code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
1
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Dict = [R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 5_0257 , __lowerCAmelCase : int = 1024 , __lowerCAmelCase : int = 768 , __lowerCAmelCase : int = 12 , __lowerCAmelCase : int = 12 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "gelu_new" , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 1e-5 , __lowerCAmelCase : float = 0.02 , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , ): super().__init__() _UpperCAmelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) _UpperCAmelCase = prefix_inner_dim _UpperCAmelCase = prefix_hidden_dim _UpperCAmelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _UpperCAmelCase = ( nn.Linear(self.prefix_hidden_dim , __lowerCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) _UpperCAmelCase = GPTaConfig( vocab_size=__lowerCAmelCase , n_positions=__lowerCAmelCase , n_embd=__lowerCAmelCase , n_layer=__lowerCAmelCase , n_head=__lowerCAmelCase , n_inner=__lowerCAmelCase , activation_function=__lowerCAmelCase , resid_pdrop=__lowerCAmelCase , embd_pdrop=__lowerCAmelCase , attn_pdrop=__lowerCAmelCase , layer_norm_epsilon=__lowerCAmelCase , initializer_range=__lowerCAmelCase , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , scale_attn_by_inverse_layer_idx=__lowerCAmelCase , reorder_and_upcast_attn=__lowerCAmelCase , ) _UpperCAmelCase = GPTaLMHeadModel(__lowerCAmelCase ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : torch.Tensor , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , ): _UpperCAmelCase = self.transformer.transformer.wte(__lowerCAmelCase ) _UpperCAmelCase = self.encode_prefix(__lowerCAmelCase ) _UpperCAmelCase = self.decode_prefix(__lowerCAmelCase ) _UpperCAmelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _UpperCAmelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _UpperCAmelCase = torch.cat((dummy_token, input_ids) , dim=1 ) _UpperCAmelCase = self.transformer(inputs_embeds=__lowerCAmelCase , labels=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : torch.device ): return torch.zeros(__lowerCAmelCase , self.prefix_length , dtype=torch.intaa , device=__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): return self.encode_prefix(__lowerCAmelCase ) @torch.no_grad() def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = torch.split(__lowerCAmelCase , 1 , dim=0 ) _UpperCAmelCase = [] _UpperCAmelCase = [] for feature in features: _UpperCAmelCase = self.decode_prefix(feature.to(__lowerCAmelCase ) ) # back to the clip feature # Only support beam search for now _UpperCAmelCase , _UpperCAmelCase = self.generate_beam( input_embeds=__lowerCAmelCase , device=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _UpperCAmelCase = torch.stack(__lowerCAmelCase ) _UpperCAmelCase = torch.stack(__lowerCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int = 5 , __lowerCAmelCase : int = 67 , __lowerCAmelCase : float = 1.0 , __lowerCAmelCase : Optional[int] = None , ): _UpperCAmelCase = eos_token_id _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = torch.ones(__lowerCAmelCase , device=__lowerCAmelCase , dtype=torch.int ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase , device=__lowerCAmelCase , dtype=torch.bool ) if input_embeds is not None: _UpperCAmelCase = input_embeds else: _UpperCAmelCase = self.transformer.transformer.wte(__lowerCAmelCase ) for i in range(__lowerCAmelCase ): _UpperCAmelCase = self.transformer(inputs_embeds=__lowerCAmelCase ) _UpperCAmelCase = outputs.logits _UpperCAmelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _UpperCAmelCase = logits.softmax(-1 ).log() if scores is None: _UpperCAmelCase , _UpperCAmelCase = logits.topk(__lowerCAmelCase , -1 ) _UpperCAmelCase = generated.expand(__lowerCAmelCase , *generated.shape[1:] ) _UpperCAmelCase , _UpperCAmelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _UpperCAmelCase = next_tokens else: _UpperCAmelCase = tokens.expand(__lowerCAmelCase , *tokens.shape[1:] ) _UpperCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: _UpperCAmelCase = -float(np.inf ) _UpperCAmelCase = 0 _UpperCAmelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _UpperCAmelCase = scores_sum / seq_lengths[:, None] _UpperCAmelCase , _UpperCAmelCase = scores_sum_average.view(-1 ).topk(__lowerCAmelCase , -1 ) _UpperCAmelCase = next_tokens // scores_sum.shape[1] _UpperCAmelCase = seq_lengths[next_tokens_source] _UpperCAmelCase = next_tokens % scores_sum.shape[1] _UpperCAmelCase = next_tokens.unsqueeze(1 ) _UpperCAmelCase = tokens[next_tokens_source] _UpperCAmelCase = torch.cat((tokens, next_tokens) , dim=1 ) _UpperCAmelCase = generated[next_tokens_source] _UpperCAmelCase = scores_sum_average * seq_lengths _UpperCAmelCase = is_stopped[next_tokens_source] _UpperCAmelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _UpperCAmelCase = torch.cat((generated, next_token_embed) , dim=1 ) _UpperCAmelCase = is_stopped + next_tokens.eq(__lowerCAmelCase ).squeeze() if is_stopped.all(): break _UpperCAmelCase = scores / seq_lengths _UpperCAmelCase = scores.argsort(descending=__lowerCAmelCase ) # tokens tensors are already padded to max_seq_length _UpperCAmelCase = [tokens[i] for i in order] _UpperCAmelCase = torch.stack(__lowerCAmelCase , dim=0 ) _UpperCAmelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
30
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
1
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [1] for i in range(2 ,lowercase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _UpperCAmelCase = [] _UpperCAmelCase = list(range(lowercase ) ) # Find permutation while factorials: _UpperCAmelCase = factorials.pop() _UpperCAmelCase , _UpperCAmelCase = divmod(lowercase ,lowercase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
30
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] create_all_state(1 ,lowercase ,lowercase ,[] ,lowercase ) return result def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,): """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(lowercase ,total_number - level + 2 ): current_list.append(lowercase ) create_all_state(i + 1 ,lowercase ,level - 1 ,lowercase ,lowercase ) current_list.pop() def __UpperCAmelCase ( lowercase ): """simple docstring""" for i in total_list: print(*lowercase ) if __name__ == "__main__": UpperCAmelCase__ = 4 UpperCAmelCase__ = 2 UpperCAmelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
30
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'layoutlmv3' def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple=5_0265 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=128 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=64 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class a ( lowerCAmelCase_ ): _snake_case : str = version.parse('1.12' ) @property def lowerCAmelCase_ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5 @property def lowerCAmelCase_ ( self : List[str] ): return 12 def lowerCAmelCase_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
30
1
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class a ( lowerCAmelCase_ ): _snake_case : Dict = 'time_series_transformer' _snake_case : Optional[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "student_t" , __lowerCAmelCase : str = "nll" , __lowerCAmelCase : int = 1 , __lowerCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowerCAmelCase : Optional[Union[str, bool]] = "mean" , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : int = 32 , __lowerCAmelCase : int = 32 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : bool = True , __lowerCAmelCase : str = "gelu" , __lowerCAmelCase : int = 64 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : int = 100 , __lowerCAmelCase : float = 0.02 , __lowerCAmelCase : int=True , **__lowerCAmelCase : List[str] , ): # time series specific configuration _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length or prediction_length _UpperCAmelCase = distribution_output _UpperCAmelCase = loss _UpperCAmelCase = input_size _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = scaling _UpperCAmelCase = num_dynamic_real_features _UpperCAmelCase = num_static_real_features _UpperCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) _UpperCAmelCase = cardinality else: _UpperCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) _UpperCAmelCase = embedding_dimension else: _UpperCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase = input_size * len(__lowerCAmelCase ) + self._number_of_features _UpperCAmelCase = d_model _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = decoder_layers _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = use_cache super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
30
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
1
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCAmelCase__ = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class a ( unittest.TestCase ): @classmethod def lowerCAmelCase_ ( cls : str ): _UpperCAmelCase = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : int ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _UpperCAmelCase = FlaxBertModel(__lowerCAmelCase ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) _UpperCAmelCase = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) _UpperCAmelCase = flatten_dict(unfreeze(model.params ) ) _UpperCAmelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCAmelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__lowerCAmelCase , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCAmelCase , repo_id="""test-model-flax""" , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) _UpperCAmelCase = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) _UpperCAmelCase = flatten_dict(unfreeze(model.params ) ) _UpperCAmelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCAmelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__lowerCAmelCase , 1e-3 , msg=f'''{key} not identical''' ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _UpperCAmelCase = FlaxBertModel(__lowerCAmelCase ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) _UpperCAmelCase = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _UpperCAmelCase = flatten_dict(unfreeze(model.params ) ) _UpperCAmelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCAmelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__lowerCAmelCase , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __lowerCAmelCase , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) _UpperCAmelCase = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _UpperCAmelCase = flatten_dict(unfreeze(model.params ) ) _UpperCAmelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCAmelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__lowerCAmelCase , 1e-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = True _UpperCAmelCase = flatten_dict(modela.params ) _UpperCAmelCase = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: _UpperCAmelCase = False return models_are_equal @require_flax class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _UpperCAmelCase = FlaxBertModel(__lowerCAmelCase ) _UpperCAmelCase = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) with self.assertRaises(__lowerCAmelCase ): _UpperCAmelCase = FlaxBertModel.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = FlaxBertModel.from_pretrained(__lowerCAmelCase , subfolder=__lowerCAmelCase ) self.assertTrue(check_models_equal(__lowerCAmelCase , __lowerCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _UpperCAmelCase = FlaxBertModel(__lowerCAmelCase ) _UpperCAmelCase = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , max_shard_size="""10KB""" ) with self.assertRaises(__lowerCAmelCase ): _UpperCAmelCase = FlaxBertModel.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = FlaxBertModel.from_pretrained(__lowerCAmelCase , subfolder=__lowerCAmelCase ) self.assertTrue(check_models_equal(__lowerCAmelCase , __lowerCAmelCase ) ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = """bert""" _UpperCAmelCase = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(__lowerCAmelCase ): _UpperCAmelCase = FlaxBertModel.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = FlaxBertModel.from_pretrained(__lowerCAmelCase , subfolder=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = """bert""" _UpperCAmelCase = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(__lowerCAmelCase ): _UpperCAmelCase = FlaxBertModel.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = FlaxBertModel.from_pretrained(__lowerCAmelCase , subfolder=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase )
30
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
1
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
1
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" try: _UpperCAmelCase = float(lowercase ) except ValueError: raise ValueError("""Please enter a valid number""" ) _UpperCAmelCase = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: _UpperCAmelCase = len(str(lowercase ).split(""".""" )[1] ) _UpperCAmelCase = int(decimal * (10**number_of_frac_digits) ) _UpperCAmelCase = 10**number_of_frac_digits _UpperCAmelCase , _UpperCAmelCase = denominator, numerator while True: _UpperCAmelCase = dividend % divisor if remainder == 0: break _UpperCAmelCase , _UpperCAmelCase = divisor, remainder _UpperCAmelCase , _UpperCAmelCase = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
30
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
1
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase__ = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ UpperCAmelCase__ = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ UpperCAmelCase__ = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ UpperCAmelCase__ = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ UpperCAmelCase__ = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : Tuple ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=[1, 10, 100] , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Union[str, Any]=3.0 ): if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=__lowerCAmelCase ) as executor: _UpperCAmelCase = [] _UpperCAmelCase = Counter() _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(__lowerCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): for candidate in candidates: _UpperCAmelCase = candidate + """\n""" + test_case _UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase = executor.submit(__lowerCAmelCase , *__lowerCAmelCase ) futures.append(__lowerCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__lowerCAmelCase ): _UpperCAmelCase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) _UpperCAmelCase , _UpperCAmelCase = [], [] for result in results.values(): result.sort() _UpperCAmelCase = [r[1]["""passed"""] for r in result] total.append(len(__lowerCAmelCase ) ) correct.append(sum(__lowerCAmelCase ) ) _UpperCAmelCase = np.array(__lowerCAmelCase ) _UpperCAmelCase = np.array(__lowerCAmelCase ) _UpperCAmelCase = k _UpperCAmelCase = {f'''pass@{k}''': estimate_pass_at_k(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" def estimator(lowercase ,lowercase ,lowercase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(lowercase ,lowercase ): _UpperCAmelCase = itertools.repeat(lowercase ,len(lowercase ) ) else: assert len(lowercase ) == len(lowercase ) _UpperCAmelCase = iter(lowercase ) return np.array([estimator(int(lowercase ) ,int(lowercase ) ,lowercase ) for n, c in zip(lowercase ,lowercase )] )
30
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
1
"""simple docstring""" import argparse from collections import defaultdict import yaml UpperCAmelCase__ = """docs/source/en/_toctree.yml""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = defaultdict(lowercase ) for doc in model_doc: counts[doc["local"]] += 1 _UpperCAmelCase = [key for key, value in counts.items() if value > 1] _UpperCAmelCase = [] for duplicate_key in duplicates: _UpperCAmelCase = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(lowercase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(lowercase ,key=lambda lowercase : s["title"].lower() ) def __UpperCAmelCase ( lowercase=False ): """simple docstring""" with open(lowercase ,encoding="""utf-8""" ) as f: _UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _UpperCAmelCase = content[api_idx]["""sections"""] # Then to the model doc _UpperCAmelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _UpperCAmelCase = api_doc[model_idx]["""sections"""] _UpperCAmelCase = [(idx, section) for idx, section in enumerate(lowercase ) if """sections""" in section] _UpperCAmelCase = False for idx, modality_doc in modalities_docs: _UpperCAmelCase = modality_doc["""sections"""] _UpperCAmelCase = clean_model_doc_toc(lowercase ) if old_modality_doc != new_modality_doc: _UpperCAmelCase = True if overwrite: _UpperCAmelCase = new_modality_doc if diff: if overwrite: _UpperCAmelCase = model_doc _UpperCAmelCase = api_doc with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase ,allow_unicode=lowercase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
30
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # Checks if the entire collection has been sorted if len(lowercase ) <= 1 or n <= 1: return insert_next(lowercase ,n - 1 ) rec_insertion_sort(lowercase ,n - 1 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # Checks order between adjacent elements if index >= len(lowercase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _UpperCAmelCase , _UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowercase ,index + 1 ) if __name__ == "__main__": UpperCAmelCase__ = input("""Enter integers separated by spaces: """) UpperCAmelCase__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
30
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
1
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = ( first_str_length if first_str_length > second_str_length else second_str_length ) _UpperCAmelCase = [] for char_count in range(lowercase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowercase ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
30
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , ): _UpperCAmelCase = parent _UpperCAmelCase = 13 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 99 _UpperCAmelCase = 32 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 37 _UpperCAmelCase = """gelu""" _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 512 _UpperCAmelCase = 16 _UpperCAmelCase = 2 _UpperCAmelCase = 0.02 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = None def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Dict ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = TFEsmModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : int , ): _UpperCAmelCase = True _UpperCAmelCase = TFEsmModel(config=__lowerCAmelCase ) _UpperCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ) # Also check the case where encoder outputs are not passed _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = TFEsmForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFEsmForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _snake_case : List[str] = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _snake_case : str = False _snake_case : Optional[int] = False def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = TFEsmModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFEsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _UpperCAmelCase = model.get_bias() assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for k, v in name.items(): assert isinstance(__lowerCAmelCase , tf.Variable ) else: _UpperCAmelCase = model.get_output_embeddings() assert x is None _UpperCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __lowerCAmelCase ) # compare the actual values for a slice. _UpperCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _UpperCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] # compare the actual values for a slice. _UpperCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
30
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
1
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
1
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } UpperCAmelCase__ = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } UpperCAmelCase__ = { """ctrl""": 2_5_6, } UpperCAmelCase__ = { """Pregnancy""": 1_6_8_6_2_9, """Christianity""": 7_6_7_5, """Explain""": 1_0_6_4_2_3, """Fitness""": 6_3_4_4_0, """Saving""": 6_3_1_6_3, """Ask""": 2_7_1_7_1, """Ass""": 9_5_9_8_5, """Joke""": 1_6_3_5_0_9, """Questions""": 4_5_6_2_2, """Thoughts""": 4_9_6_0_5, """Retail""": 5_2_3_4_2, """Feminism""": 1_6_4_3_3_8, """Writing""": 1_1_9_9_2, """Atheism""": 1_9_2_2_6_3, """Netflix""": 4_8_6_1_6, """Computing""": 3_9_6_3_9, """Opinion""": 4_3_2_1_3, """Alone""": 4_4_9_6_7, """Funny""": 5_8_9_1_7, """Gaming""": 4_0_3_5_8, """Human""": 4_0_8_8, """India""": 1_3_3_1, """Joker""": 7_7_1_3_8, """Diet""": 3_6_2_0_6, """Legal""": 1_1_8_5_9, """Norman""": 4_9_3_9, """Tip""": 7_2_6_8_9, """Weight""": 5_2_3_4_3, """Movies""": 4_6_2_7_3, """Running""": 2_3_4_2_5, """Science""": 2_0_9_0, """Horror""": 3_7_7_9_3, """Confession""": 6_0_5_7_2, """Finance""": 1_2_2_5_0, """Politics""": 1_6_3_6_0, """Scary""": 1_9_1_9_8_5, """Support""": 1_2_6_5_4, """Technologies""": 3_2_5_1_6, """Teenage""": 6_6_1_6_0, """Event""": 3_2_7_6_9, """Learned""": 6_7_4_6_0, """Notion""": 1_8_2_7_7_0, """Wikipedia""": 3_7_5_8_3, """Books""": 6_6_6_5, """Extract""": 7_6_0_5_0, """Confessions""": 1_0_2_7_0_1, """Conspiracy""": 7_5_9_3_2, """Links""": 6_3_6_7_4, """Narcissus""": 1_5_0_4_2_5, """Relationship""": 5_4_7_6_6, """Relationships""": 1_3_4_7_9_6, """Reviews""": 4_1_6_7_1, """News""": 4_2_5_6, """Translation""": 2_6_8_2_0, """multilingual""": 1_2_8_4_0_6, } def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char _UpperCAmelCase = set(lowercase ) return pairs class a ( lowerCAmelCase_ ): _snake_case : Optional[Any] = VOCAB_FILES_NAMES _snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = CONTROL_CODES def __init__( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple="<unk>" , **__lowerCAmelCase : List[str] ): super().__init__(unk_token=__lowerCAmelCase , **__lowerCAmelCase ) with open(__lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: _UpperCAmelCase = json.load(__lowerCAmelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(__lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: _UpperCAmelCase = merges_handle.read().split("""\n""" )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in merges] _UpperCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _UpperCAmelCase = {} @property def lowerCAmelCase_ ( self : Any ): return len(self.encoder ) def lowerCAmelCase_ ( self : Tuple ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] ): if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(__lowerCAmelCase ) _UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _UpperCAmelCase = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _UpperCAmelCase = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(__lowerCAmelCase ): try: _UpperCAmelCase = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(__lowerCAmelCase ) _UpperCAmelCase = new_word if len(__lowerCAmelCase ) == 1: break else: _UpperCAmelCase = get_pairs(__lowerCAmelCase ) _UpperCAmelCase = """@@ """.join(__lowerCAmelCase ) _UpperCAmelCase = word[:-4] _UpperCAmelCase = word return word def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = [] _UpperCAmelCase = re.findall(R"""\S+\n?""" , __lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Any ): return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : int ): return self.decoder.get(__lowerCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : int ): _UpperCAmelCase = """ """.join(__lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + """\n""" ) _UpperCAmelCase = 0 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) _UpperCAmelCase = token_index writer.write(""" """.join(__lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
