : Any = ['pixel_values'] def __init__( self : Optional[int] , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[int, float] = 1 / 255 , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = True , **__lowerCAmelCase : Tuple , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 224} _UpperCAmelCase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} _UpperCAmelCase = get_size_dict(__lowerCAmelCase , param_name="""crop_size""" ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_flip_channel_order def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PIL.Image.BILINEAR , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Optional[Any] , ): _UpperCAmelCase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) _UpperCAmelCase = get_resize_output_image_size(__lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCAmelCase ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : int , ): _UpperCAmelCase = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(__lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[int, float] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : str , ): return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None ): return flip_channel_order(__lowerCAmelCase , data_format=__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : ImageInput , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : float = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : Optional[Any] , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__lowerCAmelCase , param_name="""crop_size""" ) _UpperCAmelCase = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _UpperCAmelCase = [self.flip_channel_order(image=__lowerCAmelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] _UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Tuple] = None ): _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__lowerCAmelCase ): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(__lowerCAmelCase ) ): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) _UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowerCAmelCase ) else: _UpperCAmelCase = logits.argmax(dim=1 ) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
368
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class a ( unittest.TestCase ): def __init__( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : List[Any]=18 , __lowerCAmelCase : Optional[int]=30 , __lowerCAmelCase : Optional[int]=400 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : int=True , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : int=[0.48_145_466, 0.4_578_275, 0.40_821_073] , __lowerCAmelCase : Dict=[0.26_862_954, 0.26_130_258, 0.27_577_711] , __lowerCAmelCase : Union[str, Any]=True , ): _UpperCAmelCase = size if size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_convert_rgb def lowerCAmelCase_ ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : str=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _UpperCAmelCase = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _UpperCAmelCase = [] for i in range(self.batch_size ): _UpperCAmelCase , _UpperCAmelCase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _UpperCAmelCase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] if torchify: _UpperCAmelCase = [torch.from_numpy(__lowerCAmelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : Any = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ChineseCLIPImageProcessingTester(self , do_center_crop=__lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_convert_rgb""" ) ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : int ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase_ ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase_ ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) @require_torch @require_vision class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : Dict = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__lowerCAmelCase ) _UpperCAmelCase = 3 @property def lowerCAmelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_convert_rgb""" ) ) def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : Optional[Any] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class a ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : int ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Tuple=None ): _UpperCAmelCase = {} _UpperCAmelCase = {} if prompt is not None: _UpperCAmelCase = prompt if generate_kwargs is not None: _UpperCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _UpperCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) _UpperCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Optional[int] ): return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : List[str]=None ): _UpperCAmelCase = load_image(__lowerCAmelCase ) if prompt is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) _UpperCAmelCase = self.model.config.model_type if model_type == "git": _UpperCAmelCase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids _UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids _UpperCAmelCase = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": _UpperCAmelCase = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _UpperCAmelCase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(__lowerCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _UpperCAmelCase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _UpperCAmelCase = None return model_inputs def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , __lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): _UpperCAmelCase = None if generate_kwargs is None: _UpperCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _UpperCAmelCase = model_inputs.pop(self.model.main_input_name ) _UpperCAmelCase = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase ) return model_outputs def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : int ): _UpperCAmelCase = [] for output_ids in model_outputs: _UpperCAmelCase = { """generated_text""": self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records
371
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
0
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__) class a ( lowerCAmelCase_ ): _snake_case : Optional[Any] = 'masked_bert' def __init__( self : Dict , __lowerCAmelCase : Union[str, Any]=3_0522 , __lowerCAmelCase : List[Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Optional[Any]=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[Any]=512 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : str=1e-1_2 , __lowerCAmelCase : Union[str, Any]=0 , __lowerCAmelCase : Optional[int]="topK" , __lowerCAmelCase : Dict="constant" , __lowerCAmelCase : List[Any]=0.0 , **__lowerCAmelCase : Tuple , ): super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = pruning_method _UpperCAmelCase = mask_init _UpperCAmelCase = mask_scale
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [] if isinstance(lowercase ,lowercase ): for v in tree.values(): shapes.extend(_fetch_dims(lowercase ) ) elif isinstance(lowercase ,(list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowercase ) ) elif isinstance(lowercase ,torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] for d in reversed(lowercase ): idx.append(flat_idx % d ) _UpperCAmelCase = flat_idx // d return tuple(reversed(lowercase ) ) @torch.jit.ignore def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase = None ,lowercase = None ,): """simple docstring""" # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowercase ) -> None: _UpperCAmelCase = True for i in range(len(lowercase ) ): _UpperCAmelCase = -1 * (i + 1) l[reversed_idx] &= tally _UpperCAmelCase = l[reversed_idx] if start_edges is None: _UpperCAmelCase = [s == 0 for s in start] reduce_edge_list(lowercase ) if end_edges is None: _UpperCAmelCase = [e == (d - 1) for e, d in zip(lowercase ,lowercase )] reduce_edge_list(lowercase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowercase ) == 0: return [()] elif len(lowercase ) == 1: return [(slice(start[0] ,end[0] + 1 ),)] _UpperCAmelCase = [] _UpperCAmelCase = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowercase ,lowercase ): if s == e: path_list.append(slice(lowercase ,s + 1 ) ) else: break _UpperCAmelCase = tuple(lowercase ) _UpperCAmelCase = len(lowercase ) # start == end, and we're done if divergence_idx == len(lowercase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCAmelCase = start[divergence_idx] return tuple( path + (slice(lowercase ,sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] ,[d - 1 for d in dims[divergence_idx + 1 :]] ,dims[divergence_idx + 1 :] ,start_edges=start_edges[divergence_idx + 1 :] ,end_edges=[True for _ in end_edges[divergence_idx + 1 :]] ,) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCAmelCase = end[divergence_idx] return tuple( path + (slice(lowercase ,edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] ,end[divergence_idx + 1 :] ,dims[divergence_idx + 1 :] ,start_edges=[True for _ in start_edges[divergence_idx + 1 :]] ,end_edges=end_edges[divergence_idx + 1 :] ,) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _UpperCAmelCase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = t.shape[:no_batch_dims] _UpperCAmelCase = list(_flat_idx_to_idx(lowercase ,lowercase ) ) # _get_minimal_slice_set is inclusive _UpperCAmelCase = list(_flat_idx_to_idx(flat_end - 1 ,lowercase ) ) # Get an ordered list of slices to perform _UpperCAmelCase = _get_minimal_slice_set( lowercase ,lowercase ,lowercase ,) _UpperCAmelCase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase = False ,lowercase = None ,lowercase = False ,): """simple docstring""" if not (len(lowercase ) > 0): raise ValueError("""Must provide at least one input""" ) _UpperCAmelCase = [shape[:no_batch_dims] for shape in _fetch_dims(lowercase )] _UpperCAmelCase = tuple([max(lowercase ) for s in zip(*lowercase )] ) def _prep_inputs(lowercase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _UpperCAmelCase = t.reshape(-1 ,*t.shape[no_batch_dims:] ) else: _UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _UpperCAmelCase = tensor_tree_map(_prep_inputs ,lowercase ) _UpperCAmelCase = None