code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ):
'''simple docstring'''
A : Optional[int] = {}
if train_file is not None:
A : int = [train_file]
if eval_file is not None:
A : List[str] = [eval_file]
if test_file is not None:
A : Optional[Any] = [test_file]
A : Union[str, Any] = datasets.load_dataset('''csv''' , data_files=snake_case__ )
A : int = list(ds[list(files.keys() )[0]].features.keys() )
A : Optional[int] = features_name.pop(snake_case__ )
A : List[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) )
A : Dict = {label: i for i, label in enumerate(snake_case__ )}
A : List[str] = tokenizer.model_input_names
A : List[Any] = {}
if len(snake_case__ ) == 1:
for k in files.keys():
A : Any = ds[k].map(
lambda snake_case__ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=snake_case__ , max_length=snake_case__ , padding='''max_length''' ) , batched=snake_case__ , )
elif len(snake_case__ ) == 2:
for k in files.keys():
A : Tuple = ds[k].map(
lambda snake_case__ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=snake_case__ , max_length=snake_case__ , padding='''max_length''' , ) , batched=snake_case__ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
A : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names}
A : Dict = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
A : List[str] = {k: v for k, v in ex.items() if k in input_names}
A : Optional[Any] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
A : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names}
A : Tuple = labelaid[ex[label_name]]
yield (d, label)
A : int = (
tf.data.Dataset.from_generator(
snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
A : int = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
A : Union[str, Any] = (
tf.data.Dataset.from_generator(
snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
A : str = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
A : Union[str, Any] = (
tf.data.Dataset.from_generator(
snake_case__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
A : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
lowercase : List[str] = logging.getLogger(__name__)
@dataclass
class A :
__magic_name__ = field(metadata={'''help''': '''Which column contains the label'''} )
__magic_name__ = field(default=__snake_case , metadata={'''help''': '''The path of the training file'''} )
__magic_name__ = field(default=__snake_case , metadata={'''help''': '''The path of the development file'''} )
__magic_name__ = field(default=__snake_case , metadata={'''help''': '''The path of the test file'''} )
__magic_name__ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
__magic_name__ = field(
default=__snake_case , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
@dataclass
class A :
__magic_name__ = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
__magic_name__ = field(
default=__snake_case , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
__magic_name__ = field(
default=__snake_case , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
__magic_name__ = field(default=__snake_case , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
__magic_name__ = field(
default=__snake_case , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
A, A, A : Any = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
''' --overwrite_output_dir to overcome.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(
F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
F'16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A : Optional[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
A, A, A, A : List[Any] = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=snake_case__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
A : Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(snake_case__ ) , labelaid=snake_case__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
A : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , )
def compute_metrics(snake_case__ ) -> Dict:
A : Optional[int] = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
A : Optional[int] = TFTrainer(
model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
A : Any = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
A : int = trainer.evaluate()
A : str = os.path.join(training_args.output_dir , '''eval_results.txt''' )
with open(snake_case__ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(F' {key} = {value}' )
writer.write(F'{key} = {value}\n' )
results.update(snake_case__ )
return results
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Optional[int] = logging.get_logger(__name__)
lowercase : Tuple = {
'google/pix2struct-textcaps-base': (
'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json'
),
}
class A ( __snake_case ):
__magic_name__ = '''pix2struct_text_model'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {
'''hidden_size''': '''hidden_size''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]:
"""simple docstring"""
A : str = vocab_size
A : List[str] = hidden_size
A : List[Any] = d_kv
A : Optional[Any] = d_ff
A : Dict = num_layers
A : Dict = num_heads
A : Optional[int] = relative_attention_num_buckets
A : Optional[Any] = relative_attention_max_distance
A : Dict = dropout_rate
A : Dict = layer_norm_epsilon
A : Tuple = initializer_factor
A : Union[str, Any] = use_cache
A : int = eos_token_id
A : List[str] = decoder_start_token_id
# for backwards compatibility
A : int = dense_act_fn
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Union[str, Any] = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct_vision_model'''
def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : List[str] = hidden_size