30
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
1
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch UpperCAmelCase__ = """sshleifer/bart-tiny-random""" UpperCAmelCase__ = """patrickvonplaten/t5-tiny-random""" @require_torch class a ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Any ): return AutoConfig.from_pretrained(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=__lowerCAmelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCAmelCase_ ( self : List[str] ): with self.assertRaises(__lowerCAmelCase ): create_student_by_copying_alternating_layers(__lowerCAmelCase , tempfile.mkdtemp() , e=__lowerCAmelCase , d=__lowerCAmelCase )
30
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
1
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self : Dict , *, __lowerCAmelCase : int = 4 , __lowerCAmelCase : int = 768 , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , ): super().__init__() _UpperCAmelCase = nn.Parameter(torch.zeros(__lowerCAmelCase ) ) # parameters for additional clip time embeddings _UpperCAmelCase = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # parameters for encoder hidden states _UpperCAmelCase = clip_extra_context_tokens _UpperCAmelCase = nn.Linear( __lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) _UpperCAmelCase = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.LayerNorm(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , *, __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _UpperCAmelCase = image_embeddings.shape[0] _UpperCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _UpperCAmelCase = classifier_free_guidance_embeddings.expand( __lowerCAmelCase , -1 ) _UpperCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _UpperCAmelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _UpperCAmelCase = self.embedding_proj(__lowerCAmelCase ) _UpperCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(__lowerCAmelCase ) _UpperCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _UpperCAmelCase = self.clip_extra_context_tokens_proj(__lowerCAmelCase ) _UpperCAmelCase = clip_extra_context_tokens.reshape(__lowerCAmelCase , -1 , self.clip_extra_context_tokens ) _UpperCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) _UpperCAmelCase = self.encoder_hidden_states_proj(__lowerCAmelCase ) _UpperCAmelCase = self.text_encoder_hidden_states_norm(__lowerCAmelCase ) _UpperCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
30
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase__ = False class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): return 12 @property def lowerCAmelCase_ ( self : str ): return 12 @property def lowerCAmelCase_ ( self : Dict ): return 32 @property def lowerCAmelCase_ ( self : str ): torch.manual_seed(0 ) _UpperCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCAmelCase_ ( self : Optional[Any] ): torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCAmelCase = 12 _UpperCAmelCase = 12 _UpperCAmelCase = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } _UpperCAmelCase = TransformeraDModel(**__lowerCAmelCase ) return model def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = """cpu""" _UpperCAmelCase = self.dummy_vqvae _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_transformer _UpperCAmelCase = VQDiffusionScheduler(self.num_embed ) _UpperCAmelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=__lowerCAmelCase ) _UpperCAmelCase = VQDiffusionPipeline( vqvae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , transformer=__lowerCAmelCase , scheduler=__lowerCAmelCase , learned_classifier_free_sampling_embeddings=__lowerCAmelCase , ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = """teddy bear playing in the pool""" _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _UpperCAmelCase = pipe([prompt] , generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""np""" ) _UpperCAmelCase = output.images _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _UpperCAmelCase = pipe( [prompt] , generator=__lowerCAmelCase , output_type="""np""" , return_dict=__lowerCAmelCase , num_inference_steps=2 )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _UpperCAmelCase = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = """cpu""" _UpperCAmelCase = self.dummy_vqvae _UpperCAmelCase = self.dummy_text_encoder _UpperCAmelCase = self.dummy_tokenizer _UpperCAmelCase = self.dummy_transformer _UpperCAmelCase = VQDiffusionScheduler(self.num_embed ) _UpperCAmelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=__lowerCAmelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _UpperCAmelCase = VQDiffusionPipeline( vqvae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , transformer=__lowerCAmelCase , scheduler=__lowerCAmelCase , learned_classifier_free_sampling_embeddings=__lowerCAmelCase , ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = """teddy bear playing in the pool""" _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _UpperCAmelCase = pipe([prompt] , generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""np""" ) _UpperCAmelCase = output.images _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _UpperCAmelCase = pipe( [prompt] , generator=__lowerCAmelCase , output_type="""np""" , return_dict=__lowerCAmelCase , num_inference_steps=2 )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _UpperCAmelCase = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) _UpperCAmelCase = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) _UpperCAmelCase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _UpperCAmelCase = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=__lowerCAmelCase , output_type="""np""" , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
30
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase__ : Optional[int] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class a ( unittest.TestCase ): _snake_case : Dict = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _snake_case : Optional[int] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _snake_case : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _snake_case : str = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = ZeroShotClassificationPipeline( model=__a , tokenizer=__a , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(__a , {"""sequence""": ANY(__a ), """labels""": [ANY(__a )], """scores""": [ANY(__a )]} ) # No kwarg _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(__a , {"""sequence""": ANY(__a ), """labels""": [ANY(__a )], """scores""": [ANY(__a )]} ) _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(__a , {"""sequence""": ANY(__a ), """labels""": [ANY(__a )], """scores""": [ANY(__a )]} ) _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( __a , {"""sequence""": ANY(__a ), """labels""": [ANY(__a ), ANY(__a )], """scores""": [ANY(__a ), ANY(__a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( __a , {"""sequence""": ANY(__a ), """labels""": [ANY(__a ), ANY(__a )], """scores""": [ANY(__a ), ANY(__a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) _UpperCAmelCase = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(__a , {"""sequence""": ANY(__a ), """labels""": [ANY(__a )], """scores""": [ANY(__a )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( __a , [ {"""sequence""": ANY(__a ), """labels""": [ANY(__a ), ANY(__a )], """scores""": [ANY(__a ), ANY(__a )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( __a , [ {"""sequence""": ANY(__a ), """labels""": [ANY(__a ), ANY(__a )], """scores""": [ANY(__a ), ANY(__a )]} for i in range(2 ) ] , ) with self.assertRaises(__a ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(__a ): classifier(__a , candidate_labels="""politics""" ) with self.assertRaises(__a ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(__a ): classifier("""Who are you voting for in 2020?""" , candidate_labels=__a ) with self.assertRaises(__a ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(__a ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=__a , ) self.run_entailment_id(__a ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Pipeline ): _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(__a , zero_shot_classifier.entailment_id ) @require_torch def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) _UpperCAmelCase = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__a ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) _UpperCAmelCase = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__a ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) _UpperCAmelCase = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__a ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) _UpperCAmelCase = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__a , ) self.assertEqual( nested_simplify(__a ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) _UpperCAmelCase = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__a ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) _UpperCAmelCase = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__a , ) self.assertEqual( nested_simplify(__a ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" UpperCAmelCase__ = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} UpperCAmelCase__ = ["""a""", """b""", """c""", """d""", """e"""] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = start # add current to visited visited.append(lowercase__ ) _UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _UpperCAmelCase = topological_sort(lowercase__ ,lowercase__ ,lowercase__ ) # if all neighbors visited add current to sort sort.append(lowercase__ ) # if all vertices haven't been visited select a new one to visit if len(lowercase__ ) != len(lowercase__ ): for vertice in vertices: if vertice not in visited: _UpperCAmelCase = topological_sort(lowercase__ ,lowercase__ ,lowercase__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase__ = topological_sort("""a""", [], []) print(sort)
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap UpperCAmelCase__ = """Usage of script: script_name <size_of_canvas:int>""" UpperCAmelCase__ = [0] * 1_0_0 + [1] * 1_0 random.shuffle(choice) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [[False for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] return canvas def __UpperCAmelCase ( lowercase ): """simple docstring""" for i, row in enumerate(__lowerCAmelCase ): for j, _ in enumerate(__lowerCAmelCase ): _UpperCAmelCase = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = np.array(__lowerCAmelCase ) _UpperCAmelCase = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__lowerCAmelCase ): for c, pt in enumerate(__lowerCAmelCase ): _UpperCAmelCase = __judge_point( __lowerCAmelCase ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _UpperCAmelCase = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _UpperCAmelCase = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _UpperCAmelCase = pt if pt: if alive < 2: _UpperCAmelCase = False elif alive == 2 or alive == 3: _UpperCAmelCase = True elif alive > 3: _UpperCAmelCase = False else: if alive == 3: _UpperCAmelCase = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) UpperCAmelCase__ = int(sys.argv[1]) # main working structure of this module. UpperCAmelCase__ = create_canvas(canvas_size) seed(c) UpperCAmelCase__ , UpperCAmelCase__ = plt.subplots() fig.show() UpperCAmelCase__ = ListedColormap(["""w""", """k"""]) try: while True: UpperCAmelCase__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase__ ,architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict _UpperCAmelCase = torch.load(hf_hub_download(repo_id=lowerCamelCase__ ,filename="""pytorch_model.bin""" ) ) _UpperCAmelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): _UpperCAmelCase = '''roberta_prelayernorm.''' + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue _UpperCAmelCase = tensor_value _UpperCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase__ ,config=lowerCamelCase__ ,state_dict=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) # convert tokenizer _UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
"""simple docstring""" from manim import * class a ( lowercase__ ): def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCAmelCase = Rectangle(height=0.25 , width=0.25 ) _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) _UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) _UpperCAmelCase = VGroup(_a , _a ).arrange(_a , buff=0 ) _UpperCAmelCase = Text("""CPU""" , font_size=24 ) _UpperCAmelCase = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) _UpperCAmelCase = [mem.copy() for i in range(4 )] _UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) _UpperCAmelCase = Text("""GPU""" , font_size=24 ) _UpperCAmelCase = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) _UpperCAmelCase = [mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) _UpperCAmelCase = Text("""Model""" , font_size=24 ) _UpperCAmelCase = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) _UpperCAmelCase = [] _UpperCAmelCase = [] for i, rect in enumerate(_a ): _UpperCAmelCase = fill.copy().set_fill(_a , opacity=0.8 ) target.move_to(_a ) model_arr.append(_a ) _UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_a ) self.add(*_a , *_a ) _UpperCAmelCase = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) _UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) _UpperCAmelCase = VGroup(_a , _a ).arrange(_a , buff=0 ) _UpperCAmelCase = Text("""Disk""" , font_size=24 ) _UpperCAmelCase = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4, -1.25, 0] ) self.add(_a , _a ) _UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) _UpperCAmelCase = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) _UpperCAmelCase = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_a ) ) _UpperCAmelCase = Square(0.3 ) input.set_fill(_a , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _a , buff=0.5 ) self.play(Write(_a ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_a , buff=0.02 ) self.play(MoveToTarget(_a ) ) self.play(FadeOut(_a ) ) _UpperCAmelCase = Arrow(start=_a , end=_a , color=_a , buff=0.5 ) a.next_to(model_arr[0].get_left() , _a , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _UpperCAmelCase = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) _UpperCAmelCase = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_a ) , Circumscribe(model_arr[0] , color=_a , **_a ) , Circumscribe(model_cpu_arr[0] , color=_a , **_a ) , Circumscribe(gpu_rect[0] , color=_a , **_a ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _UpperCAmelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _a , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _UpperCAmelCase = AnimationGroup( FadeOut(_a , run_time=0.5 ) , MoveToTarget(_a , run_time=0.5 ) , FadeIn(_a , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_a ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _UpperCAmelCase = 0.7 self.play( Circumscribe(model_arr[i] , **_a ) , Circumscribe(cpu_left_col_base[i] , **_a ) , Circumscribe(cpu_left_col_base[i + 1] , color=_a , **_a ) , Circumscribe(gpu_rect[0] , color=_a , **_a ) , Circumscribe(model_arr[i + 1] , color=_a , **_a ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_a , **_a ) , Circumscribe(cpu_left_col_base[-1] , color=_a , **_a ) , Circumscribe(gpu_rect[0] , color=_a , **_a ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _UpperCAmelCase = a_c _UpperCAmelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_a ) , FadeOut(_a , run_time=0.5 ) , ) _UpperCAmelCase = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) , MoveToTarget(_a ) ) self.wait()
355
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""", # See all ViT models at https://huggingface.co/models?filter=vit } class a ( lowerCamelCase__ ): _snake_case : List[str] = 'vit' def __init__( self : Tuple , __lowerCAmelCase : int=768 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : Dict=12 , __lowerCAmelCase : Optional[int]=3072 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Tuple=1e-1_2 , __lowerCAmelCase : Any=224 , __lowerCAmelCase : int=16 , __lowerCAmelCase : int=3 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=16 , **__lowerCAmelCase : List[str] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias _UpperCAmelCase = encoder_stride class a ( lowerCamelCase__ ): _snake_case : Tuple = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : str ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Any ): return 1e-4
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCAmelCase__ = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase__ = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" UpperCAmelCase__ = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : Tuple ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , ): _UpperCAmelCase = len(references[0] ) if any(len(_snake_case ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) _UpperCAmelCase = [[refs[i] for refs in references] for i in range(_snake_case )] _UpperCAmelCase = TER( normalized=_snake_case , no_punct=_snake_case , asian_support=_snake_case , case_sensitive=_snake_case , ) _UpperCAmelCase = sb_ter.corpus_score(_snake_case , _snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
357
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'layoutlmv3' def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple=5_0265 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=128 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=64 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class a ( lowerCAmelCase_ ): _snake_case : str = version.parse('1.12' ) @property def lowerCAmelCase_ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5 @property def lowerCAmelCase_ ( self : List[str] ): return 12 def lowerCAmelCase_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
30
0
"""simple docstring""" from math import factorial def __UpperCAmelCase ( lowercase = 1_00 ): """simple docstring""" return sum(int(lowerCamelCase_ ) for x in str(factorial(lowerCamelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
358
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ): # This function is recursive """simple docstring""" _UpperCAmelCase = len(lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _UpperCAmelCase = array[0] _UpperCAmelCase = False _UpperCAmelCase = 1 _UpperCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: _UpperCAmelCase = True _UpperCAmelCase = [element for element in array[i:] if element >= array[i]] _UpperCAmelCase = longest_subsequence(lowercase ) if len(lowercase ) > len(lowercase ): _UpperCAmelCase = temp_array else: i += 1 _UpperCAmelCase = [element for element in array[1:] if element >= pivot] _UpperCAmelCase = [pivot, *longest_subsequence(lowercase )] if len(lowercase ) > len(lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""PerceiverFeatureExtractor"""] UpperCAmelCase__ = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" if any(not isinstance(lowercase__ ,lowercase__ ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(lowercase__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowercase__ ,sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
362