if _out is not None: _UpperCAmelCase = tensor_tree_map(lambda lowercase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) ,_out ) _UpperCAmelCase = 1 for d in orig_batch_dims: flat_batch_dim *= d _UpperCAmelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _UpperCAmelCase = 0 _UpperCAmelCase = prepped_outputs for _ in range(lowercase ): # Chunk the input if not low_mem: _UpperCAmelCase = _select_chunk else: _UpperCAmelCase = partial( _chunk_slice ,flat_start=lowercase ,flat_end=min(lowercase ,i + chunk_size ) ,no_batch_dims=len(lowercase ) ,) _UpperCAmelCase = tensor_tree_map(lowercase ,lowercase ) # Run the layer on the chunk _UpperCAmelCase = layer(**lowercase ) # Allocate space for the output if out is None: _UpperCAmelCase = tensor_tree_map(lambda lowercase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) ,lowercase ) # Put the chunk in its pre-allocated space if isinstance(lowercase ,lowercase ): def assign(lowercase ,lowercase ) -> None: for k, v in da.items(): if isinstance(lowercase ,lowercase ): assign(lowercase ,da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _UpperCAmelCase = da[k] assign(lowercase ,lowercase ) elif isinstance(lowercase ,lowercase ): for xa, xa in zip(lowercase ,lowercase ): if _add_into_out: xa[i : i + chunk_size] += xa else: _UpperCAmelCase = xa elif isinstance(lowercase ,torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _UpperCAmelCase = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size _UpperCAmelCase = tensor_tree_map(lambda lowercase : t.view(orig_batch_dims + t.shape[1:] ) ,lowercase ) return out class a : def __init__( self : str , __lowerCAmelCase : int = 512 , ): _UpperCAmelCase = max_chunk_size _UpperCAmelCase = None _UpperCAmelCase = None def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Callable , __lowerCAmelCase : tuple , __lowerCAmelCase : int ): logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _UpperCAmelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _UpperCAmelCase = [c for c in candidates if c > min_chunk_size] _UpperCAmelCase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__lowerCAmelCase : int ) -> bool: try: with torch.no_grad(): fn(*__lowerCAmelCase , chunk_size=__lowerCAmelCase ) return True except RuntimeError: return False _UpperCAmelCase = 0 _UpperCAmelCase = len(__lowerCAmelCase ) - 1 while i > min_viable_chunk_size_index: _UpperCAmelCase = test_chunk_size(candidates[i] ) if not viable: _UpperCAmelCase = (min_viable_chunk_size_index + i) // 2 else: _UpperCAmelCase = i _UpperCAmelCase = (i + len(__lowerCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Iterable , __lowerCAmelCase : Iterable ): _UpperCAmelCase = True for aa, aa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert type(__lowerCAmelCase ) == type(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda __lowerCAmelCase : x[0] )] _UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda __lowerCAmelCase : x[0] )] consistent &= self._compare_arg_caches(__lowerCAmelCase , __lowerCAmelCase ) else: consistent &= aa == aa return consistent def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Callable , __lowerCAmelCase : tuple , __lowerCAmelCase : int , ): _UpperCAmelCase = True _UpperCAmelCase = tree_map(lambda __lowerCAmelCase : a.shape if isinstance(__lowerCAmelCase , torch.Tensor ) else a , __lowerCAmelCase , __lowerCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__lowerCAmelCase ) _UpperCAmelCase = self._compare_arg_caches(self.cached_arg_data , __lowerCAmelCase ) else: # Otherwise, we can reuse the precomputed value _UpperCAmelCase = False if not consistent: _UpperCAmelCase = self._determine_favorable_chunk_size( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _UpperCAmelCase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
0
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCAmelCase__ = 2 class a : def __init__( self : List[Any] , *, # begin keyword-only arguments __lowerCAmelCase : Dict="<s>" , __lowerCAmelCase : Optional[int]="<pad>" , __lowerCAmelCase : Any="</s>" , __lowerCAmelCase : List[str]="<unk>" , __lowerCAmelCase : Any=None , ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = bos, unk, pad, eos _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = self.add_symbol(__lowerCAmelCase ) _UpperCAmelCase = self.add_symbol(__lowerCAmelCase ) _UpperCAmelCase = self.add_symbol(__lowerCAmelCase ) _UpperCAmelCase = self.add_symbol(__lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__lowerCAmelCase ) _UpperCAmelCase = len(self.symbols ) def __eq__( self : str , __lowerCAmelCase : Optional[Any] ): return self.indices == other.indices def __getitem__( self : Dict , __lowerCAmelCase : Optional[Any] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : int ): return len(self.symbols ) def __contains__( self : Optional[int] , __lowerCAmelCase : List[Any] ): return sym in self.indices @classmethod def lowerCAmelCase_ ( cls : Dict , __lowerCAmelCase : str ): _UpperCAmelCase = cls() d.add_from_file(__lowerCAmelCase ) return d def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple=1 , __lowerCAmelCase : Tuple=False ): if word in self.indices and not overwrite: _UpperCAmelCase = self.indices[word] _UpperCAmelCase = self.count[idx] + n return idx else: _UpperCAmelCase = len(self.symbols ) _UpperCAmelCase = idx self.symbols.append(__lowerCAmelCase ) self.count.append(__lowerCAmelCase ) return idx def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Optional[int] ): return 0 def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(__lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(__lowerCAmelCase ) ) return _UpperCAmelCase = f.readlines() _UpperCAmelCase = self._load_meta(__lowerCAmelCase ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = line.rsplit(""" """ , 1 ) else: _UpperCAmelCase = False _UpperCAmelCase = int(__lowerCAmelCase ) _UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(__lowerCAmelCase ) ) self.add_symbol(__lowerCAmelCase , n=__lowerCAmelCase , overwrite=__lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = dict((re.sub(R"""@@$""" ,"""""" ,lowercase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" ,"""</w>""" ,lowercase ), v) for k, v in d.items() ) _UpperCAmelCase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] _UpperCAmelCase = d[k] # restore return da def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # prep if not os.path.exists(lowercase ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(lowercase ,exist_ok=lowercase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _UpperCAmelCase = os.path.join(lowercase ,"""checkpoint.pt""" ) if not os.path.isfile(lowercase ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) _UpperCAmelCase = torch.load(lowercase ,map_location="""cpu""" ) _UpperCAmelCase = chkpt["""cfg"""]["""model"""] # dicts _UpperCAmelCase = os.path.join(lowercase ,"""dict.txt""" ) if not os.path.isfile(lowercase ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) _UpperCAmelCase = Dictionary.load(lowercase ) _UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = os.path.join(lowercase ,VOCAB_FILES_NAMES["""vocab_file"""] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase ,ensure_ascii=lowercase ,indent=lowercase ) ) # merges_file (bpecodes) _UpperCAmelCase = os.path.join(lowercase ,"""bpecodes""" ) if not os.path.isfile(lowercase ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) _UpperCAmelCase = os.path.join(lowercase ,VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowercase ,lowercase ) # model config _UpperCAmelCase = os.path.join(lowercase ,"""config.json""" ) _UpperCAmelCase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1E-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase ,ensure_ascii=lowercase ,indent=lowercase ) ) # tokenizer config _UpperCAmelCase = os.path.join(lowercase ,lowercase ) _UpperCAmelCase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 10_24, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase ,ensure_ascii=lowercase ,indent=lowercase ) ) # model _UpperCAmelCase = chkpt["""model"""] # remove unneeded keys _UpperCAmelCase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowercase ,lowercase ) _UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): _UpperCAmelCase = model_state_dict.pop(lowercase ) else: _UpperCAmelCase = model_state_dict.pop(lowercase ) _UpperCAmelCase = BioGptConfig.from_pretrained(lowercase ) _UpperCAmelCase = BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save _UpperCAmelCase = os.path.join(lowercase ,lowercase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(lowercase ,lowercase ) print("""Conversion is done!""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = OmegaConf.load(lowercase ) _UpperCAmelCase = torch.load(lowercase ,map_location="""cpu""" )["""model"""] _UpperCAmelCase = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCAmelCase = {} _UpperCAmelCase = """first_stage_model.""" for key in keys: if key.startswith(lowercase ): _UpperCAmelCase = state_dict[key] # extract state_dict for UNetLDM _UpperCAmelCase = {} _UpperCAmelCase = """model.diffusion_model.""" for key in keys: if key.startswith(lowercase ): _UpperCAmelCase = state_dict[key] _UpperCAmelCase = config.model.params.first_stage_config.params _UpperCAmelCase = config.model.params.unet_config.params _UpperCAmelCase = VQModel(**lowercase ).eval() vqvae.load_state_dict(lowercase ) _UpperCAmelCase = UNetLDMModel(**lowercase ).eval() unet.load_state_dict(lowercase ) _UpperCAmelCase = DDIMScheduler( timesteps=config.model.params.timesteps ,beta_schedule="""scaled_linear""" ,beta_start=config.model.params.linear_start ,beta_end=config.model.params.linear_end ,clip_sample=lowercase ,) _UpperCAmelCase = LDMPipeline(lowercase ,lowercase ,lowercase ) pipeline.