A : Optional[Any] = patch_embed_hidden_size
A : Union[str, Any] = d_ff
A : Dict = dropout_rate
A : str = num_hidden_layers
A : Dict = num_attention_heads
A : Tuple = initializer_range
A : List[str] = initializer_factor
A : Union[str, Any] = attention_dropout
A : Tuple = layer_norm_eps
A : int = dense_act_fn
A : Optional[int] = seq_len
A : Tuple = relative_attention_num_buckets
A : str = relative_attention_max_distance
A : Optional[Any] = d_kv
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Optional[Any] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct'''
__magic_name__ = True
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
if text_config is None:
A : Dict = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
A : str = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE )
A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE )
A : Any = self.text_config.decoder_start_token_id
A : Any = self.text_config.pad_token_id
A : Dict = self.text_config.eos_token_id
A : Union[str, Any] = initializer_factor
A : Tuple = initializer_range
A : Optional[Any] = self.initializer_range
A : int = self.initializer_range
A : Tuple = is_vqa
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Tuple = copy.deepcopy(self.__dict__ )
A : Dict = self.text_config.to_dict()
A : int = self.vision_config.to_dict()
A : Any = self.__class__.model_type
return output
| 311
| 1
|
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for char in word:
A : List[str] = ord(snake_case__ )
if not _is_chinese_char(snake_case__ ):
return 0
return 1
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Union[str, Any] = set()
for token in tokens:
A : str = len(snake_case__ ) > 1 and is_chinese(snake_case__ )
if chinese_word:
word_set.add(snake_case__ )
A : Optional[Any] = list(snake_case__ )
return word_list
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
A : int = max([len(snake_case__ ) for w in chinese_word_set] )
A : Any = bert_tokens
A, A : int = 0, len(snake_case__ )
while start < end:
A : Optional[int] = True
if is_chinese(bert_word[start] ):
A : Union[str, Any] = min(end - start , snake_case__ )
for i in range(snake_case__ , 1 , -1 ):
A : List[str] = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
A : str = '''##''' + bert_word[j]
A : Dict = start + i
A : Optional[int] = False
break
if single_word:
start += 1
return bert_word
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[Any] = []
for i in range(0 , len(snake_case__ ) , 100 ):
A : Union[str, Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws
A : str = [get_chinese_word(snake_case__ ) for r in res]
ltp_res.extend(snake_case__ )
assert len(snake_case__ ) == len(snake_case__ )
A : Optional[Any] = []
for i in range(0 , len(snake_case__ ) , 100 ):
A : Union[str, Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=snake_case__ , truncation=snake_case__ , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(snake_case__ ) == len(snake_case__ )
A : List[str] = []
for input_ids, chinese_word in zip(snake_case__ , snake_case__ ):
A : int = []
for id in input_ids:
A : Dict = bert_tokenizer._convert_id_to_token(snake_case__ )
input_tokens.append(snake_case__ )
A : Union[str, Any] = add_sub_symbol(snake_case__ , snake_case__ )
A : str = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(snake_case__ ):
if token[:2] == "##":
A : Tuple = token[2:]
# save chinese tokens' pos
if len(snake_case__ ) == 1 and _is_chinese_char(ord(snake_case__ ) ):
ref_id.append(snake_case__ )
ref_ids.append(snake_case__ )
assert len(snake_case__ ) == len(snake_case__ )
return ref_ids
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
A : Optional[int] = f.readlines()
A : Dict = [line.strip() for line in data if len(snake_case__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A : int = LTP(args.ltp ) # faster in GPU device
A : Any = BertTokenizer.from_pretrained(args.bert )
A : int = prepare_ref(snake_case__ , snake_case__ , snake_case__ )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
A : Tuple = [json.dumps(snake_case__ ) + '''\n''' for ref in ref_ids]
f.writelines(snake_case__ )
if __name__ == "__main__":
lowercase : Tuple = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
lowercase : Optional[Any] = parser.parse_args()
main(args)
| 311
|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = 2
A : Dict = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(snake_case__ )
if n > 1:
factors.append(snake_case__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
A : List[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , )
A : Optional[Any] = image.to(self.device )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
| 311
|
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(0 , snake_case__ ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(''' ''' , end='''''' )
for _ in range(0 , i + 1 ): # printing stars
print('''* ''' , end='''''' )
print()
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(snake_case__ , 0 , -1 ):
for _ in range(snake_case__ , 0 , -1 ): # printing stars
print('''* ''' , end='''''' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(''' ''' , end='''''' )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if n <= 0:
print(''' ... .... nothing printing :(''' )
return
floyd(snake_case__ ) # upper half
reverse_floyd(snake_case__ ) # lower half
if __name__ == "__main__":
print(R'| /\ | |- | |- |--| |\ /| |-')
print(R'|/ \| |- |_ |_ |__| | \/ | |_')
lowercase : List[str] = 1
while K:
lowercase : List[Any] = int(input('enter the number and , and see the magic : '))
print()
pretty_print(user_number)
lowercase : Any = int(input('press 0 to exit... and 1 to continue...'))