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" for param, grad_param in zip(model_a.parameters() ,model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase=True ): """simple docstring""" model.train() _UpperCAmelCase = model(_lowerCamelCase ) _UpperCAmelCase = F.mse_loss(_lowerCamelCase ,target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase ) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" set_seed(42 ) _UpperCAmelCase = RegressionModel() _UpperCAmelCase = deepcopy(_lowerCamelCase ) _UpperCAmelCase = RegressionDataset(length=80 ) _UpperCAmelCase = DataLoader(_lowerCamelCase ,batch_size=16 ) model.to(accelerator.device ) if sched: _UpperCAmelCase = AdamW(params=model.parameters() ,lr=1E-3 ) _UpperCAmelCase = AdamW(params=ddp_model.parameters() ,lr=1E-3 ) _UpperCAmelCase = LambdaLR(_lowerCamelCase ,lr_lambda=lambda lowercase : epoch**0.65 ) _UpperCAmelCase = LambdaLR(_lowerCamelCase ,lr_lambda=lambda lowercase : epoch**0.65 ) # Make a copy of `model` if sched: _UpperCAmelCase = accelerator.prepare(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) else: _UpperCAmelCase = accelerator.prepare(_lowerCamelCase ,_lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = get_training_setup(_lowerCamelCase ) # Use a single batch _UpperCAmelCase = next(iter(_lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) _UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase ): step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) else: # Sync grads step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad ,ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _UpperCAmelCase = ddp_input[torch.randperm(len(_lowerCamelCase ) )] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = get_training_setup(_lowerCamelCase ) # Use a single batch _UpperCAmelCase = next(iter(_lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) _UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase ): step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) else: # Sync grads step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _UpperCAmelCase = ddp_input[torch.randperm(len(_lowerCamelCase ) )] def __UpperCAmelCase ( lowercase=False ,lowercase=False ): """simple docstring""" _UpperCAmelCase = Accelerator( split_batches=_lowerCamelCase ,dispatch_batches=_lowerCamelCase ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly _UpperCAmelCase = get_training_setup(_lowerCamelCase ) for iteration, batch in enumerate(_lowerCamelCase ): _UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model _UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) _UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase ): step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) _UpperCAmelCase = ddp_input[torch.randperm(len(_lowerCamelCase ) )] GradientState._reset_state() def __UpperCAmelCase ( lowercase=False ,lowercase=False ): """simple docstring""" _UpperCAmelCase = Accelerator( split_batches=_lowerCamelCase ,dispatch_batches=_lowerCamelCase ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly _UpperCAmelCase = get_training_setup(_lowerCamelCase ,_lowerCamelCase ) for iteration, batch in enumerate(_lowerCamelCase ): _UpperCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model _UpperCAmelCase = accelerator.gather((ddp_input, ddp_target) ) _UpperCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase ): step_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' _UpperCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = Accelerator() _UpperCAmelCase = RegressionDataset(length=80 ) _UpperCAmelCase = DataLoader(_lowerCamelCase ,batch_size=16 ) _UpperCAmelCase = RegressionDataset(length=96 ) _UpperCAmelCase = DataLoader(_lowerCamelCase ,batch_size=16 ) _UpperCAmelCase = accelerator.prepare(_lowerCamelCase ,_lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase ) if iteration < len(_lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase ) if batch_num < len(_lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = Accelerator() _UpperCAmelCase = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(_lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(_lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ ,f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' ,) test_gradient_accumulation(_lowerCamelCase ,_lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" ,"""2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ ,"""`split_batches=False`, `dispatch_batches=False`**""" ,) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ ,f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' ,) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase ,_lowerCamelCase ) def __UpperCAmelCase ( lowercase ): """simple docstring""" main() if __name__ == "__main__": main()
363
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
0
"""simple docstring""" from __future__ import annotations from typing import Any def __UpperCAmelCase ( lowercase ): """simple docstring""" create_state_space_tree(a_ ,[] ,0 ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" if index == len(a_ ): print(a_ ) return create_state_space_tree(a_ ,a_ ,index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(a_ ,a_ ,index + 1 ) current_subsequence.pop() if __name__ == "__main__": UpperCAmelCase__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCAmelCase__ = get_logger() UpperCAmelCase__ = None class a ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : str , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : str ): super().__init__(features=_a ) import jax from jaxlib.xla_client import Device if isinstance(_a , _a ): raise ValueError( f'''Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) _UpperCAmelCase = device if isinstance(_a , _a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) _UpperCAmelCase = str(jax.devices()[0] ) _UpperCAmelCase = jnp_array_kwargs @staticmethod def lowerCAmelCase_ ( ): import jax return {str(_a ): device for device in jax.devices()} def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str ): import jax import jax.numpy as jnp if isinstance(_a , _a ) and column: if all( isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_a , axis=0 ) return column def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[str] ): import jax import jax.numpy as jnp if isinstance(_a , (str, bytes, type(_a )) ): return value elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _UpperCAmelCase = {} if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _UpperCAmelCase = {'''dtype''': jnp.intaa} else: _UpperCAmelCase = {'''dtype''': jnp.intaa} elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _UpperCAmelCase = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_a , PIL.Image.Image ): _UpperCAmelCase = np.asarray(_a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Tuple ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_a , """__array__""" ) and not isinstance(_a , jax.Array ): _UpperCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) elif isinstance(_a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) return self._tensorize(_a ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Tuple ): return map_nested(self._recursive_tensorize , _a , map_list=_a ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = self.numpy_arrow_extractor().extract_row(_a ) _UpperCAmelCase = self.python_features_decoder.decode_row(_a ) return self.recursive_tensorize(_a ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = self.numpy_arrow_extractor().extract_column(_a ) _UpperCAmelCase = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] ) _UpperCAmelCase = self.recursive_tensorize(_a ) _UpperCAmelCase = self._consolidate(_a ) return column def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(_a ) _UpperCAmelCase = self.python_features_decoder.decode_batch(_a ) _UpperCAmelCase = self.recursive_tensorize(_a ) for column_name in batch: _UpperCAmelCase = self._consolidate(batch[column_name] ) return batch
365
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
0
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowercase ): """simple docstring""" def is_in_circle(lowercase ,lowercase ) -> bool: _UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 ,1.0 ) ,uniform(-1.0 ,1.0 ) ) ) for _ in range(lowerCAmelCase__ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = 0.0 ,lowercase = 1.0 ,): """simple docstring""" return mean( function_to_integrate(uniform(lowerCAmelCase__ ,lowerCAmelCase__ ) ) for _ in range(lowerCAmelCase__ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowercase ,lowercase = 0.0 ,lowercase = 1.0 ): """simple docstring""" def identity_function(lowercase ) -> float: return x _UpperCAmelCase = area_under_curve_estimator( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" def function_to_integrate(lowercase ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase = area_under_curve_estimator( lowerCAmelCase__ ,lowerCAmelCase__ ,0.0 ,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ): """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(a_ ) / len(a_ ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
0
"""simple docstring""" import os def __UpperCAmelCase ( lowercase = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCamelCase ) ,_UpperCamelCase ) ) as in_file: _UpperCAmelCase = in_file.read() _UpperCAmelCase = [[int(_UpperCamelCase ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] _UpperCAmelCase = [[0 for cell in row] for row in grid] _UpperCAmelCase = len(grid[0] ) _UpperCAmelCase = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] _UpperCAmelCase = grid[0][0] for i in range(1 ,_UpperCamelCase ): _UpperCAmelCase = grid[0][i] + dp[0][i - 1] for i in range(1 ,_UpperCamelCase ): _UpperCAmelCase = grid[i][0] + dp[i - 1][0] for i in range(1 ,_UpperCamelCase ): for j in range(1 ,_UpperCamelCase ): _UpperCAmelCase = grid[i][j] + min(dp[i - 1][j] ,dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
368
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 _UpperCAmelCase = 1 for i in range(1 ,n + 1 ): # to compute current row from previous row. _UpperCAmelCase = min(a__ ,a__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ): """simple docstring""" # preprocessing the first row for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__SCREAMING_SNAKE_CASE ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class a ( __lowercase ): _snake_case : Union[str, Any] = 'sew-d' def __init__( self : Union[str, Any] , __lowerCAmelCase : int=32 , __lowerCAmelCase : List[Any]=768 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : str=12 , __lowerCAmelCase : str=3072 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : int=512 , __lowerCAmelCase : Any=256 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : int=("p2c", "c2p") , __lowerCAmelCase : Optional[int]="layer_norm" , __lowerCAmelCase : int="gelu_python" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : str=1e-7 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : Dict="group" , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __lowerCAmelCase : List[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowerCAmelCase : Tuple=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowerCAmelCase : Any=False , __lowerCAmelCase : Optional[Any]=128 , __lowerCAmelCase : Dict=16 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[Any]=0.05 , __lowerCAmelCase : Dict=10 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : Any=10 , __lowerCAmelCase : Any=0 , __lowerCAmelCase : Optional[Any]="mean" , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Any=False , __lowerCAmelCase : Dict=256 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Any=1 , __lowerCAmelCase : List[str]=2 , **__lowerCAmelCase : Tuple , ): super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) _UpperCAmelCase = hidden_size _UpperCAmelCase = feat_extract_norm _UpperCAmelCase = feat_extract_activation _UpperCAmelCase = list(_a ) _UpperCAmelCase = list(_a ) _UpperCAmelCase = list(_a ) _UpperCAmelCase = conv_bias _UpperCAmelCase = num_conv_pos_embeddings _UpperCAmelCase = num_conv_pos_embedding_groups _UpperCAmelCase = len(self.conv_dim ) _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = intermediate_size _UpperCAmelCase = squeeze_factor _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = position_buckets _UpperCAmelCase = share_att_key _UpperCAmelCase = relative_attention _UpperCAmelCase = norm_rel_ebd _UpperCAmelCase = list(_a ) _UpperCAmelCase = hidden_act _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = feat_proj_dropout _UpperCAmelCase = final_dropout _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = feature_layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase = apply_spec_augment _UpperCAmelCase = mask_time_prob _UpperCAmelCase = mask_time_length _UpperCAmelCase = mask_time_min_masks _UpperCAmelCase = mask_feature_prob _UpperCAmelCase = mask_feature_length _UpperCAmelCase = mask_feature_min_masks # ctc loss _UpperCAmelCase = ctc_loss_reduction _UpperCAmelCase = ctc_zero_infinity # sequence classification _UpperCAmelCase = use_weighted_layer_sum _UpperCAmelCase = classifier_proj_size @property def lowerCAmelCase_ ( self : Union[str, Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase=False ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: _UpperCAmelCase = os.path.abspath(__lowerCamelCase ) logger.info(f'''Loading PyTorch weights from {pt_path}''' ) _UpperCAmelCase = torch.load(__lowerCamelCase ,map_location="""cpu""" ) logger.info(f'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) _UpperCAmelCase = convert_pytorch_state_dict_to_flax(__lowerCamelCase ,__lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _UpperCAmelCase = convert_pytorch_sharded_state_dict_to_flax(__lowerCamelCase ,__lowerCamelCase ) return flax_state_dict def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,): """simple docstring""" def is_key_or_prefix_key_in_dict(lowercase ) -> bool: return len(set(__lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm _UpperCAmelCase = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _UpperCAmelCase = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _UpperCAmelCase = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding _UpperCAmelCase = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): _UpperCAmelCase = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__lowerCamelCase ): _UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _UpperCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _UpperCAmelCase = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _UpperCAmelCase = pt_tuple_key[-2] + "_v" if name is not None: _UpperCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # convert pytorch tensor to numpy _UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} _UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _UpperCAmelCase = flax_model.params["params"] else: _UpperCAmelCase = flax_model.params _UpperCAmelCase = flatten_dict(__lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _UpperCAmelCase = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(__lowerCamelCase ) _UpperCAmelCase = {} _UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters _UpperCAmelCase = rename_key_and_reshape_tensor( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # add model prefix if necessary _UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _UpperCAmelCase = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase ,__lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" import torch # Load the index _UpperCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils _UpperCAmelCase = torch.load(__lowerCamelCase ) _UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} _UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _UpperCAmelCase = flax_model.params["params"] _UpperCAmelCase = flatten_dict(__lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: _UpperCAmelCase = flax_model.params _UpperCAmelCase = flatten_dict(__lowerCamelCase ) _UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters _UpperCAmelCase = rename_key_and_reshape_tensor( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # add model prefix if necessary _UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _UpperCAmelCase = jnp.asarray(__lowerCamelCase ) continue if "var" in flax_key[-1]: _UpperCAmelCase = jnp.asarray(__lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__lowerCamelCase ,__lowerCamelCase ) continue # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(__lowerCamelCase ) else: # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = os.path.abspath(__lowerCamelCase ) logger.info(f'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class _UpperCAmelCase = getattr(__lowerCamelCase ,"""Flax""" + model.__class__.__name__ ) # load flax weight dict with open(__lowerCamelCase ,"""rb""" ) as state_f: try: _UpperCAmelCase = from_bytes(__lowerCamelCase ,state_f.read() ) except UnpicklingError: raise EnvironmentError(f'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__lowerCamelCase ,__lowerCamelCase ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _UpperCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda lowercase : x.dtype == jnp.bfloataa ,__lowerCamelCase ) ).values() if any(__lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _UpperCAmelCase = jax.tree_util.tree_map( lambda lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,__lowerCamelCase ) _UpperCAmelCase = flatten_dict(__lowerCamelCase ) _UpperCAmelCase = pt_model.state_dict() _UpperCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) _UpperCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _UpperCAmelCase = [] _UpperCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _UpperCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix _UpperCAmelCase = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _UpperCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _UpperCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__lowerCamelCase ) not in pt_model_dict: # conv layer _UpperCAmelCase = flax_key_tuple[:-1] + ("weight",) _UpperCAmelCase = jnp.transpose(__lowerCamelCase ,(3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ) not in pt_model_dict: # linear layer _UpperCAmelCase = flax_key_tuple[:-1] + ("weight",) _UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _UpperCAmelCase = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: _UpperCAmelCase = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: _UpperCAmelCase = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _UpperCAmelCase = ".".join(__lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _UpperCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _UpperCAmelCase = key.split(""".""" ) _UpperCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: _UpperCAmelCase = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: _UpperCAmelCase = key_components[-2] + "_v" if name is not None: _UpperCAmelCase = key_components[:-3] + [name] _UpperCAmelCase = ".".join(__lowerCamelCase ) _UpperCAmelCase = key if flax_key in special_pt_names: _UpperCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _UpperCAmelCase = np.asarray(__lowerCamelCase ) if not isinstance(__lowerCamelCase ,np.ndarray ) else flax_tensor _UpperCAmelCase = torch.from_numpy(__lowerCamelCase ) # remove from missing keys missing_keys.remove(__lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCamelCase ) pt_model.load_state_dict(__lowerCamelCase ) # re-transform missing_keys to list _UpperCAmelCase = list(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__lowerCamelCase ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) else: logger.warning( f'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' """If your task is similar to the task the model of the checkpoint was trained on, """ f'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests UpperCAmelCase__ = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCAmelCase__ = BASE_URL + """/user""" # https://github.com/settings/tokens UpperCAmelCase__ = os.environ.get("""USER_TOKEN""", """""") def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = { '''Authorization''': f'''token {auth_token}''', '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_snake_case ,headers=_snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _snake_case : Optional[Any] = IFPipeline _snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase_ ( self : int ): return self._get_dummy_components() def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=0 ): if str(snake_case__ ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(snake_case__ ) else: _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self : Optional[Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase_ ( self : Optional[Any] ): super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase_ ( self : int ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase_ ( self : Optional[Any] ): self._test_save_load_local() def lowerCAmelCase_ ( self : str ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase_ ( self : str ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) _UpperCAmelCase = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) _UpperCAmelCase = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _UpperCAmelCase = None _UpperCAmelCase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _UpperCAmelCase = IFImgaImgPipeline(**pipe_a.components ) _UpperCAmelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _UpperCAmelCase = IFInpaintingPipeline(**pipe_a.components ) _UpperCAmelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any ): _start_torch_memory_measurement() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="""np""" , ) _UpperCAmelCase = output.images[0] assert image.shape == (64, 64, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): _start_torch_memory_measurement() _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="""np""" , ) _UpperCAmelCase = output.images[0] assert image.shape == (64, 64, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(snake_case__ ) _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _start_torch_memory_measurement() _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(snake_case__ ) _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="""np""" , ) _UpperCAmelCase = output.images[0] assert image.shape == (64, 64, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case__ ) _UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(snake_case__ ) _UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(snake_case__ ) _UpperCAmelCase = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = output.images[0] assert image.shape == (256, 256, 3) _UpperCAmelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __UpperCAmelCase ( ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __UpperCAmelCase ( lowercase ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase = model_type_to_module_name(lowercase ) _UpperCAmelCase = importlib.import_module(f'''.{module_name}''' ,"""transformers.models""" ) try: return getattr(lowercase ,lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowercase ,"""__name__""" ,lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase = importlib.import_module("""transformers""" ) if hasattr(lowercase ,lowercase ): return getattr(lowercase ,lowercase ) return None def __UpperCAmelCase ( lowercase ,lowercase = None ,lowercase = False ,lowercase = False ,lowercase = None ,lowercase = None ,lowercase = None ,lowercase = False ,**lowercase ,): """simple docstring""" _UpperCAmelCase = get_file_from_repo( lowercase ,lowercase ,cache_dir=lowercase ,force_download=lowercase ,resume_download=lowercase ,proxies=lowercase ,use_auth_token=lowercase ,revision=lowercase ,local_files_only=lowercase ,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(lowercase ,encoding="""utf-8""" ) as reader: return json.load(lowercase ) class a : def __init__( self : Tuple ): raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Dict ): _UpperCAmelCase = kwargs.pop("""config""" , __UpperCAmelCase ) _UpperCAmelCase = kwargs.pop("""trust_remote_code""" , __UpperCAmelCase ) _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) _UpperCAmelCase = config_dict.get("""feature_extractor_type""" , __UpperCAmelCase ) _UpperCAmelCase = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _UpperCAmelCase = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` _UpperCAmelCase = getattr(__UpperCAmelCase , """feature_extractor_type""" , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _UpperCAmelCase = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _UpperCAmelCase = feature_extractor_class_from_name(__UpperCAmelCase ) _UpperCAmelCase = feature_extractor_auto_map is not None _UpperCAmelCase = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING _UpperCAmelCase = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: _UpperCAmelCase = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) _UpperCAmelCase = kwargs.pop("""code_revision""" , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: _UpperCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCAmelCase_ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase=None ): """simple docstring""" _UpperCAmelCase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _UpperCAmelCase = True, True _UpperCAmelCase = dfs(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) return path def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = -1 for i in range(snake_case_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _UpperCAmelCase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _UpperCAmelCase = check_circuit_or_path(snake_case_ ,snake_case_ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return _UpperCAmelCase = 1 if check == 2: _UpperCAmelCase = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) _UpperCAmelCase = dfs(snake_case_ ,snake_case_ ,snake_case_ ) print(snake_case_ ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _UpperCAmelCase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _UpperCAmelCase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _UpperCAmelCase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _UpperCAmelCase = { 1: [], 2: [] # all degree is zero } _UpperCAmelCase = 10 check_euler(snake_case_ ,snake_case_ ) check_euler(snake_case_ ,snake_case_ ) check_euler(snake_case_ ,snake_case_ ) check_euler(snake_case_ ,snake_case_ ) check_euler(snake_case_ ,snake_case_ ) if __name__ == "__main__": main()