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) UpperCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = AlbertConfig.from_json_file(lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) _UpperCAmelCase = AlbertForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase__ = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ UpperCAmelCase__ = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ UpperCAmelCase__ = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ UpperCAmelCase__ = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ UpperCAmelCase__ = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : Tuple ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=[1, 10, 100] , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Union[str, Any]=3.0 ): if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=__lowerCAmelCase ) as executor: _UpperCAmelCase = [] _UpperCAmelCase = Counter() _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(__lowerCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): for candidate in candidates: _UpperCAmelCase = candidate + """\n""" + test_case _UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase = executor.submit(__lowerCAmelCase , *__lowerCAmelCase ) futures.append(__lowerCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__lowerCAmelCase ): _UpperCAmelCase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) _UpperCAmelCase , _UpperCAmelCase = [], [] for result in results.values(): result.sort() _UpperCAmelCase = [r[1]["""passed"""] for r in result] total.append(len(__lowerCAmelCase ) ) correct.append(sum(__lowerCAmelCase ) ) _UpperCAmelCase = np.array(__lowerCAmelCase ) _UpperCAmelCase = np.array(__lowerCAmelCase ) _UpperCAmelCase = k _UpperCAmelCase = {f'''pass@{k}''': estimate_pass_at_k(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" def estimator(lowercase ,lowercase ,lowercase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(lowercase ,lowercase ): _UpperCAmelCase = itertools.repeat(lowercase ,len(lowercase ) ) else: assert len(lowercase ) == len(lowercase ) _UpperCAmelCase = iter(lowercase ) return np.array([estimator(int(lowercase ) ,int(lowercase ) ,lowercase ) for n, c in zip(lowercase ,lowercase )] )
355
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class a ( lowerCAmelCase_ ): def __init__( self : Tuple , __lowerCAmelCase : Tuple=0.01 , __lowerCAmelCase : Dict=1000 ): _UpperCAmelCase = p_stop _UpperCAmelCase = max_length def __iter__( self : int ): _UpperCAmelCase = 0 _UpperCAmelCase = False while not stop and count < self.max_length: yield count count += 1 _UpperCAmelCase = random.random() < self.p_stop class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=False , __lowerCAmelCase : Tuple=True ): _UpperCAmelCase = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] _UpperCAmelCase = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): # Check the shards when the dataset is a round multiple of total batch size. _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): # Check the shards when the dataset is a round multiple of batch size. _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): # Check the shards when the dataset is a round multiple of total batch size. _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): # Check the shards when the dataset is a round multiple of batch size. _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _UpperCAmelCase = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict=False , __lowerCAmelCase : int=2 , __lowerCAmelCase : Tuple=False ): random.seed(__lowerCAmelCase ) _UpperCAmelCase = list(__lowerCAmelCase ) _UpperCAmelCase = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] _UpperCAmelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) _UpperCAmelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _UpperCAmelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) _UpperCAmelCase = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = 42 _UpperCAmelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset _UpperCAmelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _UpperCAmelCase = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) _UpperCAmelCase = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCAmelCase_ ( self : Optional[int] ): Accelerator() _UpperCAmelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
import math def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [True] * n _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): _UpperCAmelCase = i * 2 while index < n: _UpperCAmelCase = False _UpperCAmelCase = index + i _UpperCAmelCase = [2] for i in range(3 ,lowercase ,2 ): if is_prime[i]: primes.append(lowercase ) return primes def __UpperCAmelCase ( lowercase = 99_99_66_66_33_33 ): """simple docstring""" _UpperCAmelCase = math.floor(math.sqrt(lowercase ) ) + 1_00 _UpperCAmelCase = prime_sieve(lowercase ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = primes[prime_index] while (last_prime**2) <= limit: _UpperCAmelCase = primes[prime_index + 1] _UpperCAmelCase = last_prime**2 _UpperCAmelCase = next_prime**2 # Get numbers divisible by lps(current) _UpperCAmelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _UpperCAmelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _UpperCAmelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _UpperCAmelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
357
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'layoutlmv3' def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple=5_0265 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=128 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=64 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class a ( lowerCAmelCase_ ): _snake_case : str = version.parse('1.12' ) @property def lowerCAmelCase_ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5 @property def lowerCAmelCase_ ( self : List[str] ): return 12 def lowerCAmelCase_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = ( first_str_length if first_str_length > second_str_length else second_str_length ) _UpperCAmelCase = [] for char_count in range(lowercase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowercase ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
358
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(lowercase ,lowercase ) top //= hcf bottom //= hcf return top, bottom def __UpperCAmelCase ( lowercase = 35 ): """simple docstring""" _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 ,order + 1 ): for x_den in range(x_num + 1 ,order + 1 ): for y_num in range(1 ,order + 1 ): for y_den in range(y_num + 1 ,order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(lowercase ,lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) unique_s.add(lowercase ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(lowercase ) and is_sq(lowercase ): _UpperCAmelCase = int(sqrt(lowercase ) ) _UpperCAmelCase = int(sqrt(lowercase ) ) _UpperCAmelCase = gcd(lowercase ,lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) unique_s.add(lowercase ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(lowercase ,lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) unique_s.add(lowercase ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowercase ) and is_sq(lowercase ): _UpperCAmelCase = int(sqrt(lowercase ) ) _UpperCAmelCase = int(sqrt(lowercase ) ) _UpperCAmelCase = gcd(lowercase ,lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) unique_s.add(lowercase ) for num, den in unique_s: total += Fraction(lowercase ,lowercase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
359
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""ConditionalDetrFeatureExtractor"""] UpperCAmelCase__ = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : Union[str, Any] = UnCLIPImageVariationPipeline _snake_case : Optional[int] = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} _snake_case : int = IMAGE_VARIATION_BATCH_PARAMS _snake_case : Dict = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] _snake_case : Dict = False @property def lowerCAmelCase_ ( self : Optional[int] ): return 32 @property def lowerCAmelCase_ ( self : Tuple ): return 32 @property def lowerCAmelCase_ ( self : str ): return self.time_input_dim @property def lowerCAmelCase_ ( self : Dict ): return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self : Optional[int] ): return 100 @property def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCAmelCase_ ( self : Dict ): torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Dict ): torch.manual_seed(0 ) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) _UpperCAmelCase = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } _UpperCAmelCase = UnCLIPTextProjModel(**__lowerCAmelCase ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) _UpperCAmelCase = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } _UpperCAmelCase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def lowerCAmelCase_ ( self : List[Any] ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def lowerCAmelCase_ ( self : Any ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def lowerCAmelCase_ ( self : int ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) _UpperCAmelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.dummy_decoder _UpperCAmelCase = self.dummy_text_proj _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_super_res_first _UpperCAmelCase = self.dummy_super_res_last _UpperCAmelCase = UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) _UpperCAmelCase = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) _UpperCAmelCase = CLIPImageProcessor(crop_size=32 , size=32 ) _UpperCAmelCase = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]=0 , __lowerCAmelCase : str=True ): _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) if pil_image: _UpperCAmelCase = input_image * 0.5 + 0.5 _UpperCAmelCase = input_image.clamp(0 , 1 ) _UpperCAmelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase = DiffusionPipeline.numpy_to_pil(__lowerCAmelCase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = """cpu""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**__lowerCAmelCase ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase , pil_image=__lowerCAmelCase ) _UpperCAmelCase = pipe(**__lowerCAmelCase ) _UpperCAmelCase = output.images _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase , pil_image=__lowerCAmelCase ) _UpperCAmelCase = pipe( **__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = """cpu""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**__lowerCAmelCase ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase , pil_image=__lowerCAmelCase ) _UpperCAmelCase = pipe(**__lowerCAmelCase ) _UpperCAmelCase = output.images _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase , pil_image=__lowerCAmelCase ) _UpperCAmelCase = pipe( **__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = """cpu""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**__lowerCAmelCase ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase , pil_image=__lowerCAmelCase ) _UpperCAmelCase = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] _UpperCAmelCase = pipe(**__lowerCAmelCase ) _UpperCAmelCase = output.images _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase , pil_image=__lowerCAmelCase ) _UpperCAmelCase = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] _UpperCAmelCase = pipe( **__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _UpperCAmelCase = np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch.device("""cpu""" ) class a : _snake_case : Union[str, Any] = 1 _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**__lowerCAmelCase ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _UpperCAmelCase = pipe.decoder.dtype _UpperCAmelCase = 1 _UpperCAmelCase = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _UpperCAmelCase = pipe.prepare_latents( __lowerCAmelCase , dtype=__lowerCAmelCase , device=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , scheduler=DummyScheduler() ) _UpperCAmelCase = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _UpperCAmelCase = pipe.prepare_latents( __lowerCAmelCase , dtype=__lowerCAmelCase , device=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , scheduler=DummyScheduler() ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase , pil_image=__lowerCAmelCase ) _UpperCAmelCase = pipe( **__lowerCAmelCase , decoder_latents=__lowerCAmelCase , super_res_latents=__lowerCAmelCase ).images _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase , pil_image=__lowerCAmelCase ) # Don't pass image, instead pass embedding _UpperCAmelCase = pipeline_inputs.pop("""image""" ) _UpperCAmelCase = pipe.image_encoder(__lowerCAmelCase ).image_embeds _UpperCAmelCase = pipe( **__lowerCAmelCase , decoder_latents=__lowerCAmelCase , super_res_latents=__lowerCAmelCase , image_embeddings=__lowerCAmelCase , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _UpperCAmelCase = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=__lowerCAmelCase , expected_max_diff=__lowerCAmelCase ) @skip_mps def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = torch_device == """cpu""" _UpperCAmelCase = True _UpperCAmelCase = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=__lowerCAmelCase , relax_max_difference=__lowerCAmelCase , additional_params_copy_to_batched_inputs=__lowerCAmelCase , ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _UpperCAmelCase = [2, 3] self._test_inference_batch_consistent( batch_sizes=__lowerCAmelCase , additional_params_copy_to_batched_inputs=__lowerCAmelCase , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__lowerCAmelCase ) @skip_mps def lowerCAmelCase_ ( self : Any ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase_ ( self : Dict ): return super().test_save_load_local() @skip_mps def lowerCAmelCase_ ( self : List[Any] ): return super().test_save_load_optional_components() @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) _UpperCAmelCase = UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) _UpperCAmelCase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipeline( __lowerCAmelCase , generator=__lowerCAmelCase , output_type="""np""" , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase , 15 )
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
"""simple docstring""" import argparse from collections import defaultdict import yaml UpperCAmelCase__ = """docs/source/en/_toctree.yml""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = defaultdict(lowercase ) for doc in model_doc: counts[doc["local"]] += 1 _UpperCAmelCase = [key for key, value in counts.items() if value > 1] _UpperCAmelCase = [] for duplicate_key in duplicates: _UpperCAmelCase = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(lowercase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(lowercase ,key=lambda lowercase : s["title"].lower() ) def __UpperCAmelCase ( lowercase=False ): """simple docstring""" with open(lowercase ,encoding="""utf-8""" ) as f: _UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _UpperCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _UpperCAmelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _UpperCAmelCase = api_doc[model_idx]["""sections"""] _UpperCAmelCase = [(idx, section) for idx, section in enumerate(lowercase ) if """sections""" in section] _UpperCAmelCase = False for idx, modality_doc in modalities_docs: _UpperCAmelCase = modality_doc["""sections"""] _UpperCAmelCase = clean_model_doc_toc(lowercase ) if old_modality_doc != new_modality_doc: _UpperCAmelCase = True if overwrite: _UpperCAmelCase = new_modality_doc if diff: if overwrite: _UpperCAmelCase = model_doc _UpperCAmelCase = api_doc with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase ,allow_unicode=lowercase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
362
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
0
def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" if index == number_of_items: return 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = knapsack(lowercase ,lowercase ,lowercase ,lowercase ,index + 1 ) if weights[index] <= max_weight: _UpperCAmelCase = values[index] + knapsack( lowercase ,lowercase ,lowercase ,max_weight - weights[index] ,index + 1 ) return max(lowercase ,lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
0
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [1] for i in range(2 ,lowercase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _UpperCAmelCase = [] _UpperCAmelCase = list(range(lowercase ) ) # Find permutation while factorials: _UpperCAmelCase = factorials.pop() _UpperCAmelCase , _UpperCAmelCase = divmod(lowercase ,lowercase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
0
"""simple docstring""" from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
366
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCAmelCase__ = """src/diffusers""" # Matches is_xxx_available() UpperCAmelCase__ = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla UpperCAmelCase__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") UpperCAmelCase__ = """ {0} = None """ UpperCAmelCase__ = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ UpperCAmelCase__ = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = _re_backend.findall(lowercase ) if len(lowercase ) == 0: return None return "_and_".join(lowercase ) def __UpperCAmelCase ( ): """simple docstring""" with open(os.path.join(lowercase ,"""__init__.py""" ) ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking _UpperCAmelCase = 0 _UpperCAmelCase = {} # Go through the end of the file while line_index < len(lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(lowercase ) and len(lines[line_index] ) > 1: _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_single_line_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase ) > 0: _UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase ,lowercase ) else: return DUMMY_CLASS.format(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase=None ): """simple docstring""" if backend_specific_objects is None: _UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename _UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): _UpperCAmelCase = """[""" + """, """.join(f'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" _UpperCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase ,lowercase ) for o in objects] ) _UpperCAmelCase = dummy_file return dummy_files def __UpperCAmelCase ( lowercase=False ): """simple docstring""" _UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _UpperCAmelCase = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. _UpperCAmelCase = os.path.join(lowercase ,"""utils""" ) _UpperCAmelCase = { backend: os.path.join(lowercase ,f'''dummy_{short_names.get(lowercase ,lowercase )}_objects.py''' ) for backend in dummy_files.keys() } _UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase ): with open(lowercase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.read() else: _UpperCAmelCase = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(lowercase ,lowercase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'''diffusers.utils.dummy_{short_names.get(lowercase ,lowercase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
367
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
368
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [0] * len(lowercase ) for i in range(1 ,len(lowercase ) ): # use last results for better performance - dynamic programming _UpperCAmelCase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _UpperCAmelCase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _UpperCAmelCase = j return prefix_result def __UpperCAmelCase ( lowercase ): """simple docstring""" return max(prefix_function(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class a ( lowerCAmelCase_ ): _snake_case : Tuple = '' _snake_case : List[str] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[DatasetInfo] = None , __lowerCAmelCase : Optional[str] = None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(self , **__lowerCAmelCase ) _UpperCAmelCase = repo_info _UpperCAmelCase = token _UpperCAmelCase = None def lowerCAmelCase_ ( self : int ): if self.dir_cache is None: _UpperCAmelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _UpperCAmelCase = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__lowerCAmelCase ): {"""name""": str(__lowerCAmelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : str = "rb" , **__lowerCAmelCase : List[Any] , ): if not isinstance(self.repo_info , __lowerCAmelCase ): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) _UpperCAmelCase = hf_hub_url(self.repo_info.id , __lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( __lowerCAmelCase , mode=__lowerCAmelCase , headers=get_authentication_headers_for_url(__lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Any , **__lowerCAmelCase : Dict ): self._get_dirs() _UpperCAmelCase = self._strip_protocol(__lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]=False , **__lowerCAmelCase : Tuple ): self._get_dirs() _UpperCAmelCase = PurePosixPath(path.strip("""/""" ) ) _UpperCAmelCase = {} for p, f in self.dir_cache.items(): _UpperCAmelCase = PurePosixPath(p.strip("""/""" ) ) _UpperCAmelCase = p.parent if root == path: _UpperCAmelCase = f _UpperCAmelCase = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