print('Good Bye...')
| 311
| 1
|
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
lowercase : List[Any] = 'docs/source/en/_toctree.yml'
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Tuple = defaultdict(snake_case__ )
for doc in model_doc:
counts[doc["local"]] += 1
A : List[str] = [key for key, value in counts.items() if value > 1]
A : Dict = []
for duplicate_key in duplicates:
A : Union[str, Any] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} )
if len(snake_case__ ) > 1:
raise ValueError(
F'{duplicate_key} is present several times in the documentation table of content at '
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] )
# Sort
return sorted(snake_case__ , key=lambda snake_case__ : s["title"].lower() )
def lowerCAmelCase_ ( snake_case__=False ):
'''simple docstring'''
with open(snake_case__ , encoding='''utf-8''' ) as f:
A : int = yaml.safe_load(f.read() )
# Get to the API doc
A : Optional[Any] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
A : Optional[Any] = content[api_idx]['''sections''']
# Then to the model doc
A : Any = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
A : Optional[int] = api_doc[model_idx]['''sections''']
A : Optional[Any] = [(idx, section) for idx, section in enumerate(snake_case__ ) if '''sections''' in section]
A : Optional[Any] = False
for idx, modality_doc in modalities_docs:
A : Tuple = modality_doc['''sections''']
A : Tuple = clean_model_doc_toc(snake_case__ )
if old_modality_doc != new_modality_doc:
A : Union[str, Any] = True
if overwrite:
A : List[Any] = new_modality_doc
if diff:
if overwrite:
A : int = model_doc
A : Dict = api_doc
with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__ ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
lowercase : Dict = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
lowercase : List[str] = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 311
|
'''simple docstring'''
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
A : List[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , )
A : Optional[Any] = image.to(self.device )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
| 311
| 1
|
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = IFInpaintingSuperResolutionPipeline
__magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
__magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} )
__magic_name__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return self._get_superresolution_dummy_components()
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ) -> List[Any]:
"""simple docstring"""
if str(SCREAMING_SNAKE_CASE ).startswith('''mps''' ):
A : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE )
else:
A : Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE )
A : List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE )
A : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE )
A : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE )
A : Tuple = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
self._test_save_load_local()
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 311
|
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str:
"""simple docstring"""
A : Any = parent
A : List[Any] = batch_size
A : Union[str, Any] = seq_length
A : Any = is_training
A : int = use_input_mask
A : Union[str, Any] = vocab_size
A : List[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : Optional[int] = num_attention_heads
A : str = intermediate_size
A : Tuple = hidden_act
A : Union[str, Any] = hidden_dropout_prob
A : Union[str, Any] = attention_probs_dropout_prob
A : int = max_position_embeddings
A : Optional[int] = initializer_range
A : Any = use_labels
A : Optional[int] = scope
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[int] = None
if self.use_input_mask:
A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Dict = self.get_config()
return config, input_ids, input_mask, token_labels
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
),
) : Any = self.prepare_config_and_inputs()
A : Tuple = True
A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
A : int = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = True
A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )
A : List[Any] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = True
A : Tuple = True
A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval()
# first forward pass
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , )
A : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 )
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
A : Any = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
# select random slice
A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A : str = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A, A, A : Optional[int] = self.prepare_config_and_inputs()
A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
__magic_name__ = (BertGenerationDecoder,) if is_torch_available() else ()
__magic_name__ = (
{'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[str] = BertGenerationEncoderTester(self )
A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs()
A : str = '''bert'''
self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
A : Union[str, Any] = None
self.model_tester.create_and_check_model_as_decoder(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Dict = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Dict = torch.tensor(
[[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 50358] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Any = torch.tensor(
[[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
lowercase : Any = tuple[float, float, float]
lowercase : Any = tuple[float, float, float]
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[int] = end_pointa[0] - end_pointa[0]
A : Tuple = end_pointa[1] - end_pointa[1]
A : int = end_pointa[2] - end_pointa[2]
return (x, y, z)
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Any = ab[1] * ac[2] - ab[2] * ac[1] # *i
A : List[Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
A : Any = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
return tuple(round(snake_case__ , snake_case__ ) for x in vector ) == (0, 0, 0)
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = 10 ):
'''simple docstring'''
A : Optional[int] = create_vector(snake_case__ , snake_case__ )
A : Optional[int] = create_vector(snake_case__ , snake_case__ )
return is_zero_vector(get_ad_vectors_cross(snake_case__ , snake_case__ ) , snake_case__ )
| 311
|
'''simple docstring'''
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ )
A : Any = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ )
class A ( __snake_case ):
__magic_name__ = '''sigmoid'''
__magic_name__ = '''softmax'''
__magic_name__ = '''none'''
@add_end_docstrings(
__snake_case , R'''
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return all prediction scores or just the one of the predicted class.
function_to_apply (`str`, *optional*, defaults to `"default"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model
has several labels, will apply the softmax function on the output.