355
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase__ = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } UpperCAmelCase__ = { """facebook/mbart-large-en-ro""": 1_0_2_4, """facebook/mbart-large-cc25""": 1_0_2_4, } # fmt: off UpperCAmelCase__ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class a ( __UpperCamelCase ): _snake_case : Any = VOCAB_FILES_NAMES _snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = ["""input_ids""", """attention_mask"""] _snake_case : Dict = MBartTokenizer _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self : List[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : List[Any]="<s>" , __lowerCAmelCase : int="</s>" , __lowerCAmelCase : str="</s>" , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : int="<unk>" , __lowerCAmelCase : str="<pad>" , __lowerCAmelCase : List[Any]="<mask>" , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : str=None , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True _UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _UpperCAmelCase = { lang_code: self.convert_tokens_to_ids(__lowerCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _UpperCAmelCase = src_lang if src_lang is not None else """en_XX""" _UpperCAmelCase = self.convert_tokens_to_ids(self._src_lang ) _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase_ ( self : Optional[int] ): return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str ): _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] , __lowerCAmelCase : Optional[str] , **__lowerCAmelCase : List[str] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = self.convert_tokens_to_ids(__lowerCAmelCase ) _UpperCAmelCase = tgt_lang_id return inputs def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = "en_XX" , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : str = "ro_RO" , **__lowerCAmelCase : Any , ): _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self : str ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.convert_tokens_to_ids(__lowerCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] _UpperCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : str ): _UpperCAmelCase = self.convert_tokens_to_ids(__lowerCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] _UpperCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return _UpperCAmelCase = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase__ = datasets.utils.logging.get_logger(__name__) class a ( folder_based_builder.FolderBasedBuilderConfig ): _snake_case : bool = None _snake_case : bool = None class a ( folder_based_builder.FolderBasedBuilder ): _snake_case : List[Any] = datasets.Audio() _snake_case : str = 'audio' _snake_case : Union[str, Any] = AudioFolderConfig _snake_case : List[str] # definition at the bottom of the script _snake_case : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) UpperCAmelCase__ = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] UpperCAmelCase__ = AUDIO_EXTENSIONS
357
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'layoutlmv3' def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple=5_0265 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=128 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=64 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class a ( lowerCAmelCase_ ): _snake_case : str = version.parse('1.12' ) @property def lowerCAmelCase_ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5 @property def lowerCAmelCase_ ( self : List[str] ): return 12 def lowerCAmelCase_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
30
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): # noqa: E741 """simple docstring""" while r - l > 1: _UpperCAmelCase = (l + r) // 2 if v[m] >= key: _UpperCAmelCase = m else: _UpperCAmelCase = m # noqa: E741 return r def __UpperCAmelCase ( lowercase ): """simple docstring""" if len(_UpperCamelCase ) == 0: return 0 _UpperCAmelCase = [0] * len(_UpperCamelCase ) _UpperCAmelCase = 1 _UpperCAmelCase = v[0] for i in range(1 ,len(_UpperCamelCase ) ): if v[i] < tail[0]: _UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: _UpperCAmelCase = v[i] length += 1 else: _UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
0
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = tf.data.AUTOTUNE def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" ,type=lowerCAmelCase__ ,default="""roberta-base""" ,help="""The model config to use. Note that we don't copy the model's weights, only the config!""" ,) parser.add_argument( """--tokenizer""" ,type=lowerCAmelCase__ ,default="""unigram-tokenizer-wikitext""" ,help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" ,) parser.add_argument( """--per_replica_batch_size""" ,type=lowerCAmelCase__ ,default=8 ,help="""Batch size per TPU core.""" ,) parser.add_argument( """--no_tpu""" ,action="""store_true""" ,help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" ,) parser.add_argument( """--tpu_name""" ,type=lowerCAmelCase__ ,help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" ,default="""local""" ,) parser.add_argument( """--tpu_zone""" ,type=lowerCAmelCase__ ,help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" ,) parser.add_argument( """--gcp_project""" ,type=lowerCAmelCase__ ,help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" ,action="""store_true""" ,help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" ,) parser.add_argument( """--train_dataset""" ,type=lowerCAmelCase__ ,help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" ,) parser.add_argument( """--shuffle_buffer_size""" ,type=lowerCAmelCase__ ,default=2**18 ,help="""Size of the shuffle buffer (in samples)""" ,) parser.add_argument( """--eval_dataset""" ,type=lowerCAmelCase__ ,help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" ,) parser.add_argument( """--num_epochs""" ,type=lowerCAmelCase__ ,default=1 ,help="""Number of epochs to train for.""" ,) parser.add_argument( """--learning_rate""" ,type=lowerCAmelCase__ ,default=1E-4 ,help="""Learning rate to use for training.""" ,) parser.add_argument( """--weight_decay_rate""" ,type=lowerCAmelCase__ ,default=1E-3 ,help="""Weight decay rate to use for training.""" ,) parser.add_argument( """--max_length""" ,type=lowerCAmelCase__ ,default=5_12 ,help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" ,) parser.add_argument( """--mlm_probability""" ,type=lowerCAmelCase__ ,default=0.15 ,help="""Fraction of tokens to mask during training.""" ,) parser.add_argument("""--output_dir""" ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" ,type=lowerCAmelCase__ ,help="""Model ID to upload to on the Hugging Face Hub.""" ) _UpperCAmelCase = parser.parse_args() return args def __UpperCAmelCase ( lowercase ): """simple docstring""" try: if args.tpu_name: _UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name ,zone=args.tpu_zone ,project=args.gcp_project ) else: _UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = 0 for file in file_list: _UpperCAmelCase = file.split("""/""" )[-1] _UpperCAmelCase = re.search(R"""-\d+-(\d+)\.tfrecord""" ,lowerCAmelCase__ ).group(1 ) _UpperCAmelCase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase=None ): """simple docstring""" _UpperCAmelCase = count_samples(lowerCAmelCase__ ) _UpperCAmelCase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: _UpperCAmelCase = dataset.shuffle(len(lowerCAmelCase__ ) ) _UpperCAmelCase = tf.data.TFRecordDataset(lowerCAmelCase__ ,num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _UpperCAmelCase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) _UpperCAmelCase = dataset.map(lowerCAmelCase__ ,num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None _UpperCAmelCase = dataset.shuffle(args.shuffle_buffer_size ) _UpperCAmelCase = dataset.batch(lowerCAmelCase__ ,drop_remainder=lowerCAmelCase__ ) _UpperCAmelCase = dataset.map(lowerCAmelCase__ ,num_parallel_calls=lowerCAmelCase__ ) _UpperCAmelCase = dataset.prefetch(lowerCAmelCase__ ) return dataset def __UpperCAmelCase ( lowercase ): """simple docstring""" if not args.no_tpu: _UpperCAmelCase = initialize_tpu(lowerCAmelCase__ ) _UpperCAmelCase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: _UpperCAmelCase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer ) _UpperCAmelCase = AutoConfig.from_pretrained(args.pretrained_model_config ) _UpperCAmelCase = tokenizer.vocab_size _UpperCAmelCase = tf.io.gfile.glob(os.path.join(args.train_dataset ,"""*.tfrecord""" ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) _UpperCAmelCase = tf.io.gfile.glob(os.path.join(args.eval_dataset ,"""*.tfrecord""" ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) _UpperCAmelCase = count_samples(lowerCAmelCase__ ) _UpperCAmelCase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _UpperCAmelCase = steps_per_epoch * args.num_epochs with strategy.scope(): _UpperCAmelCase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _UpperCAmelCase , _UpperCAmelCase = create_optimizer( num_train_steps=lowerCAmelCase__ ,num_warmup_steps=total_train_steps // 20 ,init_lr=args.learning_rate ,weight_decay_rate=args.weight_decay_rate ,) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ ,metrics=["""accuracy"""] ) def decode_fn(lowercase ): _UpperCAmelCase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa ,shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa ,shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ ,lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _UpperCAmelCase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ ,mlm_probability=args.mlm_probability ,mlm=lowerCAmelCase__ ,return_tensors="""tf""" ) def mask_with_collator(lowercase ): # TF really needs an isin() function _UpperCAmelCase = ( ~tf.cast(batch["""attention_mask"""] ,tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) _UpperCAmelCase , _UpperCAmelCase = data_collator.tf_mask_tokens( batch["""input_ids"""] ,vocab_size=len(lowerCAmelCase__ ) ,mask_token_id=tokenizer.mask_token_id ,special_tokens_mask=lowerCAmelCase__ ,) return batch _UpperCAmelCase = args.per_replica_batch_size * strategy.num_replicas_in_sync _UpperCAmelCase = prepare_dataset( lowerCAmelCase__ ,decode_fn=lowerCAmelCase__ ,mask_fn=lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,shuffle=lowerCAmelCase__ ,shuffle_buffer_size=args.shuffle_buffer_size ,) _UpperCAmelCase = prepare_dataset( lowerCAmelCase__ ,decode_fn=lowerCAmelCase__ ,mask_fn=lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,shuffle=lowerCAmelCase__ ,) _UpperCAmelCase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir ,hub_model_id=args.hub_model_id ,tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ ,validation_data=lowerCAmelCase__ ,epochs=args.num_epochs ,callbacks=lowerCAmelCase__ ,) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCAmelCase__ = parse_args() main(args)
359
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class a ( nn.Module ): _snake_case : Optional[Any] = 42 _snake_case : Optional[int] = jnp.floataa def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , __lowerCAmelCase : List[str] ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_states.shape _UpperCAmelCase = jax.image.resize( _snake_case , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) _UpperCAmelCase = self.conv(_snake_case ) return hidden_states class a ( nn.Module ): _snake_case : Optional[int] = 42 _snake_case : List[Any] = jnp.floataa def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , __lowerCAmelCase : Any ): _UpperCAmelCase = self.conv(_snake_case ) return hidden_states class a ( nn.Module ): _snake_case : Dict = 42 _snake_case : List[Any] = None _snake_case : Any = 0.0 _snake_case : Optional[int] = None _snake_case : Optional[Any] = jnp.floataa def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.in_channels if self.out_channels is None else self.out_channels _UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCAmelCase = nn.Conv( _snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = nn.Dense(_snake_case , dtype=self.dtype ) _UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCAmelCase = nn.Dropout(self.dropout_prob ) _UpperCAmelCase = nn.Conv( _snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _UpperCAmelCase = None if use_nin_shortcut: _UpperCAmelCase = nn.Conv( _snake_case , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Any=True ): _UpperCAmelCase = hidden_states _UpperCAmelCase = self.norma(_snake_case ) _UpperCAmelCase = nn.swish(_snake_case ) _UpperCAmelCase = self.conva(_snake_case ) _UpperCAmelCase = self.time_emb_proj(nn.swish(_snake_case ) ) _UpperCAmelCase = jnp.expand_dims(jnp.expand_dims(_snake_case , 1 ) , 1 ) _UpperCAmelCase = hidden_states + temb _UpperCAmelCase = self.norma(_snake_case ) _UpperCAmelCase = nn.swish(_snake_case ) _UpperCAmelCase = self.dropout(_snake_case , _snake_case ) _UpperCAmelCase = self.conva(_snake_case ) if self.conv_shortcut is not None: _UpperCAmelCase = self.conv_shortcut(_snake_case ) return hidden_states + residual
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): _UpperCAmelCase = key.replace("""module.encoder""" ,"""glpn.encoder""" ) if key.startswith("""module.decoder""" ): _UpperCAmelCase = key.replace("""module.decoder""" ,"""decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] _UpperCAmelCase = key.replace(f'''patch_embed{idx}''' ,f'''patch_embeddings.{int(UpperCamelCase__ )-1}''' ) if "norm" in key: _UpperCAmelCase = key.replace("""norm""" ,"""layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] _UpperCAmelCase = key.replace(f'''layer_norm{idx}''' ,f'''layer_norm.{int(UpperCamelCase__ )-1}''' ) if "layer_norm1" in key: _UpperCAmelCase = key.replace("""layer_norm1""" ,"""layer_norm_1""" ) if "layer_norm2" in key: _UpperCAmelCase = key.replace("""layer_norm2""" ,"""layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase = key[key.find("""block""" ) + len("""block""" )] _UpperCAmelCase = key.replace(f'''block{idx}''' ,f'''block.{int(UpperCamelCase__ )-1}''' ) if "attn.q" in key: _UpperCAmelCase = key.replace("""attn.q""" ,"""attention.self.query""" ) if "attn.proj" in key: _UpperCAmelCase = key.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in key: _UpperCAmelCase = key.replace("""attn""" ,"""attention.self""" ) if "fc1" in key: _UpperCAmelCase = key.replace("""fc1""" ,"""dense1""" ) if "fc2" in key: _UpperCAmelCase = key.replace("""fc2""" ,"""dense2""" ) if "linear_pred" in key: _UpperCAmelCase = key.replace("""linear_pred""" ,"""classifier""" ) if "linear_fuse" in key: _UpperCAmelCase = key.replace("""linear_fuse.conv""" ,"""linear_fuse""" ) _UpperCAmelCase = key.replace("""linear_fuse.bn""" ,"""batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] _UpperCAmelCase = key.replace(f'''linear_c{idx}''' ,f'''linear_c.{int(UpperCamelCase__ )-1}''' ) if "bot_conv" in key: _UpperCAmelCase = key.replace("""bot_conv""" ,"""0.convolution""" ) if "skip_conv1" in key: _UpperCAmelCase = key.replace("""skip_conv1""" ,"""1.convolution""" ) if "skip_conv2" in key: _UpperCAmelCase = key.replace("""skip_conv2""" ,"""2.convolution""" ) if "fusion1" in key: _UpperCAmelCase = key.replace("""fusion1""" ,"""1.fusion""" ) if "fusion2" in key: _UpperCAmelCase = key.replace("""fusion2""" ,"""2.fusion""" ) if "fusion3" in key: _UpperCAmelCase = key.replace("""fusion3""" ,"""3.fusion""" ) if "fusion" in key and "conv" in key: _UpperCAmelCase = key.replace("""conv""" ,"""convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): _UpperCAmelCase = key.replace("""module.last_layer_depth""" ,"""head.head""" ) _UpperCAmelCase = value return new_state_dict def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ ,stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ,lowercase=None ): """simple docstring""" _UpperCAmelCase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] ,decoder_hidden_size=64 ,depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase = GLPNImageProcessor() # prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCamelCase__ ,return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict _UpperCAmelCase = torch.load(UpperCamelCase__ ,map_location=torch.device("""cpu""" ) ) # rename keys _UpperCAmelCase = rename_keys(UpperCamelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCamelCase__ ,UpperCamelCase__ ) # create HuggingFace model and load state dict _UpperCAmelCase = GLPNForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # forward pass _UpperCAmelCase = model(UpperCamelCase__ ) _UpperCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) _UpperCAmelCase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] ,UpperCamelCase__ ,atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ ,UpperCamelCase__ ) ,organization="""nielsr""" ,commit_message="""Add model""" ,use_temp_dir=UpperCamelCase__ ,) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ ,UpperCamelCase__ ) ,organization="""nielsr""" ,commit_message="""Add image processor""" ,use_temp_dir=UpperCamelCase__ ,) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) UpperCAmelCase__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
362
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( SCREAMING_SNAKE_CASE__ ): _snake_case : Optional[Any] = 'vision-encoder-decoder' _snake_case : Optional[Any] = True def __init__( self : str , **__lowerCAmelCase : Optional[int] ): super().__init__(**_SCREAMING_SNAKE_CASE ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : int ): return 1e-4 @property def lowerCAmelCase_ ( self : Optional[int] ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( SCREAMING_SNAKE_CASE__ ): @property def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} _UpperCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} _UpperCAmelCase = {0: "batch", 1: "encoder_sequence"} return common_inputs def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = False , __lowerCAmelCase : Optional[Any] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = dummy_input["input_ids"].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(_SCREAMING_SNAKE_CASE ) return common_inputs class a ( SCREAMING_SNAKE_CASE__ ): @property def lowerCAmelCase_ ( self : List[Any] ): pass def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] ): return VisionEncoderDecoderEncoderOnnxConfig(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
363
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
0
"""simple docstring""" from copy import deepcopy class a : def __init__( self : Tuple , __lowerCAmelCase : list[int] | None = None , __lowerCAmelCase : int | None = None ): if arr is None and size is not None: _UpperCAmelCase = size _UpperCAmelCase = [0] * size elif arr is not None: self.init(UpperCAmelCase_ ) else: raise ValueError("""Either arr or size must be specified""" ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : list[int] ): _UpperCAmelCase = len(UpperCAmelCase_ ) _UpperCAmelCase = deepcopy(UpperCAmelCase_ ) for i in range(1 , self.size ): _UpperCAmelCase = self.next_(UpperCAmelCase_ ) if j < self.size: self.tree[j] += self.tree[i] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _UpperCAmelCase = self.next_(UpperCAmelCase_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowerCAmelCase_ ( __lowerCAmelCase : int ): return index + (index & (-index)) @staticmethod def lowerCAmelCase_ ( __lowerCAmelCase : int ): return index - (index & (-index)) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _UpperCAmelCase = self.next_(UpperCAmelCase_ ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): self.add(UpperCAmelCase_ , value - self.get(UpperCAmelCase_ ) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : int ): if right == 0: return 0 _UpperCAmelCase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _UpperCAmelCase = self.prev(UpperCAmelCase_ ) return result def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): return self.prefix(UpperCAmelCase_ ) - self.prefix(UpperCAmelCase_ ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : int ): return self.query(UpperCAmelCase_ , index + 1 ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : int ): value -= self.tree[0] if value < 0: return -1 _UpperCAmelCase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _UpperCAmelCase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