370
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self : Dict , *, __lowerCAmelCase : int = 4 , __lowerCAmelCase : int = 768 , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , ): super().__init__() _UpperCAmelCase = nn.Parameter(torch.zeros(__lowerCAmelCase ) ) # parameters for additional clip time embeddings _UpperCAmelCase = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # parameters for encoder hidden states _UpperCAmelCase = clip_extra_context_tokens _UpperCAmelCase = nn.Linear( __lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) _UpperCAmelCase = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.LayerNorm(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , *, __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _UpperCAmelCase = image_embeddings.shape[0] _UpperCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _UpperCAmelCase = classifier_free_guidance_embeddings.expand( __lowerCAmelCase , -1 ) _UpperCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _UpperCAmelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _UpperCAmelCase = self.embedding_proj(__lowerCAmelCase ) _UpperCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(__lowerCAmelCase ) _UpperCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _UpperCAmelCase = self.clip_extra_context_tokens_proj(__lowerCAmelCase ) _UpperCAmelCase = clip_extra_context_tokens.reshape(__lowerCAmelCase , -1 , self.clip_extra_context_tokens ) _UpperCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) _UpperCAmelCase = self.encoder_hidden_states_proj(__lowerCAmelCase ) _UpperCAmelCase = self.text_encoder_hidden_states_norm(__lowerCAmelCase ) _UpperCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
371
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
0
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase__ : Tuple = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = None ): """simple docstring""" _UpperCAmelCase = tesseract_config if tesseract_config is not None else """""" # apply OCR _UpperCAmelCase = to_pil_image(lowercase ) _UpperCAmelCase , _UpperCAmelCase = pil_image.size _UpperCAmelCase = pytesseract.image_to_data(lowercase ,lang=lowercase ,output_type="""dict""" ,config=lowercase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates _UpperCAmelCase = [idx for idx, word in enumerate(lowercase ) if not word.strip()] _UpperCAmelCase = [word for idx, word in enumerate(lowercase ) if idx not in irrelevant_indices] _UpperCAmelCase = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] _UpperCAmelCase = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] _UpperCAmelCase = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] _UpperCAmelCase = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _UpperCAmelCase = [] for x, y, w, h in zip(lowercase ,lowercase ,lowercase ,lowercase ): _UpperCAmelCase = [x, y, x + w, y + h] actual_boxes.append(lowercase ) # finally, normalize the bounding boxes _UpperCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase ,lowercase ,lowercase ) ) assert len(lowercase ) == len(lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a ( lowerCAmelCase_ ): _snake_case : Any = ['pixel_values'] def __init__( self : List[str] , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[str] = "" , **__lowerCAmelCase : Dict , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = size if size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase = get_size_dict(__lowerCAmelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = apply_ocr _UpperCAmelCase = ocr_lang _UpperCAmelCase = tesseract_config def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Union[str, Any] , ): _UpperCAmelCase = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _UpperCAmelCase = (size["""height"""], size["""width"""]) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : ImageInput , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : Tuple , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__lowerCAmelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr _UpperCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang _UpperCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config _UpperCAmelCase = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__lowerCAmelCase ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) _UpperCAmelCase = [] _UpperCAmelCase = [] for image in images: _UpperCAmelCase , _UpperCAmelCase = apply_tesseract(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) words_batch.append(__lowerCAmelCase ) boxes_batch.append(__lowerCAmelCase ) if do_resize: _UpperCAmelCase = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _UpperCAmelCase = [flip_channel_order(__lowerCAmelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] _UpperCAmelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=__lowerCAmelCase ) if apply_ocr: _UpperCAmelCase = words_batch _UpperCAmelCase = boxes_batch return data
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) _UpperCAmelCase = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" ,lowercase ) if matches: _UpperCAmelCase = float(matches[1] ) _UpperCAmelCase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _UpperCAmelCase = 10_01 _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ) + 1: v for k, v in idalabel.items()} _UpperCAmelCase = """background""" _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = get_mobilenet_va_config(lowercase ) # Load 🤗 model _UpperCAmelCase = MobileNetVaForImageClassification(lowercase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase ,lowercase ,lowercase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _UpperCAmelCase = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} ,size={"""shortest_edge""": config.image_size + 32} ,) _UpperCAmelCase = image_processor(images=prepare_img() ,return_tensors="""pt""" ) _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": _UpperCAmelCase = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": _UpperCAmelCase = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: _UpperCAmelCase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] ,lowercase ,atol=1E-4 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) _UpperCAmelCase = """google/""" + model_name image_processor.push_to_hub(lowercase ) model.push_to_hub(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase__ = 1.6021E-19 # units = C def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,): """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import torch from torch import nn class a ( nn.Module ): def __init__( self : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : Optional[int]=False ): super().__init__() _UpperCAmelCase = n_token _UpperCAmelCase = d_embed _UpperCAmelCase = d_proj _UpperCAmelCase = cutoffs + [n_token] _UpperCAmelCase = [0] + self.cutoffs _UpperCAmelCase = div_val _UpperCAmelCase = self.cutoffs[0] _UpperCAmelCase = len(self.cutoffs ) - 1 _UpperCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) else: self.out_projs.append(__lowerCAmelCase ) self.out_layers.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCAmelCase , r_idx - l_idx ) ) _UpperCAmelCase = keep_order def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ): if proj is None: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , proj.t().contiguous() ) _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=None , __lowerCAmelCase : List[str]=False ): if labels is not None: # Shift so that tokens < n predict n _UpperCAmelCase = hidden[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) _UpperCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _UpperCAmelCase = labels != -100 _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = ( -nn.functional.log_softmax(__lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) if labels is None: _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = 0 _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCAmelCase = (labels >= l_idx) & (labels < r_idx) _UpperCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCAmelCase = labels.index_select(0 , __lowerCAmelCase ) - l_idx _UpperCAmelCase = head_logprob.index_select(0 , __lowerCAmelCase ) _UpperCAmelCase = hidden.index_select(0 , __lowerCAmelCase ) else: _UpperCAmelCase = hidden if i == 0: if labels is not None: _UpperCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCAmelCase = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Any ): if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = head_logprob[:, -i] + tail_logprob_i _UpperCAmelCase = logprob_i return out
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""ConvNextFeatureExtractor"""] UpperCAmelCase__ = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
"""simple docstring""" from math import pow, sqrt def __UpperCAmelCase ( *lowercase ): """simple docstring""" _UpperCAmelCase = len(lowercase ) > 0 and all(value > 0.0 for value in values ) return result def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(lowercase ,lowercase ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(lowercase ,lowercase ,lowercase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(lowercase ,lowercase ,lowercase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 ) if validate(lowercase ,lowercase ,lowercase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 ) if validate(lowercase ,lowercase ,lowercase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
355
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
0
"""simple docstring""" import string import numpy def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a ,lowercase ) class a : _snake_case : List[Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _snake_case : List[Any] = numpy.vectorize(lambda lowerCAmelCase_ : x % 36 ) _snake_case : Union[str, Any] = numpy.vectorize(lowerCAmelCase_ ) def __init__( self : Union[str, Any] , __lowerCAmelCase : numpy.ndarray ): _UpperCAmelCase = self.modulus(__lowerCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _UpperCAmelCase = encrypt_key.shape[0] def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : str ): return self.key_string.index(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): return self.key_string[round(__lowerCAmelCase )] def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _UpperCAmelCase = det % len(self.key_string ) _UpperCAmelCase = len(self.key_string ) if greatest_common_divisor(__lowerCAmelCase , len(self.key_string ) ) != 1: _UpperCAmelCase = ( f'''determinant modular {req_l} of encryption key({det}) ''' f'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : str ): _UpperCAmelCase = [char for char in text.upper() if char in self.key_string] _UpperCAmelCase = chars[-1] while len(__lowerCAmelCase ) % self.break_key != 0: chars.append(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = self.process_text(text.upper() ) _UpperCAmelCase = """""" for i in range(0 , len(__lowerCAmelCase ) - self.break_key + 1 , self.break_key ): _UpperCAmelCase = text[i : i + self.break_key] _UpperCAmelCase = [self.replace_letters(__lowerCAmelCase ) for char in batch] _UpperCAmelCase = numpy.array([vec] ).T _UpperCAmelCase = self.modulus(self.encrypt_key.dot(__lowerCAmelCase ) ).T.tolist()[ 0 ] _UpperCAmelCase = """""".join( self.replace_digits(__lowerCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _UpperCAmelCase = det % len(self.key_string ) _UpperCAmelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _UpperCAmelCase = i break _UpperCAmelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowerCAmelCase ) ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str ): _UpperCAmelCase = self.make_decrypt_key() _UpperCAmelCase = self.process_text(text.upper() ) _UpperCAmelCase = """""" for i in range(0 , len(__lowerCAmelCase ) - self.break_key + 1 , self.break_key ): _UpperCAmelCase = text[i : i + self.break_key] _UpperCAmelCase = [self.replace_letters(__lowerCAmelCase ) for char in batch] _UpperCAmelCase = numpy.array([vec] ).T _UpperCAmelCase = self.modulus(decrypt_key.dot(__lowerCAmelCase ) ).T.tolist()[0] _UpperCAmelCase = """""".join( self.replace_digits(__lowerCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = int(input("""Enter the order of the encryption key: """ ) ) _UpperCAmelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(lowercase ): _UpperCAmelCase = [int(lowercase ) for x in input().split()] hill_matrix.append(lowercase ) _UpperCAmelCase = HillCipher(numpy.array(lowercase ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) _UpperCAmelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": _UpperCAmelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(lowercase ) ) elif option == "2": _UpperCAmelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
357
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'layoutlmv3' def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple=5_0265 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=128 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=64 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class a ( lowerCAmelCase_ ): _snake_case : str = version.parse('1.12' ) @property def lowerCAmelCase_ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5 @property def lowerCAmelCase_ ( self : List[str] ): return 12 def lowerCAmelCase_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase = 4_00_00_00 ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase , _UpperCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowercase ) _UpperCAmelCase , _UpperCAmelCase = b, a + b return sum(lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
358
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
0
"""simple docstring""" import itertools import math def __UpperCAmelCase ( lowercase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = 2 while True: if is_prime(lowercase ): yield num num += 1 def __UpperCAmelCase ( lowercase = 1_00_01 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,lowercase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
359
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
0
"""simple docstring""" class a : def __init__( self : Tuple , __lowerCAmelCase : int ): _UpperCAmelCase = size _UpperCAmelCase = [0] * size _UpperCAmelCase = [0] * size @staticmethod def lowerCAmelCase_ ( __lowerCAmelCase : int ): return index | (index + 1) @staticmethod def lowerCAmelCase_ ( __lowerCAmelCase : int ): return (index & (index + 1)) - 1 def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = value while index < self.size: _UpperCAmelCase = self.get_prev(__lowerCAmelCase ) + 1 if current_left_border == index: _UpperCAmelCase = value else: _UpperCAmelCase = max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = self.get_next(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): right -= 1 # Because of right is exclusive _UpperCAmelCase = 0 while left <= right: _UpperCAmelCase = self.get_prev(__lowerCAmelCase ) if left <= current_left: _UpperCAmelCase = max(__lowerCAmelCase , self.tree[right] ) _UpperCAmelCase = current_left else: _UpperCAmelCase = max(__lowerCAmelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] UpperCAmelCase__ = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] UpperCAmelCase__ = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): UpperCAmelCase__ = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'char' _snake_case : int = 'bpe' _snake_case : Optional[Any] = 'wp' UpperCAmelCase__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = ['image_processor', 'char_tokenizer'] _snake_case : Tuple = 'ViTImageProcessor' _snake_case : Any = 'MgpstrTokenizer' def __init__( self : Optional[int] , __lowerCAmelCase : int=None , __lowerCAmelCase : Any=None , **__lowerCAmelCase : Optional[int] ): _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowerCAmelCase , ) _UpperCAmelCase = kwargs.pop("""feature_extractor""" ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) _UpperCAmelCase = tokenizer _UpperCAmelCase = AutoTokenizer.from_pretrained("""gpt2""" ) _UpperCAmelCase = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self : Union[str, Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : Any ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _UpperCAmelCase = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: _UpperCAmelCase = self.char_tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: _UpperCAmelCase = encodings["""input_ids"""] return inputs def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Dict ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = sequences _UpperCAmelCase = char_preds.size(0 ) _UpperCAmelCase , _UpperCAmelCase = self._decode_helper(__lowerCAmelCase , """char""" ) _UpperCAmelCase , _UpperCAmelCase = self._decode_helper(__lowerCAmelCase , """bpe""" ) _UpperCAmelCase , _UpperCAmelCase = self._decode_helper(__lowerCAmelCase , """wp""" ) _UpperCAmelCase = [] _UpperCAmelCase = [] for i in range(__lowerCAmelCase ): _UpperCAmelCase = [char_scores[i], bpe_scores[i], wp_scores[i]] _UpperCAmelCase = [char_strs[i], bpe_strs[i], wp_strs[i]] _UpperCAmelCase = scores.index(max(__lowerCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _UpperCAmelCase = {} _UpperCAmelCase = final_strs _UpperCAmelCase = final_scores _UpperCAmelCase = char_strs _UpperCAmelCase = bpe_strs _UpperCAmelCase = wp_strs return out def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] ): if format == DecodeType.CHARACTER: _UpperCAmelCase = self.char_decode _UpperCAmelCase = 1 _UpperCAmelCase = """[s]""" elif format == DecodeType.BPE: _UpperCAmelCase = self.bpe_decode _UpperCAmelCase = 2 _UpperCAmelCase = """#""" elif format == DecodeType.WORDPIECE: _UpperCAmelCase = self.wp_decode _UpperCAmelCase = 102 _UpperCAmelCase = """[SEP]""" else: raise ValueError(f'''Format {format} is not supported.''' ) _UpperCAmelCase , _UpperCAmelCase = [], [] _UpperCAmelCase = pred_logits.size(0 ) _UpperCAmelCase = pred_logits.size(1 ) _UpperCAmelCase , _UpperCAmelCase = pred_logits.topk(1 , dim=-1 , largest=__lowerCAmelCase , sorted=__lowerCAmelCase ) _UpperCAmelCase = preds_index.view(-1 , __lowerCAmelCase )[:, 1:] _UpperCAmelCase = decoder(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = torch.nn.functional.softmax(__lowerCAmelCase , dim=2 ).max(dim=2 ) _UpperCAmelCase = preds_max_prob[:, 1:] for index in range(__lowerCAmelCase ): _UpperCAmelCase = preds_str[index].find(__lowerCAmelCase ) _UpperCAmelCase = preds_str[index][:pred_eos] _UpperCAmelCase = preds_index[index].cpu().tolist() _UpperCAmelCase = pred_index.index(__lowerCAmelCase ) if eos_token in pred_index else -1 _UpperCAmelCase = preds_max_prob[index][: pred_eos_index + 1] _UpperCAmelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCAmelCase ) conf_scores.append(__lowerCAmelCase ) return dec_strs, conf_scores def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : str ): _UpperCAmelCase = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Dict ): return self.bpe_tokenizer.batch_decode(__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(__lowerCAmelCase )] return decode_strs
362