0
"""simple docstring""" from sklearn.metrics import recall_score import datasets UpperCAmelCase__ = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' UpperCAmelCase__ = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' UpperCAmelCase__ = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Tuple="binary" , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : int="warn" , ): _UpperCAmelCase = recall_score( __lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase , zero_division=__lowerCamelCase , ) return {"recall": float(__lowerCamelCase ) if score.size == 1 else score}
366
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCAmelCase__ = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } UpperCAmelCase__ = {"""facebook/blenderbot-3B""": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ( list(range(ord("""!""" ) ,ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) ,ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) ,ord("""ÿ""" ) + 1 ) ) ) _UpperCAmelCase = bs[:] _UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCamelCase ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase = [chr(__lowerCamelCase ) for n in cs] return dict(zip(__lowerCamelCase ,__lowerCamelCase ) ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs class a ( A_ ): _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : str="replace" , __lowerCAmelCase : Optional[int]="<s>" , __lowerCAmelCase : str="</s>" , __lowerCAmelCase : Any="</s>" , __lowerCAmelCase : int="<s>" , __lowerCAmelCase : List[Any]="<unk>" , __lowerCAmelCase : Any="<pad>" , __lowerCAmelCase : List[str]="<mask>" , __lowerCAmelCase : int=False , **__lowerCAmelCase : Union[str, Any] , ): _UpperCAmelCase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token _UpperCAmelCase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token _UpperCAmelCase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token _UpperCAmelCase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token _UpperCAmelCase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token _UpperCAmelCase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding="""utf-8""" ) as vocab_handle: _UpperCAmelCase = json.load(_lowerCamelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = errors # how to handle errors in decoding _UpperCAmelCase = bytes_to_unicode() _UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase , encoding="""utf-8""" ) as merges_handle: _UpperCAmelCase = merges_handle.read().split("""\n""" )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) _UpperCAmelCase = {} _UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase = re.compile(R"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase_ ( self : List[str] ): return len(self.encoder ) def lowerCAmelCase_ ( self : Optional[int] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : int ): if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(_lowerCamelCase ) _UpperCAmelCase = get_pairs(_lowerCamelCase ) if not pairs: return token while True: _UpperCAmelCase = min(_lowerCamelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(_lowerCamelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(_lowerCamelCase ): try: _UpperCAmelCase = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(_lowerCamelCase ) _UpperCAmelCase = new_word if len(_lowerCamelCase ) == 1: break else: _UpperCAmelCase = get_pairs(_lowerCamelCase ) _UpperCAmelCase = """ """.join(_lowerCamelCase ) _UpperCAmelCase = word return word def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Dict ): _UpperCAmelCase = [] for token in re.findall(self.pat , _lowerCamelCase ): _UpperCAmelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase ).split(""" """ ) ) return bpe_tokens def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Dict ): return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Any ): return self.decoder.get(_lowerCamelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] ): _UpperCAmelCase = """""".join(_lowerCamelCase ) _UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCAmelCase_ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + """\n""" ) _UpperCAmelCase = 0 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) _UpperCAmelCase = token_index writer.write(""" """.join(_lowerCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=False , **__lowerCAmelCase : Tuple ): _UpperCAmelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase ) > 0 and not text[0].isspace()): _UpperCAmelCase = """ """ + text return (text, kwargs) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "Conversation" ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(_lowerCamelCase ) _UpperCAmelCase = """ """.join(_lowerCamelCase ) _UpperCAmelCase = self.encode(_lowerCamelCase ) if len(_lowerCamelCase ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
367
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class a ( lowerCAmelCase_ ): def __init__( self : int , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : List[Any] ): super().__init__(*_a , **_a ) _UpperCAmelCase = {} def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Any , *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Tuple ): _UpperCAmelCase = super().add_tokens(_a , *_a , **_a ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' """ `placeholder_token` that is not already in the tokenizer.""" ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Optional[int] , *__lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any]=1 , **__lowerCAmelCase : List[str] ): _UpperCAmelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(_a , *_a , **_a ) output.append(_a ) else: _UpperCAmelCase = [] for i in range(_a ): _UpperCAmelCase = placeholder_token + f'''_{i}''' self.try_adding_tokens(_a , *_a , **_a ) output.append(_a ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) _UpperCAmelCase = output def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any=False , __lowerCAmelCase : Union[str, Any]=1.0 ): if isinstance(_a , _a ): _UpperCAmelCase = [] for i in range(len(_a ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_a ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCAmelCase = self.token_map[placeholder_token] _UpperCAmelCase = tokens[: 1 + int(len(_a ) * prop_tokens_to_load )] if vector_shuffle: _UpperCAmelCase = copy.copy(_a ) random.shuffle(_a ) _UpperCAmelCase = text.replace(_a , """ """.join(_a ) ) return text def __call__( self : int , __lowerCAmelCase : Tuple , *__lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : str=1.0 , **__lowerCAmelCase : int ): return super().__call__( self.replace_placeholder_tokens_in_text( _a , vector_shuffle=_a , prop_tokens_to_load=_a ) , *_a , **_a , ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Optional[Any] , *__lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[Any]=1.0 , **__lowerCAmelCase : Dict ): return super().encode( self.replace_placeholder_tokens_in_text( _a , vector_shuffle=_a , prop_tokens_to_load=_a ) , *_a , **_a , )
368
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase__ = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase__ = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = len([g for position, g in enumerate(lowercase ) if g == main_target[position]] ) return (item, float(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = random.randint(0 ,len(lowercase ) - 1 ) _UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] _UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = list(lowercase ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCAmelCase = random.choice(lowercase ) return "".join(lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,): """simple docstring""" _UpperCAmelCase = [] # Generate more children proportionally to the fitness score. _UpperCAmelCase = int(parent_a[1] * 1_00 ) + 1 _UpperCAmelCase = 10 if child_n >= 10 else child_n for _ in range(lowercase ): _UpperCAmelCase = population_score[random.randint(0 ,lowercase )][0] _UpperCAmelCase = crossover(parent_a[0] ,lowercase ) # Append new string to the population list. pop.append(mutate(lowercase ,lowercase ) ) pop.append(mutate(lowercase ,lowercase ) ) return pop def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = True ): """simple docstring""" # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _UpperCAmelCase = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCAmelCase = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase ) # Generate random starting population. _UpperCAmelCase = [] for _ in range(lowercase ): population.append("""""".join([random.choice(lowercase ) for i in range(len(lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCAmelCase = [evaluate(lowercase ,lowercase ) for item in population] # Check if there is a matching evolution. _UpperCAmelCase = sorted(lowercase ,key=lambda lowercase : x[1] ,reverse=lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase ) # Normalize population score to be between 0 and 1. _UpperCAmelCase = [ (item, score / len(lowercase )) for item, score in population_score ] # This is selection for i in range(lowercase ): population.extend(select(population_score[int(lowercase )] ,lowercase ,lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase__ = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) UpperCAmelCase__ = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
"""simple docstring""" from __future__ import annotations from random import choice def __UpperCAmelCase ( lowercase ): """simple docstring""" return choice(_lowerCAmelCase ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = random_pivot(_lowerCAmelCase ) # partition based on pivot # linear time _UpperCAmelCase = [e for e in lst if e < pivot] _UpperCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowerCAmelCase ) < k - 1: return kth_number(_lowerCAmelCase ,k - len(_lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowerCAmelCase ,_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
0
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase__ = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") UpperCAmelCase__ = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) UpperCAmelCase__ = """|""".join(sys.argv[1:]) UpperCAmelCase__ = re.compile(rF'''^({joined_dirs}).*?\.py$''') UpperCAmelCase__ = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
371
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
0
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'file.csv' _UpperCAmelCase = textwrap.dedent( """\\n header1,header2\n 1,2\n 10,20\n """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'malformed_file.csv' _UpperCAmelCase = textwrap.dedent( """\\n header1,header2\n 1,2\n 10,20,\n """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'csv_with_image.csv' _UpperCAmelCase = textwrap.dedent( f'''\ image {image_file} ''' ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'csv_with_label.csv' _UpperCAmelCase = textwrap.dedent( """\\n label\n good\n bad\n good\n """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path / 'csv_with_int_list.csv' _UpperCAmelCase = textwrap.dedent( """\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n """ ) with open(_UpperCAmelCase ,"""w""" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = Csv() _UpperCAmelCase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_UpperCAmelCase ,match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(_UpperCAmelCase ) in record.message for record in caplog.records ) @require_pil def __UpperCAmelCase ( lowercase ): """simple docstring""" with open(_UpperCAmelCase ,encoding="""utf-8""" ) as f: _UpperCAmelCase = f.read().splitlines()[1] _UpperCAmelCase = Csv(encoding="""utf-8""" ,features=Features({"""image""": Image()} ) ) _UpperCAmelCase = csv._generate_tables([[csv_file_with_image]] ) _UpperCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() _UpperCAmelCase = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def __UpperCAmelCase ( lowercase ): """simple docstring""" with open(_UpperCAmelCase ,encoding="""utf-8""" ) as f: _UpperCAmelCase = f.read().splitlines()[1:] _UpperCAmelCase = Csv(encoding="""utf-8""" ,features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) _UpperCAmelCase = csv._generate_tables([[csv_file_with_label]] ) _UpperCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() _UpperCAmelCase = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(_UpperCAmelCase ) for label in labels] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = Csv(encoding="""utf-8""" ,sep=""",""" ,converters={"""int_list""": lambda lowercase : [int(_UpperCAmelCase ) for i in x.split()]} ) _UpperCAmelCase = csv._generate_tables([[csv_file_with_int_list]] ) _UpperCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) _UpperCAmelCase = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCAmelCase__ = logging.get_logger(__name__) @dataclass class a ( lowerCAmelCase_ ): _snake_case : Optional[Any] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : Any , **__lowerCAmelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _UpperCAmelCase = deprecated_arg[3:] _UpperCAmelCase = not kwargs.pop(__SCREAMING_SNAKE_CASE ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) _UpperCAmelCase = kwargs.pop("""tpu_name""" , self.tpu_name ) _UpperCAmelCase = kwargs.pop("""device_idx""" , self.device_idx ) _UpperCAmelCase = kwargs.pop("""eager_mode""" , self.eager_mode ) _UpperCAmelCase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**__SCREAMING_SNAKE_CASE ) _snake_case : str = field( default=lowerCAmelCase_ , metadata={'help': 'Name of TPU'} , ) _snake_case : int = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) _snake_case : bool = field(default=lowerCAmelCase_ , metadata={'help': 'Benchmark models in eager model.'} ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def lowerCAmelCase_ ( self : str ): requires_backends(self , ["""tf"""] ) _UpperCAmelCase = None if self.tpu: try: if self.tpu_name: _UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _UpperCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _UpperCAmelCase = None return tpu @cached_property def lowerCAmelCase_ ( self : Any ): requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _UpperCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) _UpperCAmelCase = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU _UpperCAmelCase = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCAmelCase_ ( self : int ): requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def lowerCAmelCase_ ( self : str ): requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def lowerCAmelCase_ ( self : Any ): requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def lowerCAmelCase_ ( self : Optional[Any] ): requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCAmelCase_ ( self : Union[str, Any] ): return self.n_gpu > 0
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
0
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase__ = """\ """ UpperCAmelCase__ = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ UpperCAmelCase__ = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] = 16 , __lowerCAmelCase : List[Any] = True , __lowerCAmelCase : str=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCAmelCase = """cuda""" else: _UpperCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = model.to(__lowerCAmelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained(__lowerCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__lowerCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCAmelCase = model.config.max_length - 1 else: _UpperCAmelCase = model.config.max_length _UpperCAmelCase = tokenizer( __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors="""pt""" , return_attention_mask=__lowerCAmelCase , ).to(__lowerCAmelCase ) _UpperCAmelCase = encodings["""input_ids"""] _UpperCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCAmelCase = [] _UpperCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) ): _UpperCAmelCase = min(start_index + batch_size , len(__lowerCAmelCase ) ) _UpperCAmelCase = encoded_texts[start_index:end_index] _UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__lowerCAmelCase ) _UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__lowerCAmelCase ), attn_mask] , dim=1 ) _UpperCAmelCase = encoded_batch with torch.no_grad(): _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ).logits _UpperCAmelCase = out_logits[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = attn_mask[..., 1:].contiguous() _UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __lowerCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__lowerCAmelCase )}
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCAmelCase__ = """base_with_context""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=_lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCAmelCase = weights[f'''layers_{lyr_num}'''] _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = ly_weight["""attention"""] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=_lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCAmelCase = weights[f'''layers_{lyr_num}'''] _UpperCAmelCase = ly_weight["""attention"""] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) ,requires_grad=_lowerCAmelCase ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _UpperCAmelCase = weights[f'''layers_{lyr_num}'''] _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _UpperCAmelCase = ly_weight["""self_attention"""] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _UpperCAmelCase = ly_weight["""MultiHeadDotProductAttention_0"""] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _UpperCAmelCase = jnp.tree_util.tree_map(onp.array ,_lowerCAmelCase ) _UpperCAmelCase = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] _UpperCAmelCase = os.path.join(args.checkpoint_path ,"""..""" ,"""config.gin""" ) _UpperCAmelCase = inference.parse_training_gin_file(_lowerCAmelCase ,_lowerCAmelCase ) _UpperCAmelCase = inference.InferenceModel(args.checkpoint_path ,_lowerCAmelCase ) _UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ,variance_type="""fixed_large""" ) _UpperCAmelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="""gated-gelu""" ,) _UpperCAmelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length["""targets_context"""] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="""gated-gelu""" ,) _UpperCAmelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length["""targets_context"""] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,) _UpperCAmelCase = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] ,_lowerCAmelCase ) _UpperCAmelCase = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] ,_lowerCAmelCase ) _UpperCAmelCase = load_decoder(ta_checkpoint["""target"""]["""decoder"""] ,_lowerCAmelCase ) _UpperCAmelCase = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _UpperCAmelCase = SpectrogramDiffusionPipeline( notes_encoder=_lowerCAmelCase ,continuous_encoder=_lowerCAmelCase ,decoder=_lowerCAmelCase ,scheduler=_lowerCAmelCase ,melgan=_lowerCAmelCase ,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) UpperCAmelCase__ = parser.parse_args() main(args)
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
"""simple docstring""" from collections.abc import Callable def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = a _UpperCAmelCase = b if function(lowercase ) == 0: # one of the a or b is a root for the function return a elif function(lowercase ) == 0: return b elif ( function(lowercase ) * function(lowercase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: _UpperCAmelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowercase ) == 0: return mid elif function(lowercase ) * function(lowercase ) < 0: _UpperCAmelCase = mid else: _UpperCAmelCase = mid _UpperCAmelCase = start + (end - start) / 2.0 return mid def __UpperCAmelCase ( lowercase ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
355
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a ( __lowerCAmelCase , unittest.TestCase ): _snake_case : Tuple = PhobertTokenizer _snake_case : List[Any] = False def lowerCAmelCase_ ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] _UpperCAmelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''l à</w>'''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase__ ) ) def lowerCAmelCase_ ( self : str , **__lowerCAmelCase : Optional[Any] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = '''Tôi là VinAI Research''' _UpperCAmelCase = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''Tôi là VinAI Research''' _UpperCAmelCase = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() _UpperCAmelCase = tokenizer.tokenize(lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ )
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(A__ ,A__ ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(A__ ,A__ ,bias=A__ ) _UpperCAmelCase = emb.weight.data return lin_layer def __UpperCAmelCase ( lowercase ,lowercase=None ): """simple docstring""" _UpperCAmelCase = {} for old_key in state_dict.keys(): _UpperCAmelCase = old_key if "moe_layer.experts." in key: if expert_idx is not None: _UpperCAmelCase = key.replace("""moe_layer.experts.0""" ,f'''ffn.experts.expert_{expert_idx}''' ) else: _UpperCAmelCase = key.replace("""moe_layer.experts.""" ,"""ffn.experts.expert_""" ) if "gate" in key: _UpperCAmelCase = key.replace(""".moe_layer.gate.wg""" ,""".ffn.router.classifier""" ) if "fc2" and "experts" not in key: _UpperCAmelCase = key.replace(""".fc2.""" ,""".ffn.fc2.""" ) if "fc1" and "experts" not in key: _UpperCAmelCase = key.replace(""".fc1.""" ,""".ffn.fc1.""" ) if ".encoder_attn." in key: _UpperCAmelCase = key.replace(""".encoder_attn.""" ,""".cross_attention.""" ) if "encoder_attn_layer_norm" in key: _UpperCAmelCase = key.replace("""encoder_attn_layer_norm""" ,"""cross_attention_layer_norm""" ) if "final_layer_norm" in key: _UpperCAmelCase = key.replace("""final_layer_norm""" ,"""ff_layer_norm""" ) _UpperCAmelCase = state_dict[old_key] return new_dict def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase = WEIGHTS_NAME ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = 0 os.makedirs(A__ ,exist_ok=A__ ) for expert in range(A__ ): _UpperCAmelCase = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(A__ ): _UpperCAmelCase = torch.load(A__ )["""model"""] remove_ignore_keys_(A__ ) _UpperCAmelCase = rename_fairseq_keys(A__ ,A__ ) _UpperCAmelCase = os.path.join( A__ ,weights_name.replace(""".bin""" ,f'''-{len(A__ )+1:05d}-of-???.bin''' ) ) torch.save(A__ ,A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block _UpperCAmelCase = os.path.join(A__ ,weights_name.replace(""".bin""" ,f'''-{len(A__ )+1:05d}-of-???.bin''' ) ) _UpperCAmelCase = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(A__ ) _UpperCAmelCase = rename_fairseq_keys(A__ ,A__ ) _UpperCAmelCase = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: _UpperCAmelCase = os.path.join(A__ ,A__ ) torch.save(A__ ,A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ ,A__ ) # Otherwise, let's build the index _UpperCAmelCase = {} for idx, shard in enumerate(A__ ): _UpperCAmelCase = weights_name.replace(""".bin""" ,f'''-{idx+1:05d}-of-{len(A__ ):05d}.bin''' ) _UpperCAmelCase = os.path.join(A__ ,weights_name.replace(""".bin""" ,f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(A__ ,os.path.join(A__ ,A__ ) ) for key in shard: _UpperCAmelCase = shard_file # Add the metadata _UpperCAmelCase = {"""total_size""": total_size} _UpperCAmelCase = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(A__ ,A__ ) ,"""w""" ,encoding="""utf-8""" ) as f: _UpperCAmelCase = json.dumps(A__ ,indent=2 ,sort_keys=A__ ) + """\n""" f.write(A__ ) return metadata, index if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ , UpperCAmelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) UpperCAmelCase__ = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCAmelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
357
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'layoutlmv3' def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple=5_0265 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=128 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=64 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class a ( lowerCAmelCase_ ): _snake_case : str = version.parse('1.12' ) @property def lowerCAmelCase_ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5 @property def lowerCAmelCase_ ( self : List[str] ): return 12 def lowerCAmelCase_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
30
0
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase__ = 1.0_5457_1817E-34 # unit of ℏ : J * s UpperCAmelCase__ = 3E8 # unit of c : m * s^-1 def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: _UpperCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: _UpperCAmelCase = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _UpperCAmelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
0
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase__ = 6_3_7_8_1_3_7.0 UpperCAmelCase__ = 6_3_5_6_7_5_2.3_1_4_2_4_5 UpperCAmelCase__ = 6_3_7_8_1_3_7 def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase = atan((1 - flattening) * tan(radians(a__ ) ) ) _UpperCAmelCase = atan((1 - flattening) * tan(radians(a__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase = haversine_distance(a__ ,a__ ,a__ ,a__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase = (b_lata + b_lata) / 2 _UpperCAmelCase = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase = (sin(a__ ) ** 2) * (cos(a__ ) ** 2) _UpperCAmelCase = cos(sigma / 2 ) ** 2 _UpperCAmelCase = (sigma - sin(a__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase = (cos(a__ ) ** 2) * (sin(a__ ) ** 2) _UpperCAmelCase = sin(sigma / 2 ) ** 2 _UpperCAmelCase = (sigma + sin(a__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = namedtuple("""result""" ,"""name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" ,power / current ) elif current == 0: return result("""current""" ,power / voltage ) elif power == 0: return result("""power""" ,float(round(abs(voltage * current ) ,2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ): """simple docstring""" if isinstance(__lowerCAmelCase ,np.ndarray ): return list(tensor.shape ) _UpperCAmelCase = tf.shape(__lowerCAmelCase ) if tensor.shape == tf.TensorShape(__lowerCAmelCase ): return dynamic _UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCAmelCase )] def __UpperCAmelCase ( lowercase ,lowercase = None ,lowercase = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 ,axis=__lowerCAmelCase ,name=__lowerCAmelCase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase=1E-5 ,lowercase=-1 ): """simple docstring""" # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized _UpperCAmelCase = tf.nn.moments(__lowerCAmelCase ,axes=[axis] ,keepdims=__lowerCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _UpperCAmelCase = [1] * inputs.shape.rank _UpperCAmelCase = shape_list(__lowerCAmelCase )[axis] _UpperCAmelCase = tf.reshape(__lowerCAmelCase ,__lowerCAmelCase ) _UpperCAmelCase = tf.reshape(__lowerCAmelCase ,__lowerCAmelCase ) # Compute layer normalization using the batch_normalization # function. _UpperCAmelCase = tf.nn.batch_normalization( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,offset=__lowerCAmelCase ,scale=__lowerCAmelCase ,variance_epsilon=__lowerCAmelCase ,) return outputs def __UpperCAmelCase ( lowercase ,lowercase=0 ,lowercase=-1 ): """simple docstring""" # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _UpperCAmelCase = tf.shape(__lowerCAmelCase ) _UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] ,axis=0 ) return tf.reshape(__lowerCAmelCase ,__lowerCAmelCase ) def __UpperCAmelCase ( lowercase ): """simple docstring""" if not isinstance(__lowerCAmelCase ,tf.Tensor ): _UpperCAmelCase = tf.convert_to_tensor(__lowerCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _UpperCAmelCase = ( tf.cast(1 ,encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = "input_ids" ): """simple docstring""" tf.debugging.assert_less( __lowerCAmelCase ,tf.cast(__lowerCAmelCase ,dtype=tensor.dtype ) ,message=( f'''The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCAmelCase )}) must be smaller than the embedding ''' f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) ,) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _UpperCAmelCase = [x for x in data if len(__lowerCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' f'''bytes: {bad_attributes}''' ) _UpperCAmelCase = np.asarray(__lowerCAmelCase ) _UpperCAmelCase = 1 _UpperCAmelCase = np.array_split(__lowerCAmelCase ,__lowerCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _UpperCAmelCase = np.array_split(__lowerCAmelCase ,__lowerCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCAmelCase ): _UpperCAmelCase = chunk_data else: _UpperCAmelCase = data def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if name in group.attrs: _UpperCAmelCase = [n.decode("""utf8""" ) if hasattr(__lowerCAmelCase ,"""decode""" ) else n for n in group.attrs[name]] else: _UpperCAmelCase = [] _UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(__lowerCAmelCase ,"""decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __UpperCAmelCase ( lowercase ): """simple docstring""" def _expand_single_ad_tensor(lowercase ): if isinstance(__lowerCAmelCase ,tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCAmelCase ,axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor ,__lowerCAmelCase )
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCAmelCase__ = '<<<<<<< This should probably be modified because it mentions: ' UpperCAmelCase__ = '=======\n>>>>>>>\n' UpperCAmelCase__ = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] UpperCAmelCase__ = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def __UpperCAmelCase ( lowercase ): """simple docstring""" return ConvertCommand(args.tfds_path ,args.datasets_directory ) class a ( _A ): @staticmethod def lowerCAmelCase_ ( __lowerCAmelCase : ArgumentParser ): _UpperCAmelCase = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : str , *__lowerCAmelCase : List[Any] ): _UpperCAmelCase = get_logger("""datasets-cli/converting""" ) _UpperCAmelCase = tfds_path _UpperCAmelCase = datasets_directory def lowerCAmelCase_ ( self : str ): if os.path.isdir(self._tfds_path ): _UpperCAmelCase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _UpperCAmelCase = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) _UpperCAmelCase = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} if os.path.isdir(self._tfds_path ): _UpperCAmelCase = os.listdir(__SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) _UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not os.path.isfile(__SCREAMING_SNAKE_CASE ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [] _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = [] for line in lines: _UpperCAmelCase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _UpperCAmelCase = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here _UpperCAmelCase = """""" continue elif "from absl import logging" in out_line: _UpperCAmelCase = """from datasets import logging\n""" elif "getLogger" in out_line: _UpperCAmelCase = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _UpperCAmelCase = True _UpperCAmelCase = list(filter(lambda __lowerCAmelCase : e in out_line , __SCREAMING_SNAKE_CASE ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__SCREAMING_SNAKE_CASE ) + """\n""" ) out_lines.append(__SCREAMING_SNAKE_CASE ) out_lines.append(__SCREAMING_SNAKE_CASE ) continue else: for pattern, replacement in TO_CONVERT: _UpperCAmelCase = re.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _UpperCAmelCase = re.match(R"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , __SCREAMING_SNAKE_CASE ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) _UpperCAmelCase = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _UpperCAmelCase = True out_lines.append(__SCREAMING_SNAKE_CASE ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _UpperCAmelCase = f_name.replace(""".py""" , """""" ) _UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__SCREAMING_SNAKE_CASE ) if needs_manual_update: with_manual_update.append(__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: _UpperCAmelCase = os.path.basename(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
362
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class a ( __SCREAMING_SNAKE_CASE ): def __init__( self : Any , **__lowerCAmelCase : List[str] ): super().__init__(**_SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self : Dict , **__lowerCAmelCase : Optional[int] ): _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} # preprocess args if "points_per_batch" in kwargs: _UpperCAmelCase = kwargs["points_per_batch"] if "points_per_crop" in kwargs: _UpperCAmelCase = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: _UpperCAmelCase = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: _UpperCAmelCase = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: _UpperCAmelCase = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: _UpperCAmelCase = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: _UpperCAmelCase = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: _UpperCAmelCase = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: _UpperCAmelCase = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: _UpperCAmelCase = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: _UpperCAmelCase = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: _UpperCAmelCase = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : int , __lowerCAmelCase : int , *__lowerCAmelCase : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Any=None , **__lowerCAmelCase : str ): return super().__call__(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , num_workers=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict=64 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : float = 512 / 1500 , __lowerCAmelCase : Optional[int] = 32 , __lowerCAmelCase : Optional[int] = 1 , ): _UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processor.size["longest_edge"] _UpperCAmelCase = self.image_processor.generate_crop_boxes( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _UpperCAmelCase = self.get_inference_context() with inference_context(): _UpperCAmelCase = self._ensure_tensor_on_device(_SCREAMING_SNAKE_CASE , device=self.device ) _UpperCAmelCase = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _UpperCAmelCase = image_embeddings _UpperCAmelCase = grid_points.shape[1] _UpperCAmelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = grid_points[:, i : i + points_per_batch, :, :] _UpperCAmelCase = input_labels[:, i : i + points_per_batch] _UpperCAmelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int]=0.88 , __lowerCAmelCase : int=0.95 , __lowerCAmelCase : Tuple=0 , __lowerCAmelCase : List[str]=1 , ): _UpperCAmelCase = model_inputs.pop("""input_boxes""" ) _UpperCAmelCase = model_inputs.pop("""is_last""" ) _UpperCAmelCase = model_inputs.pop("""original_sizes""" ).tolist() _UpperCAmelCase = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _UpperCAmelCase = self.model(**_SCREAMING_SNAKE_CASE ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _UpperCAmelCase = model_outputs["pred_masks"] _UpperCAmelCase = self.image_processor.post_process_masks( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , binarize=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model_outputs["iou_scores"] _UpperCAmelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Union[str, Any]=0.7 , ): _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _UpperCAmelCase = torch.cat(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.cat(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processor.post_process_for_mask_generation( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = defaultdict(_SCREAMING_SNAKE_CASE ) for output in model_outputs: for k, v in output.items(): extra[k].append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {} if output_rle_mask: _UpperCAmelCase = rle_mask if output_bboxes_mask: _UpperCAmelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
363
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a ( __snake_case ): _snake_case : int = ["image_processor", "tokenizer"] _snake_case : int = "AutoImageProcessor" _snake_case : Optional[Any] = "AutoTokenizer" def __init__( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ): super().__init__(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = self.image_processor def __call__( self : Tuple , __lowerCAmelCase : Any=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : str=None , **__lowerCAmelCase : Union[str, Any] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _UpperCAmelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: _UpperCAmelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def lowerCAmelCase_ ( self : int , *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : int ): return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase_ ( self : Tuple , *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Optional[Any] ): return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCAmelCase_ ( self : Optional[Any] ): return ["input_ids", "attention_mask", "pixel_values"]
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase=True ,lowercase="pt" ): """simple docstring""" _UpperCAmelCase = {"""add_prefix_space""": True} if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and not line.startswith(""" """ ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] ,max_length=SCREAMING_SNAKE_CASE_ ,padding="""max_length""" if pad_to_max_length else None ,truncation=SCREAMING_SNAKE_CASE_ ,return_tensors=SCREAMING_SNAKE_CASE_ ,add_special_tokens=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=None ,): """simple docstring""" _UpperCAmelCase = input_ids.ne(SCREAMING_SNAKE_CASE_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a ( lowerCAmelCase_ ): def __init__( self : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int]="train" , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Any="" , ): super().__init__() _UpperCAmelCase = Path(_lowercase ).joinpath(type_path + """.source""" ) _UpperCAmelCase = Path(_lowercase ).joinpath(type_path + """.target""" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Dict ): return len(self.src_lens ) def __getitem__( self : List[Any] , __lowerCAmelCase : Dict ): _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , _lowercase ).rstrip("""\n""" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , _lowercase ).rstrip("""\n""" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowercase ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , _lowercase ) else self.tokenizer _UpperCAmelCase = encode_line(_lowercase , _lowercase , self.max_source_length , """right""" ) _UpperCAmelCase = encode_line(_lowercase , _lowercase , self.max_target_length , """right""" ) _UpperCAmelCase = source_inputs["""input_ids"""].squeeze() _UpperCAmelCase = target_inputs["""input_ids"""].squeeze() _UpperCAmelCase = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase_ ( __lowerCAmelCase : Union[str, Any] ): return [len(_lowercase ) for x in Path(_lowercase ).open().readlines()] def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : str ): _UpperCAmelCase = torch.stack([x["""input_ids"""] for x in batch] ) _UpperCAmelCase = torch.stack([x["""attention_mask"""] for x in batch] ) _UpperCAmelCase = torch.stack([x["""decoder_input_ids"""] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(_lowercase , _lowercase ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(_lowercase , _lowercase , attention_mask=_lowercase ) _UpperCAmelCase = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch UpperCAmelCase__ = getLogger(__name__) def __UpperCAmelCase ( lowercase ): """simple docstring""" return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = get_git_info() save_json(SCREAMING_SNAKE_CASE_ ,os.path.join(SCREAMING_SNAKE_CASE_ ,"""git_log.json""" ) ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=4 ,**lowercase ): """simple docstring""" with open(SCREAMING_SNAKE_CASE_ ,"""w""" ) as f: json.dump(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,indent=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( lowercase ): """simple docstring""" with open(SCREAMING_SNAKE_CASE_ ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = { """repo_id""": str(SCREAMING_SNAKE_CASE_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return list(map(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" with open(SCREAMING_SNAKE_CASE_ ,"""wb""" ) as f: return pickle.dump(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( lowercase ): """simple docstring""" def remove_articles(lowercase ): return re.sub(R"""\b(a|an|the)\b""" ,""" """ ,SCREAMING_SNAKE_CASE_ ) def white_space_fix(lowercase ): return " ".join(text.split() ) def remove_punc(lowercase ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE_ ) ) ) ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = normalize_answer(SCREAMING_SNAKE_CASE_ ).split() _UpperCAmelCase = normalize_answer(SCREAMING_SNAKE_CASE_ ).split() _UpperCAmelCase = Counter(SCREAMING_SNAKE_CASE_ ) & Counter(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return normalize_answer(SCREAMING_SNAKE_CASE_ ) == normalize_answer(SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): em += exact_match_score(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: em /= len(SCREAMING_SNAKE_CASE_ ) return {"em": em} def __UpperCAmelCase ( lowercase ): """simple docstring""" return model_prefix.startswith("""rag""" ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = """dropout_rate""" for p in extra_params: if getattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): if not hasattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and not hasattr(SCREAMING_SNAKE_CASE_ ,equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) continue _UpperCAmelCase = p if hasattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,getattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return hparams, config
365
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig UpperCAmelCase__ = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class a ( lowerCamelCase_ ): _snake_case : Any = """albert""" def __init__( self : List[str] , __lowerCAmelCase : Tuple=3_0000 , __lowerCAmelCase : Optional[int]=128 , __lowerCAmelCase : Dict=4096 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : Optional[Any]=64 , __lowerCAmelCase : List[Any]=1_6384 , __lowerCAmelCase : Tuple=1 , __lowerCAmelCase : Union[str, Any]="gelu_new" , __lowerCAmelCase : str=0 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : List[Any]=1e-1_2 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Dict="absolute" , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[Any]=3 , **__lowerCAmelCase : Any , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_hidden_groups _UpperCAmelCase = num_attention_heads _UpperCAmelCase = inner_group_num _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = position_embedding_type class a ( lowerCamelCase_ ): @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.task == "multiple-choice": _UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
366
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase__ = CLIPImageProcessor() UpperCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") UpperCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if not len(lowercase ) == len(lowercase ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients _UpperCAmelCase = equationa _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