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = 10 def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = [1, 2, 3, 4] _UpperCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__lowerCAmelCase , self.block_size , 0 ) , __lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowerCAmelCase , self.block_size , 0 ) , __lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowerCAmelCase , self.block_size , 0 ) , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" _UpperCAmelCase , _UpperCAmelCase = process_story(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = """""" _UpperCAmelCase , _UpperCAmelCase = process_story(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [] ) self.assertEqual(__lowerCAmelCase , [] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) _UpperCAmelCase , _UpperCAmelCase = process_story(__lowerCAmelCase ) _UpperCAmelCase = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = ["""It was the best of times."""] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__lowerCAmelCase , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowerCAmelCase , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowerCAmelCase , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = 101 _UpperCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _UpperCAmelCase = compute_token_type_ids(__lowerCAmelCase , __lowerCAmelCase ) np.testing.assert_array_equal(__lowerCAmelCase , __lowerCAmelCase )
363
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase = 1_00 ): """simple docstring""" _UpperCAmelCase = (n * (n + 1) // 2) ** 2 _UpperCAmelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 3_2 def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase = 16 ): """simple docstring""" _UpperCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase = DatasetDict( { """train""": dataset["""train"""].select(lowercase ), """validation""": dataset["""train"""].select(lowercase ), """test""": dataset["""validation"""], } ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowercase ,max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( lowercase ,batched=lowercase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( lowercase ,padding="""longest""" ,max_length=lowercase ,pad_to_multiple_of=lowercase ,return_tensors="""pt""" ,) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) _UpperCAmelCase = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) _UpperCAmelCase = DataLoader( tokenized_datasets["""test"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) return train_dataloader, eval_dataloader, test_dataloader def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] # Download the dataset _UpperCAmelCase = load_dataset("""glue""" ,"""mrpc""" ) # Create our splits _UpperCAmelCase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config["""lr"""] _UpperCAmelCase = int(config["""num_epochs"""] ) _UpperCAmelCase = int(config["""seed"""] ) _UpperCAmelCase = int(config["""batch_size"""] ) _UpperCAmelCase = evaluate.load("""glue""" ,"""mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase = MAX_GPU_BATCH_SIZE set_seed(lowercase ) # New Code # # Create our folds: _UpperCAmelCase = kfold.split(np.zeros(datasets["""train"""].num_rows ) ,datasets["""train"""]["""label"""] ) _UpperCAmelCase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowercase ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = get_fold_dataloaders( lowercase ,lowercase ,lowercase ,lowercase ,) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() ,lr=lowercase ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=lowercase ,num_warmup_steps=1_00 ,num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.loss _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase ,references=lowercase ,) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' ,lowercase ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase = [] for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.logits _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowercase ,dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase = torch.cat(lowercase ,dim=0 ) _UpperCAmelCase = torch.stack(lowercase ,dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase = metric.compute(predictions=lowercase ,references=lowercase ) accelerator.print("""Average test metrics from all folds:""" ,lowercase ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=lowercase ,default=lowercase ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" ,type=lowercase ,default=3 ,help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase ,lowercase ) if __name__ == "__main__": main()
365
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( lowerCAmelCase_ , unittest.TestCase ): # TODO: is there an appropriate internal test set? _snake_case : Tuple = 'ssube/stable-diffusion-x4-upscaler-onnx' def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Any=0 ): _UpperCAmelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(__lowerCAmelCase ) ) _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs() _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): @property def lowerCAmelCase_ ( self : str ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = ort.SessionOptions() _UpperCAmelCase = False return options def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase = init_image.resize((128, 128) ) # using the PNDM scheduler by default _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = """A fantasy landscape, trending on artstation""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowerCAmelCase , output_type="""np""" , ) _UpperCAmelCase = output.images _UpperCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase = init_image.resize((128, 128) ) _UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) _UpperCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=__lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = """A fantasy landscape, trending on artstation""" _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__lowerCAmelCase , output_type="""np""" , ) _UpperCAmelCase = output.images _UpperCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
366
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = os.path.dirname(os.path.realpath(lowercase ) ) _UpperCAmelCase = os.path.join(lowercase ,"""words.txt""" ) _UpperCAmelCase = """""" with open(lowercase ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _UpperCAmelCase = [ word for word in [sum(ord(lowercase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowercase ) if __name__ == "__main__": print(solution())
367
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class a ( lowerCAmelCase_ ): def __init__( self : str , **__lowerCAmelCase : Optional[Any] ): super().__init__(**__lowerCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , """vision""" ) self.check_model_type(__lowerCAmelCase ) def __call__( self : int , __lowerCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , __lowerCAmelCase : Union[str, List[str]] = None , **__lowerCAmelCase : Dict , ): if "text_queries" in kwargs: _UpperCAmelCase = kwargs.pop("""text_queries""" ) if isinstance(__lowerCAmelCase , (str, Image.Image) ): _UpperCAmelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: _UpperCAmelCase = image _UpperCAmelCase = super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) return results def lowerCAmelCase_ ( self : Tuple , **__lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = {} if "threshold" in kwargs: _UpperCAmelCase = kwargs["""threshold"""] if "top_k" in kwargs: _UpperCAmelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase_ ( self : str , __lowerCAmelCase : int ): _UpperCAmelCase = load_image(inputs["""image"""] ) _UpperCAmelCase = inputs["""candidate_labels"""] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = candidate_labels.split(""",""" ) _UpperCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__lowerCAmelCase ): _UpperCAmelCase = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework ) _UpperCAmelCase = self.image_processor(__lowerCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(__lowerCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = model_inputs.pop("""target_size""" ) _UpperCAmelCase = model_inputs.pop("""candidate_label""" ) _UpperCAmelCase = model_inputs.pop("""is_last""" ) _UpperCAmelCase = self.model(**__lowerCAmelCase ) _UpperCAmelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Dict=None ): _UpperCAmelCase = [] for model_output in model_outputs: _UpperCAmelCase = model_output["""candidate_label"""] _UpperCAmelCase = BaseModelOutput(__lowerCAmelCase ) _UpperCAmelCase = self.image_processor.post_process_object_detection( outputs=__lowerCAmelCase , threshold=__lowerCAmelCase , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): _UpperCAmelCase = outputs["""scores"""][index].item() _UpperCAmelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) _UpperCAmelCase = {"""score""": score, """label""": label, """box""": box} results.append(__lowerCAmelCase ) _UpperCAmelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x["score"] , reverse=__lowerCAmelCase ) if top_k: _UpperCAmelCase = results[:top_k] return results def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = box.int().tolist() _UpperCAmelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
368
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""LayoutLMv3FeatureExtractor"""] UpperCAmelCase__ = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
"""simple docstring""" import argparse import os import re UpperCAmelCase__ = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict UpperCAmelCase__ = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings UpperCAmelCase__ = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def __UpperCAmelCase ( lowercase ,lowercase = False ): """simple docstring""" with open(lowercase ,"""r""" ,encoding="""utf-8""" ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase = content.split("""\n""" ) _UpperCAmelCase = [] _UpperCAmelCase = 0 while line_idx < len(lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _UpperCAmelCase = len(re.search(R"""^(\s*)\S""" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 _UpperCAmelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _UpperCAmelCase = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _UpperCAmelCase = sorted(lowercase ,key=lambda lowercase : _re_identifier.search(lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write("""\n""".join(lowercase ) ) elif "\n".join(lowercase ) != content: return True def __UpperCAmelCase ( lowercase = False ): """simple docstring""" _UpperCAmelCase = [os.path.join(lowercase ,lowercase ) for f in os.listdir(lowercase ) if f.endswith(""".py""" )] _UpperCAmelCase = [sort_auto_mapping(lowercase ,overwrite=lowercase ) for fname in fnames] if not overwrite and any(lowercase ): _UpperCAmelCase = [f for f, d in zip(lowercase ,lowercase ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {", ".join(lowercase )}. Run `make style` to fix''' """ this.""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCAmelCase__ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
370
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return base * power(lowercase ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") UpperCAmelCase__ = int(input("""Enter the base: """).strip()) UpperCAmelCase__ = int(input("""Enter the exponent: """).strip()) UpperCAmelCase__ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents UpperCAmelCase__ = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
371
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ : List[str] = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class a ( lowerCAmelCase_ ): _snake_case : Union[PIL.Image.Image, np.ndarray] class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : PriorTransformer , __lowerCAmelCase : CLIPVisionModel , __lowerCAmelCase : CLIPImageProcessor , __lowerCAmelCase : HeunDiscreteScheduler , __lowerCAmelCase : ShapERenderer , ): super().__init__() self.register_modules( prior=__lowerCAmelCase , image_encoder=__lowerCAmelCase , image_processor=__lowerCAmelCase , scheduler=__lowerCAmelCase , renderer=__lowerCAmelCase , ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int ): if latents is None: _UpperCAmelCase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _UpperCAmelCase = latents.to(__lowerCAmelCase ) _UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Optional[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _UpperCAmelCase = torch.device(f'''cuda:{gpu_id}''' ) _UpperCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Any ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(image[0] , torch.Tensor ): _UpperCAmelCase = torch.cat(__lowerCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(__lowerCAmelCase , axis=0 ) if not isinstance(__lowerCAmelCase , torch.Tensor ): _UpperCAmelCase = self.image_processor(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _UpperCAmelCase = image.to(dtype=self.image_encoder.dtype , device=__lowerCAmelCase ) _UpperCAmelCase = self.image_encoder(__lowerCAmelCase )["""last_hidden_state"""] _UpperCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCAmelCase = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : Any , __lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = 25 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : int = 64 , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ): if isinstance(__lowerCAmelCase , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(__lowerCAmelCase , torch.Tensor ): _UpperCAmelCase = image.shape[0] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _UpperCAmelCase = len(__lowerCAmelCase ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__lowerCAmelCase )}''' ) _UpperCAmelCase = self._execution_device _UpperCAmelCase = batch_size * num_images_per_prompt _UpperCAmelCase = guidance_scale > 1.0 _UpperCAmelCase = self._encode_image(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # prior self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) _UpperCAmelCase = self.scheduler.timesteps _UpperCAmelCase = self.prior.config.num_embeddings _UpperCAmelCase = self.prior.config.embedding_dim _UpperCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCAmelCase = latents.reshape(latents.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = self.prior( __lowerCAmelCase , timestep=__lowerCAmelCase , proj_embedding=__lowerCAmelCase , ).predicted_image_embedding # remove the variance _UpperCAmelCase , _UpperCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCAmelCase = self.scheduler.step( __lowerCAmelCase , timestep=__lowerCAmelCase , sample=__lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__lowerCAmelCase ) _UpperCAmelCase = [] for i, latent in enumerate(__lowerCAmelCase ): print() _UpperCAmelCase = self.renderer.decode( latent[None, :] , __lowerCAmelCase , size=__lowerCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(__lowerCAmelCase ) _UpperCAmelCase = torch.stack(__lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _UpperCAmelCase = images.cpu().numpy() if output_type == "pil": _UpperCAmelCase = [self.numpy_to_pil(__lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__lowerCAmelCase )
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'luke' def __init__( self : Any , __lowerCAmelCase : str=5_0267 , __lowerCAmelCase : Dict=50_0000 , __lowerCAmelCase : List[str]=768 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : Optional[Any]=12 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : str=3072 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Dict=512 , __lowerCAmelCase : int=2 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : str=1e-1_2 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=None , __lowerCAmelCase : Tuple=1 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[Any]=2 , **__lowerCAmelCase : str , ): super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = entity_vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = entity_emb_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_entity_aware_attention _UpperCAmelCase = classifier_dropout
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" def count_of_possible_combinations(lowercase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" def count_of_possible_combinations_with_dp_array( lowercase ,lowercase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _UpperCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item ,lowercase ) for item in array ) _UpperCAmelCase = answer return answer _UpperCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [0] * (target + 1) _UpperCAmelCase = 1 for i in range(1 ,target + 1 ): for j in range(lowercase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = 3 UpperCAmelCase__ = 5 UpperCAmelCase__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" class a : def __init__( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Union[str, Any]=None ): _UpperCAmelCase = data _UpperCAmelCase = previous _UpperCAmelCase = next_node def __str__( self : Optional[Any] ): return f'''{self.data}''' def lowerCAmelCase_ ( self : Any ): return self.data def lowerCAmelCase_ ( self : Union[str, Any] ): return self.next def lowerCAmelCase_ ( self : Union[str, Any] ): return self.previous class a : def __init__( self : str , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = head def __iter__( self : Dict ): return self def lowerCAmelCase_ ( self : Optional[int] ): if not self.current: raise StopIteration else: _UpperCAmelCase = self.current.get_data() _UpperCAmelCase = self.current.get_next() return value class a : def __init__( self : Tuple ): _UpperCAmelCase = None # First node in list _UpperCAmelCase = None # Last node in list def __str__( self : Dict ): _UpperCAmelCase = self.head _UpperCAmelCase = [] while current is not None: nodes.append(current.get_data() ) _UpperCAmelCase = current.get_next() return " ".join(str(__lowerCAmelCase ) for node in nodes ) def __contains__( self : Optional[int] , __lowerCAmelCase : int ): _UpperCAmelCase = self.head while current: if current.get_data() == value: return True _UpperCAmelCase = current.get_next() return False def __iter__( self : str ): return LinkedListIterator(self.head ) def lowerCAmelCase_ ( self : Any ): if self.head: return self.head.get_data() return None def lowerCAmelCase_ ( self : str ): if self.tail: return self.tail.get_data() return None def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Node ): if self.head is None: _UpperCAmelCase = node _UpperCAmelCase = node else: self.insert_before_node(self.head , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Node ): if self.head is None: self.set_head(__lowerCAmelCase ) else: self.insert_after_node(self.tail , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = Node(__lowerCAmelCase ) if self.head is None: self.set_head(__lowerCAmelCase ) else: self.set_tail(__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Node , __lowerCAmelCase : Node ): _UpperCAmelCase = node _UpperCAmelCase = node.previous if node.get_previous() is None: _UpperCAmelCase = node_to_insert else: _UpperCAmelCase = node_to_insert _UpperCAmelCase = node_to_insert def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Node , __lowerCAmelCase : Node ): _UpperCAmelCase = node _UpperCAmelCase = node.next if node.get_next() is None: _UpperCAmelCase = node_to_insert else: _UpperCAmelCase = node_to_insert _UpperCAmelCase = node_to_insert def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = 1 _UpperCAmelCase = Node(__lowerCAmelCase ) _UpperCAmelCase = self.head while node: if current_position == position: self.insert_before_node(__lowerCAmelCase , __lowerCAmelCase ) return current_position += 1 _UpperCAmelCase = node.next self.insert_after_node(self.tail , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = self.head while node: if node.get_data() == item: return node _UpperCAmelCase = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] ): if (node := self.get_node(__lowerCAmelCase )) is not None: if node == self.head: _UpperCAmelCase = self.head.get_next() if node == self.tail: _UpperCAmelCase = self.tail.get_previous() self.remove_node_pointers(__lowerCAmelCase ) @staticmethod def lowerCAmelCase_ ( __lowerCAmelCase : Node ): if node.get_next(): _UpperCAmelCase = node.previous if node.get_previous(): _UpperCAmelCase = node.next _UpperCAmelCase = None _UpperCAmelCase = None def lowerCAmelCase_ ( self : Dict ): return self.head is None def __UpperCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0