367
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCAmelCase ( *lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = list(lowercase ) for i in range(len(lowercase ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowercase ,lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCAmelCase ( lowercase = None ,lowercase = 1_28 ): """simple docstring""" if function is None: return functools.partial(lowercase ,starting_batch_size=lowercase ) _UpperCAmelCase = starting_batch_size def decorator(*lowercase ,**lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): _UpperCAmelCase = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowercase ,*lowercase ,**lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
30
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( lowerCAmelCase_ ): _snake_case : int = 'megatron-bert' def __init__( self : Optional[Any] , __lowerCAmelCase : int=2_9056 , __lowerCAmelCase : Dict=1024 , __lowerCAmelCase : Union[str, Any]=24 , __lowerCAmelCase : List[str]=16 , __lowerCAmelCase : List[str]=4096 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : List[Any]=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Dict=1e-1_2 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : Dict="absolute" , __lowerCAmelCase : Union[str, Any]=True , **__lowerCAmelCase : Optional[int] , ): super().__init__(pad_token_id=lowercase_ , **lowercase_ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache
368
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = len(_lowerCamelCase ) _UpperCAmelCase = len(_lowerCamelCase ) _UpperCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _UpperCAmelCase = True for i in range(_lowerCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _UpperCAmelCase = True if a[i].islower(): _UpperCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class a ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Dict ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.values[key] def lowerCAmelCase_ ( self : List[Any] ): return ( sum(self.charge_factor - len(_SCREAMING_SNAKE_CASE ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_SCREAMING_SNAKE_CASE ) == 0 ): return key return super()._collision_resolution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
370
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple=7 , __lowerCAmelCase : str=3 , __lowerCAmelCase : Dict=18 , __lowerCAmelCase : Dict=30 , __lowerCAmelCase : Any=400 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Any=None , ): _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 20} _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size def lowerCAmelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class a ( a_ , unittest.TestCase ): _snake_case : str = MobileNetVaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = MobileNetVaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """crop_size""" ) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCAmelCase_ ( self : List[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
371
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int ): if self.optimizer is None: _UpperCAmelCase = ["""bias""", """LayerNorm.weight"""] _UpperCAmelCase = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {"""scale_parameter""": False, """relative_step""": False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: _UpperCAmelCase = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def lowerCAmelCase_ ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ): _UpperCAmelCase = inputs.pop("""labels""" ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : nn.Module , __lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCAmelCase : bool , __lowerCAmelCase : Optional[List[str]] = None , ): _UpperCAmelCase = self._prepare_inputs(__lowerCAmelCase ) _UpperCAmelCase = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) _UpperCAmelCase = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
30
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if digit_amount > 0: return round(number - int(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) return number - int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCAmelCase__ = False UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = 'ybelkada/fonts' def __UpperCAmelCase ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" requires_backends(UpperCamelCase__ ,["""torch"""] ) _check_torch_version() _UpperCAmelCase = image_tensor.unsqueeze(0 ) _UpperCAmelCase = torch.nn.functional.unfold(UpperCamelCase__ ,(patch_height, patch_width) ,stride=(patch_height, patch_width) ) _UpperCAmelCase = patches.reshape(image_tensor.size(0 ) ,image_tensor.size(1 ) ,UpperCamelCase__ ,UpperCamelCase__ ,-1 ) _UpperCAmelCase = patches.permute(0 ,4 ,2 ,3 ,1 ).reshape( image_tensor.size(2 ) // patch_height ,image_tensor.size(3 ) // patch_width ,image_tensor.size(1 ) * patch_height * patch_width ,) return patches.unsqueeze(0 ) def __UpperCAmelCase ( lowercase ,lowercase = 36 ,lowercase = "black" ,lowercase = "white" ,lowercase = 5 ,lowercase = 5 ,lowercase = 5 ,lowercase = 5 ,lowercase = None ,lowercase = None ,): """simple docstring""" requires_backends(UpperCamelCase__ ,"""vision""" ) # Add new lines so that each line is no more than 80 characters. _UpperCAmelCase = textwrap.TextWrapper(width=80 ) _UpperCAmelCase = wrapper.wrap(text=UpperCamelCase__ ) _UpperCAmelCase = '''\n'''.join(UpperCamelCase__ ) if font_bytes is not None and font_path is None: _UpperCAmelCase = io.BytesIO(UpperCamelCase__ ) elif font_path is not None: _UpperCAmelCase = font_path else: _UpperCAmelCase = hf_hub_download(UpperCamelCase__ ,"""Arial.TTF""" ) _UpperCAmelCase = ImageFont.truetype(UpperCamelCase__ ,encoding="""UTF-8""" ,size=UpperCamelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _UpperCAmelCase = ImageDraw.Draw(Image.new("""RGB""" ,(1, 1) ,UpperCamelCase__ ) ) _UpperCAmelCase = temp_draw.textbbox((0, 0) ,UpperCamelCase__ ,UpperCamelCase__ ) # Create the actual image with a bit of padding around the text. _UpperCAmelCase = text_width + left_padding + right_padding _UpperCAmelCase = text_height + top_padding + bottom_padding _UpperCAmelCase = Image.new("""RGB""" ,(image_width, image_height) ,UpperCamelCase__ ) _UpperCAmelCase = ImageDraw.Draw(UpperCamelCase__ ) draw.text(xy=(left_padding, top_padding) ,text=UpperCamelCase__ ,fill=UpperCamelCase__ ,font=UpperCamelCase__ ) return image def __UpperCAmelCase ( lowercase ,lowercase ,**lowercase ): """simple docstring""" requires_backends(UpperCamelCase__ ,"""vision""" ) # Convert to PIL image if necessary _UpperCAmelCase = to_pil_image(UpperCamelCase__ ) _UpperCAmelCase = render_text(UpperCamelCase__ ,**UpperCamelCase__ ) _UpperCAmelCase = max(header_image.width ,image.width ) _UpperCAmelCase = int(image.height * (new_width / image.width) ) _UpperCAmelCase = int(header_image.height * (new_width / header_image.width) ) _UpperCAmelCase = Image.new("""RGB""" ,(new_width, new_height + new_header_height) ,"""white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) ,(0, 0) ) new_image.paste(image.resize((new_width, new_height) ) ,(0, new_header_height) ) # Convert back to the original framework if necessary _UpperCAmelCase = to_numpy_array(UpperCamelCase__ ) if infer_channel_dimension_format(UpperCamelCase__ ) == ChannelDimension.LAST: _UpperCAmelCase = to_channel_dimension_format(UpperCamelCase__ ,ChannelDimension.LAST ) return new_image class a ( lowerCAmelCase_ ): _snake_case : Optional[Any] = ['flattened_patches'] def __init__( self : Optional[int] , __lowerCAmelCase : str = True , __lowerCAmelCase : List[Any] = True , __lowerCAmelCase : Optional[Any] = None , __lowerCAmelCase : List[Any] = 2048 , __lowerCAmelCase : List[str] = False , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} _UpperCAmelCase = do_normalize _UpperCAmelCase = do_convert_rgb _UpperCAmelCase = max_patches _UpperCAmelCase = is_vqa def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , **__lowerCAmelCase : int ): requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch _UpperCAmelCase = to_channel_dimension_format(__lowerCAmelCase , ChannelDimension.FIRST ) _UpperCAmelCase = torch.from_numpy(__lowerCAmelCase ) _UpperCAmelCase = patch_size['''height'''], patch_size['''width'''] _UpperCAmelCase = get_image_size(__lowerCAmelCase ) # maximize scale s.t. _UpperCAmelCase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _UpperCAmelCase = max(min(math.floor(scale * image_height / patch_height ) , __lowerCAmelCase ) , 1 ) _UpperCAmelCase = max(min(math.floor(scale * image_width / patch_width ) , __lowerCAmelCase ) , 1 ) _UpperCAmelCase = max(num_feasible_rows * patch_height , 1 ) _UpperCAmelCase = max(num_feasible_cols * patch_width , 1 ) _UpperCAmelCase = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=__lowerCAmelCase , antialias=__lowerCAmelCase , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _UpperCAmelCase = torch_extract_patches(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = patches.shape _UpperCAmelCase = patches_shape[1] _UpperCAmelCase = patches_shape[2] _UpperCAmelCase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _UpperCAmelCase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _UpperCAmelCase = torch.arange(__lowerCAmelCase ).reshape([rows, 1] ).repeat(1 , __lowerCAmelCase ).reshape([rows * columns, 1] ) _UpperCAmelCase = torch.arange(__lowerCAmelCase ).reshape([1, columns] ).repeat(__lowerCAmelCase , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _UpperCAmelCase = row_ids.to(torch.floataa ) _UpperCAmelCase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _UpperCAmelCase = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _UpperCAmelCase = torch.nn.functional.pad(__lowerCAmelCase , [0, 0, 0, max_patches - (rows * columns)] ).float() _UpperCAmelCase = to_numpy_array(__lowerCAmelCase ) return result def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] = None , **__lowerCAmelCase : List[Any] ): if image.dtype == np.uinta: _UpperCAmelCase = image.astype(np.floataa ) # take mean across the whole `image` _UpperCAmelCase = np.mean(__lowerCAmelCase ) _UpperCAmelCase = np.std(__lowerCAmelCase ) _UpperCAmelCase = max(__lowerCAmelCase , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : str , __lowerCAmelCase : Tuple = None , __lowerCAmelCase : Any = None , __lowerCAmelCase : List[str] = None , __lowerCAmelCase : Any = None , __lowerCAmelCase : Dict = None , __lowerCAmelCase : Tuple = None , __lowerCAmelCase : str = ChannelDimension.FIRST , **__lowerCAmelCase : Union[str, Any] , ): _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase = patch_size if patch_size is not None else self.patch_size _UpperCAmelCase = max_patches if max_patches is not None else self.max_patches _UpperCAmelCase = self.is_vqa if kwargs.get("""data_format""" , __lowerCAmelCase ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) _UpperCAmelCase = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__lowerCAmelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) _UpperCAmelCase = kwargs.pop("""font_bytes""" , __lowerCAmelCase ) _UpperCAmelCase = kwargs.pop("""font_path""" , __lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = [header_text] * len(__lowerCAmelCase ) _UpperCAmelCase = [ render_header(__lowerCAmelCase , header_text[i] , font_bytes=__lowerCAmelCase , font_path=__lowerCAmelCase ) for i, image in enumerate(__lowerCAmelCase ) ] if do_normalize: _UpperCAmelCase = [self.normalize(image=__lowerCAmelCase ) for image in images] # convert to torch tensor and permute _UpperCAmelCase = [ self.extract_flattened_patches(image=__lowerCAmelCase , max_patches=__lowerCAmelCase , patch_size=__lowerCAmelCase ) for image in images ] # create attention mask in numpy _UpperCAmelCase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _UpperCAmelCase = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=__lowerCAmelCase ) return encoded_outputs
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = """""" else: _UpperCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase ,lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = dct.pop(lowercase ) _UpperCAmelCase = val def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" _UpperCAmelCase = BitConfig( global_padding="""same""" ,layer_type="""bottleneck""" ,depths=(3, 4, 9) ,out_features=["""stage3"""] ,embedding_dynamic_padding=lowercase ,) _UpperCAmelCase = ViTHybridConfig(backbone_config=lowercase ,image_size=3_84 ,num_labels=10_00 ) _UpperCAmelCase = False # load original model from timm _UpperCAmelCase = timm.create_model(lowercase ,pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) _UpperCAmelCase = create_rename_keys(lowercase ,lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = """huggingface/label-files""" _UpperCAmelCase = """imagenet-1k-id2label.json""" _UpperCAmelCase = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) _UpperCAmelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase = ViTHybridModel(lowercase ).eval() else: _UpperCAmelCase = ViTHybridForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # create image processor _UpperCAmelCase = create_transform(**resolve_data_config({} ,model=lowercase ) ) _UpperCAmelCase = transform.transforms _UpperCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _UpperCAmelCase = ViTHybridImageProcessor( do_resize=lowercase ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=lowercase ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _UpperCAmelCase = prepare_img() _UpperCAmelCase = transform(lowercase ).unsqueeze(0 ) _UpperCAmelCase = processor(lowercase ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase ,lowercase ) # verify logits with torch.no_grad(): _UpperCAmelCase = model(lowercase ) _UpperCAmelCase = outputs.logits print("""Predicted class:""" ,logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase = timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase ,outputs.pooler_output ,atol=1E-3 ) else: _UpperCAmelCase = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase ,outputs.logits ,atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
30
0
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" # Initialise PyTorch model _UpperCAmelCase = LxmertConfig.from_json_file(UpperCAmelCase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) _UpperCAmelCase = LxmertForPreTraining(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() ,UpperCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import math def __UpperCAmelCase ( lowercase ,lowercase = 0 ,lowercase = 0 ): """simple docstring""" _UpperCAmelCase = end or len(_lowerCAmelCase ) for i in range(_lowerCAmelCase ,_lowerCAmelCase ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): # Max Heap """simple docstring""" _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase = array[largest], array[index] heapify(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = len(_lowerCAmelCase ) for i in range(n // 2 ,-1 ,-1 ): heapify(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) for i in range(n - 1 ,0 ,-1 ): _UpperCAmelCase = array[0], array[i] heapify(_lowerCAmelCase ,0 ,_lowerCAmelCase ) return array def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase = array[j], array[i] i += 1 def __UpperCAmelCase ( lowercase ): """simple docstring""" if len(_lowerCAmelCase ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_lowerCAmelCase ) ) ) _UpperCAmelCase = 16 return intro_sort(_lowerCAmelCase ,0 ,len(_lowerCAmelCase ) ,_lowerCAmelCase ,_lowerCAmelCase ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(_lowerCAmelCase ) max_depth -= 1 _UpperCAmelCase = median_of_a(_lowerCAmelCase ,_lowerCAmelCase ,start + ((end - start) // 2) + 1 ,end - 1 ) _UpperCAmelCase = partition(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) intro_sort(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) _UpperCAmelCase = p return insertion_sort(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ = input("""Enter numbers separated by a comma : """).strip() UpperCAmelCase__ = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
353
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" ,usage="""accelerate <command> [<args>]""" ,allow_abbrev=lowercase ) _UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowercase ) env_command_parser(subparsers=lowercase ) launch_command_parser(subparsers=lowercase ) tpu_command_parser(subparsers=lowercase ) test_command_parser(subparsers=lowercase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(lowercase ,"""func""" ): parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
30
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCAmelCase__ = False class a ( unittest.TestCase ): pass @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _UpperCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
354
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def lowerCAmelCase_ ( *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Optional[int] ): pass @is_pipeline_test @require_torch @require_vision class a ( unittest.TestCase ): _snake_case : Optional[int] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _UpperCAmelCase = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = vqa_pipeline(lowercase_ , top_k=1 ) self.assertEqual( lowercase_ , [ [{"""score""": ANY(lowercase_ ), """answer""": ANY(lowercase_ )}], [{"""score""": ANY(lowercase_ ), """answer""": ANY(lowercase_ )}], ] , ) @require_torch def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _UpperCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _UpperCAmelCase = """How many cats are there?""" _UpperCAmelCase = vqa_pipeline(image=lowercase_ , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( lowercase_ , [{"""score""": ANY(lowercase_ ), """answer""": ANY(lowercase_ )}, {"""score""": ANY(lowercase_ ), """answer""": ANY(lowercase_ )}] ) _UpperCAmelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( lowercase_ , [{"""score""": ANY(lowercase_ ), """answer""": ANY(lowercase_ )}, {"""score""": ANY(lowercase_ ), """answer""": ANY(lowercase_ )}] ) @slow @require_torch def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) _UpperCAmelCase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _UpperCAmelCase = """How many cats are there?""" _UpperCAmelCase = vqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) _UpperCAmelCase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) _UpperCAmelCase = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [[{"""score""": 0.8_799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def lowerCAmelCase_ ( self : Optional[Any] ): pass
355
"""simple docstring""" import csv import tweepy # Twitter API credentials UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" UpperCAmelCase__ = """""" def __UpperCAmelCase ( lowercase ): """simple docstring""" # authorize twitter, initialize tweepy _UpperCAmelCase = tweepy.OAuthHandler(lowercase ,lowercase ) auth.set_access_token(lowercase ,lowercase ) _UpperCAmelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase = api.user_timeline(screen_name=lowercase ,count=2_00 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase = api.user_timeline( screen_name=lowercase ,count=2_00 ,max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCAmelCase = alltweets[-1].id - 1 print(f'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''' ,"""w""" ) as f: _UpperCAmelCase = csv.writer(lowercase ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
30
0
"""simple docstring""" from __future__ import annotations from random import random class a : def __init__( self : Dict , __lowerCAmelCase : int = None ): _UpperCAmelCase = value _UpperCAmelCase = random() _UpperCAmelCase = None _UpperCAmelCase = None def __repr__( self : int ): from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : Union[str, Any] ): _UpperCAmelCase = str(self.value ) + """ """ _UpperCAmelCase = str(self.left or """""" ) _UpperCAmelCase = str(self.right or """""" ) return value + left + right def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _UpperCAmelCase , _UpperCAmelCase = split(root.left ,lowercase_ ) return left, root else: _UpperCAmelCase , _UpperCAmelCase = split(root.right ,lowercase_ ) return root, right def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _UpperCAmelCase = merge(left.right ,lowercase_ ) return left else: _UpperCAmelCase = merge(lowercase_ ,right.left ) return right def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = Node(lowercase_ ) _UpperCAmelCase , _UpperCAmelCase = split(lowercase_ ,lowercase_ ) return merge(merge(lowercase_ ,lowercase_ ) ,lowercase_ ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = split(lowercase_ ,value - 1 ) _UpperCAmelCase , _UpperCAmelCase = split(lowercase_ ,lowercase_ ) return merge(lowercase_ ,lowercase_ ) def __UpperCAmelCase ( lowercase ): """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value ,end=""",""" ) inorder(root.right ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" for arg in args.split(): if arg[0] == "+": _UpperCAmelCase = insert(lowercase_ ,int(arg[1:] ) ) elif arg[0] == "-": _UpperCAmelCase = erase(lowercase_ ,int(arg[1:] ) ) else: print("""Unknown command""" ) return root def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. \'q\' to quit. """ ) _UpperCAmelCase = input() while args != "q": _UpperCAmelCase = interact_treap(lowercase_ ,lowercase_ ) print(lowercase_ ) _UpperCAmelCase = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
356
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCAmelCase__ = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] UpperCAmelCase__ = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] UpperCAmelCase__ = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) UpperCAmelCase__ = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) UpperCAmelCase__ = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" for tf_name, hf_name in patterns: _UpperCAmelCase = k.replace(A_ ,A_ ) return k def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = BigBirdPegasusConfig(**A_ ) _UpperCAmelCase = BigBirdPegasusForConditionalGeneration(A_ ) _UpperCAmelCase = torch_model.state_dict() _UpperCAmelCase = {} # separating decoder weights _UpperCAmelCase = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} _UpperCAmelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() ,"""tf -> hf conversion""" ): _UpperCAmelCase = [k.endswith(A_ ) for ending in KEYS_TO_IGNORE] if any(A_ ): continue _UpperCAmelCase = DECODER_PATTERNS _UpperCAmelCase = rename_state_dict_key(A_ ,A_ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _UpperCAmelCase = v.T _UpperCAmelCase = torch.from_numpy(A_ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() ,"""tf -> hf conversion""" ): _UpperCAmelCase = [k.endswith(A_ ) for ending in KEYS_TO_IGNORE] if any(A_ ): continue _UpperCAmelCase = REMAINING_PATTERNS _UpperCAmelCase = rename_state_dict_key(A_ ,A_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _UpperCAmelCase = v.T _UpperCAmelCase = torch.from_numpy(A_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' _UpperCAmelCase = mapping['''model.embed_positions.weight'''] _UpperCAmelCase = mapping.pop("""model.embed_positions.weight""" ) _UpperCAmelCase = torch_model.load_state_dict(A_ ,strict=A_ ) _UpperCAmelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tf.train.list_variables(A_ ) _UpperCAmelCase = {} _UpperCAmelCase = ['''global_step'''] for name, shape in tqdm(A_ ,desc="""converting tf checkpoint to dict""" ): _UpperCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase = tf.train.load_variable(A_ ,A_ ) _UpperCAmelCase = array return tf_weights def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = get_tf_weights_as_numpy(A_ ) _UpperCAmelCase = convert_bigbird_pegasus(A_ ,A_ ) torch_model.save_pretrained(A_ ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
357
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Any = 'layoutlmv3' def __init__( self : Optional[Any] , __lowerCAmelCase : Tuple=5_0265 , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : int=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1e-5 , __lowerCAmelCase : int=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1024 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=128 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Any=128 , __lowerCAmelCase : int=64 , __lowerCAmelCase : List[str]=256 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class a ( lowerCAmelCase_ ): _snake_case : str = version.parse('1.12' ) @property def lowerCAmelCase_ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5 @property def lowerCAmelCase_ ( self : List[str] ): return 12 def lowerCAmelCase_ ( self : str , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 40 , __lowerCAmelCase : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _UpperCAmelCase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
30
0
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCAmelCase__ = logging.getLogger(__name__) @dataclass(frozen=lowerCAmelCase_ ) class a : _snake_case : int = 42 _snake_case : Any = 42 _snake_case : List[Any] = None _snake_case : List[Any] = None _snake_case : int = None @dataclass(frozen=lowerCAmelCase_ ) class a : _snake_case : Optional[Any] = 42 _snake_case : List[Any] = None _snake_case : Union[str, Any] = None _snake_case : Any = None _snake_case : int = None if is_torch_available(): import torch from torch.utils.data import Dataset class a ( lowerCAmelCase_ ): _snake_case : List[str] = 42 def __init__( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : bool = False , ): _UpperCAmelCase = hans_processors[task]() _UpperCAmelCase = os.path.join( __A , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(__A ) , __A , ) , ) _UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase = label_list[2], label_list[1] _UpperCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase = cached_features_file + """.lock""" with FileLock(__A ): if os.path.exists(__A ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) _UpperCAmelCase = torch.load(__A ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) _UpperCAmelCase = ( processor.get_dev_examples(__A ) if evaluate else processor.get_train_examples(__A ) ) logger.info("""Training examples: %s""" , len(__A ) ) _UpperCAmelCase = hans_convert_examples_to_features(__A , __A , __A , __A ) logger.info("""Saving features into cached file %s""" , __A ) torch.save(self.features , __A ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : str , __lowerCAmelCase : int ): return self.features[i] def lowerCAmelCase_ ( self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class a : _snake_case : List[Any] = 42 def __init__( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] = 128 , __lowerCAmelCase : str=False , __lowerCAmelCase : bool = False , ): _UpperCAmelCase = hans_processors[task]() _UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase = label_list[2], label_list[1] _UpperCAmelCase = label_list _UpperCAmelCase = processor.get_dev_examples(__A ) if evaluate else processor.get_train_examples(__A ) _UpperCAmelCase = hans_convert_examples_to_features(__A , __A , __A , __A ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_0000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(__A )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) _UpperCAmelCase = tf.data.Dataset.from_generator( __A , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowerCAmelCase_ ( self : Dict ): return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : List[str] , __lowerCAmelCase : Any ): return self.features[i] def lowerCAmelCase_ ( self : Tuple ): return self.label_list class a ( lowerCAmelCase_ ): def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Tuple ): return self._create_examples(self._read_tsv(os.path.join(__A , """heuristics_train_set.txt""" ) ) , """train""" ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Any ): return self._create_examples(self._read_tsv(os.path.join(__A , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def lowerCAmelCase_ ( self : Any ): return ["contradiction", "entailment", "neutral"] def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = [] for i, line in enumerate(__A ): if i == 0: continue _UpperCAmelCase = """%s-%s""" % (set_type, line[0]) _UpperCAmelCase = line[5] _UpperCAmelCase = line[6] _UpperCAmelCase = line[7][2:] if line[7].startswith("""ex""" ) else line[7] _UpperCAmelCase = line[0] examples.append(InputExample(guid=__A , text_a=__A , text_b=__A , label=__A , pairID=__A ) ) return examples def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,): """simple docstring""" _UpperCAmelCase = {label: i for i, label in enumerate(_lowercase )} _UpperCAmelCase = [] for ex_index, example in tqdm.tqdm(enumerate(_lowercase ) ,desc="""convert examples to features""" ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d""" % (ex_index) ) _UpperCAmelCase = tokenizer( example.text_a ,example.text_b ,add_special_tokens=_lowercase ,max_length=_lowercase ,padding="""max_length""" ,truncation=_lowercase ,return_overflowing_tokens=_lowercase ,) _UpperCAmelCase = label_map[example.label] if example.label in label_map else 0 _UpperCAmelCase = int(example.pairID ) features.append(InputFeatures(**_lowercase ,label=_lowercase ,pairID=_lowercase ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f'''guid: {example}''' ) logger.info(f'''features: {features[i]}''' ) return features UpperCAmelCase__ = { """hans""": 3, } UpperCAmelCase__ = { """hans""": HansProcessor, }
358
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import os import pytest from attr import dataclass UpperCAmelCase__ = """us-east-1""" # defaults region @dataclass class a : _snake_case : str _snake_case : Tuple = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _snake_case : List[Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _snake_case : Optional[Any] = {**hyperparameters, 'max_steps': 10_00} @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase_ ( self : Dict ): return f'''{self.framework}-transfromers-test''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase_ ( self : Dict ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
30
0
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = 1 ,lowercase = 1 ,lowercase = 1.0E4 ,lowercase = False ,lowercase = 1.0 ,): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' _UpperCAmelCase = float(embedding_dim // 2 ) _UpperCAmelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _UpperCAmelCase = min_timescale * jnp.exp(jnp.arange(_a ,dtype=jnp.floataa ) * -log_timescale_increment ) _UpperCAmelCase = jnp.expand_dims(_a ,1 ) * jnp.expand_dims(_a ,0 ) # scale embeddings _UpperCAmelCase = scale * emb if flip_sin_to_cos: _UpperCAmelCase = jnp.concatenate([jnp.cos(_a ), jnp.sin(_a )] ,axis=1 ) else: _UpperCAmelCase = jnp.concatenate([jnp.sin(_a ), jnp.cos(_a )] ,axis=1 ) _UpperCAmelCase = jnp.reshape(_a ,[jnp.shape(_a )[0], embedding_dim] ) return signal class a ( nn.Module ): _snake_case : Any = 32 _snake_case : int = jnp.floataa @nn.compact def __call__( self : Optional[Any] , __lowerCAmelCase : str ): _UpperCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(lowerCamelCase_ ) _UpperCAmelCase = nn.silu(lowerCamelCase_ ) _UpperCAmelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(lowerCamelCase_ ) return temb class a ( nn.Module ): _snake_case : Dict = 32 _snake_case : int = False _snake_case : Any = 1 @nn.compact def __call__( self : str , __lowerCAmelCase : List[str] ): return get_sinusoidal_embeddings( lowerCamelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
360
"""simple docstring""" import string from math import logaa def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = document.translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ).replace("""\n""" ,"""""" ) _UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = corpus.lower().translate( str.maketrans("""""" ,"""""" ,string.punctuation ) ) # strip all punctuation and replace it with '' _UpperCAmelCase = corpus_without_punctuation.split("""\n""" ) _UpperCAmelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowercase )) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) ,3 ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return round(tf * idf ,3 )
30
0
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class a : def __init__( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]=13 , __lowerCAmelCase : Optional[int]=7 , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Any=True , __lowerCAmelCase : int=99 , __lowerCAmelCase : int=32 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : str=4 , __lowerCAmelCase : Union[str, Any]=37 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=512 , __lowerCAmelCase : Tuple=16 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : int=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : int ): _UpperCAmelCase = BioGptModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ ) _UpperCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , ): _UpperCAmelCase = BioGptForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , *__lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = BioGptModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # create attention mask _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case__ ) _UpperCAmelCase = self.seq_length // 2 _UpperCAmelCase = 0 # first forward pass _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ ).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _UpperCAmelCase = ids_tensor((1,) , snake_case__ ).item() + 1 _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _UpperCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case__ )] , dim=1 , ) # get two different outputs _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ )['''last_hidden_state'''] _UpperCAmelCase = model(snake_case__ , past_key_values=snake_case__ , attention_mask=snake_case__ )['''last_hidden_state'''] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , *__lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = BioGptModel(config=snake_case__ ).to(snake_case__ ).eval() _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case__ ) # first forward pass _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) _UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ )['''last_hidden_state'''] _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[ '''last_hidden_state''' ] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , *__lowerCAmelCase : List[str] , __lowerCAmelCase : List[str]=False ): _UpperCAmelCase = BioGptForCausalLM(snake_case__ ) model.to(snake_case__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCAmelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Dict , *__lowerCAmelCase : Optional[int] ): _UpperCAmelCase = BioGptModel(snake_case__ ) _UpperCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , *__lowerCAmelCase : Optional[int] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = BioGptForTokenClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.prepare_config_and_inputs() ( _UpperCAmelCase ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): _snake_case : Union[str, Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _snake_case : Optional[Any] = (BioGptForCausalLM,) if is_torch_available() else () _snake_case : int = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) _snake_case : Optional[int] = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = BioGptModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowerCAmelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*snake_case__ ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case__ ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case__ , gradient_checkpointing=snake_case__ ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case__ ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case__ ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case__ ) @slow def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case__ ) _UpperCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) _UpperCAmelCase = '''left''' # Define PAD Token = EOS Token = 50256 _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = model.config.eos_token_id # use different length sentences to test batching _UpperCAmelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCAmelCase = tokenizer(snake_case__ , return_tensors="""pt""" , padding=snake_case__ ) _UpperCAmelCase = inputs['''input_ids'''].to(snake_case__ ) _UpperCAmelCase = model.generate( input_ids=snake_case__ , attention_mask=inputs["""attention_mask"""].to(snake_case__ ) , ) _UpperCAmelCase = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _UpperCAmelCase = model.generate(input_ids=snake_case__ ) _UpperCAmelCase = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() _UpperCAmelCase = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _UpperCAmelCase = model.generate(input_ids=snake_case__ , max_length=model.config.max_length - num_paddings ) _UpperCAmelCase = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) _UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) _UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) _UpperCAmelCase = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] ) @slow def lowerCAmelCase_ ( self : int ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = BioGptModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(snake_case__ ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = BioGptForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = '''multi_label_classification''' _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(snake_case__ ) _UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase = BioGptForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) _UpperCAmelCase = torch.tensor([[2, 4805, 9, 656, 21]] ) _UpperCAmelCase = model(snake_case__ )[0] _UpperCAmelCase = 4_2384 _UpperCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case__ ) _UpperCAmelCase = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) _UpperCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case__ ) torch.manual_seed(0 ) _UpperCAmelCase = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case__ ) _UpperCAmelCase = model.generate( **snake_case__ , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case__ , ) _UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case__ ) _UpperCAmelCase = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(snake_case__ , snake_case__ )
361
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) else: _UpperCAmelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCAmelCase , _UpperCAmelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase ,output_loading_info=lowercase ) _UpperCAmelCase = ["""key_proj""", """value_proj""", """query_proj"""] _UpperCAmelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _UpperCAmelCase = key.split(""".""" ) if attributes[0] == "lm_head": _UpperCAmelCase = prophet _UpperCAmelCase = prophet_old else: _UpperCAmelCase = prophet.prophetnet _UpperCAmelCase = prophet_old.model _UpperCAmelCase = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase = mapping[attribute] if not hasattr(lowercase ,lowercase ) and len(lowercase ) > 0: _UpperCAmelCase = attribute elif hasattr(lowercase ,lowercase ): _UpperCAmelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase = old_model.weight logger.info(f'''{attribute} is initialized.''' ) _UpperCAmelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase = old_model.bias logger.info(f'''{attribute} is initialized''' ) _UpperCAmelCase = True break elif attribute in special_keys and hasattr(lowercase ,"""in_proj_weight""" ): _UpperCAmelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase = getattr(lowercase ,lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _UpperCAmelCase = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _UpperCAmelCase = True break if attribute.isdigit(): _UpperCAmelCase = model[int(lowercase )] _UpperCAmelCase = old_model[int(lowercase )] else: _UpperCAmelCase = getattr(lowercase ,lowercase ) if old_attribute == "": _UpperCAmelCase = old_model else: if not hasattr(lowercase ,lowercase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) _UpperCAmelCase = getattr(lowercase ,lowercase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
30
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class a ( a__ ): def __init__( self : List[str] , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : Any ): warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
362
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Union[str, Any]=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(__lowerCAmelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): _UpperCAmelCase = """A = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = """B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = """A*B = """ + """ + """.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
30
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def lowerCAmelCase_ ( self : int ): torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) _UpperCAmelCase = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _UpperCAmelCase = DDPMScheduler() _UpperCAmelCase = AudioDiffusionPipeline(vqvae=a__ , unet=self.dummy_unet , mel=a__ , scheduler=a__ ) _UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(42 ) _UpperCAmelCase = pipe(generator=a__ , steps=4 ) _UpperCAmelCase = output.audios[0] _UpperCAmelCase = output.images[0] _UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(42 ) _UpperCAmelCase = pipe(generator=a__ , steps=4 , return_dict=a__ ) _UpperCAmelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _UpperCAmelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] _UpperCAmelCase = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCAmelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = self.dummy_vqvae_and_unet _UpperCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=a__ , scheduler=a__ ) _UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) np.random.seed(0 ) _UpperCAmelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(42 ) _UpperCAmelCase = pipe(raw_audio=a__ , generator=a__ , start_step=5 , steps=10 ) _UpperCAmelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _UpperCAmelCase = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCAmelCase = self.dummy_unet_condition _UpperCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=a__ , mel=a__ , scheduler=a__ ) _UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) np.random.seed(0 ) _UpperCAmelCase = torch.rand((1, 1, 10) ) _UpperCAmelCase = pipe(generator=a__ , encoding=a__ ) _UpperCAmelCase = output.images[0] _UpperCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _UpperCAmelCase = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = torch_device _UpperCAmelCase = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) _UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(42 ) _UpperCAmelCase = pipe(generator=a__ ) _UpperCAmelCase = output.audios[0] _UpperCAmelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _UpperCAmelCase = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
363
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): _snake_case : Union[str, Any] = IFInpaintingPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _snake_case : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _snake_case : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCAmelCase_ ( self : Optional[int] ): return self._get_dummy_components() def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=0 ): if str(lowerCAmelCase_ ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: _UpperCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase_ ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase_ ( self : Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase_ ( self : Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase_ ( self : List[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase_ ( self : Dict ): self._test_save_load_local() def lowerCAmelCase_ ( self : str ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
364
"""simple docstring""" from itertools import product def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): _UpperCAmelCase = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 ,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 ,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
30
0