- `"sigmoid"`: Applies the sigmoid function on the output.
- `"softmax"`: Applies the softmax function on the output.
- `"none"`: Does not apply any function on the output.
''' , )
class A ( __snake_case ):
__magic_name__ = False
__magic_name__ = ClassificationFunction.NONE
def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Optional[Any] = tokenizer_kwargs
A : int = {}
if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None:
A : int = self.model.config.return_all_scores
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None:
A : Union[str, Any] = top_k
A : Dict = False
elif return_all_scores is not None:
warnings.warn(
'''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'''
''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , )
if return_all_scores:
A : Optional[int] = None
else:
A : Dict = 1
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : Dict = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
A : int = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
A : Any = '''top_k''' not in kwargs
if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]:
"""simple docstring"""
A : List[Any] = self.framework
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'''
''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' )
return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return self.model(**SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]:
"""simple docstring"""
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
A : Optional[int] = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
A : Any = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None:
A : Optional[int] = self.model.config.function_to_apply
else:
A : Optional[int] = ClassificationFunction.NONE
A : Any = model_outputs['''logits'''][0]
A : List[Any] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
A : int = sigmoid(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.SOFTMAX:
A : Any = softmax(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.NONE:
A : int = outputs
else:
raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
A : int = [
{'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE )
]
if not _legacy:
dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE )
if top_k is not None:
A : Union[str, Any] = dict_scores[:top_k]
return dict_scores
| 311
| 1
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class A ( __snake_case ):
__magic_name__ = '''facebook/bart-large-mnli'''
__magic_name__ = (
'''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '''
'''should be the text to classify, and `labels`, which should be the list of labels to use for classification. '''
'''It returns the most likely label in the list of provided `labels` for the input text.'''
)
__magic_name__ = '''text_classifier'''
__magic_name__ = AutoTokenizer
__magic_name__ = AutoModelForSequenceClassification
__magic_name__ = ['''text''', ['''text''']]
__magic_name__ = ['''text''']
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
super().setup()
A : Optional[int] = self.model.config
A : str = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
A : Tuple = int(SCREAMING_SNAKE_CASE )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : List[str] = labels
return self.pre_processor(
[text] * len(SCREAMING_SNAKE_CASE ) , [F'This example is {label}' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : str = outputs.logits
A : str = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 311
|
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def lowerCAmelCase_ ( snake_case__ = "laptop" ):
'''simple docstring'''
A : Tuple = F'https://www.amazon.in/laptop/s?k={product}'
A : Optional[int] = {
'''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''',
'''Accept-Language''': '''en-US, en;q=0.5''',
}
A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text )
# Initialize a Pandas dataframe with the column titles
A : List[str] = DataFrame(
columns=[
'''Product Title''',
'''Product Link''',
'''Current Price of the product''',
'''Product Rating''',
'''MRP of the product''',
'''Discount''',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ):
try:
A : Optional[Any] = item.ha.text
A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href''']
A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text
try:
A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text
except AttributeError:
A : Optional[int] = '''Not available'''
try:
A : str = (
'''₹'''
+ item.find(
'''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1]
)
except AttributeError:
A : List[Any] = ''''''
try:
A : Dict = float(
(
(
float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
- float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) )
)
/ float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
)
* 100 )
except ValueError:
A : str = float('''nan''' )
except AttributeError:
pass
A : Union[str, Any] = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
A : List[str] = ''' '''
A : Optional[Any] = ''' '''
data_frame.index += 1
return data_frame
if __name__ == "__main__":
lowercase : Union[str, Any] = 'headphones'
get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
| 311
| 1
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : int = logging.get_logger(__name__)
lowercase : int = {
'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class A ( __snake_case ):
__magic_name__ = '''sew'''
def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="group" , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE )
A : Optional[Any] = hidden_size
A : Any = feat_extract_norm
A : Optional[int] = feat_extract_activation
A : Tuple = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : int = conv_bias
A : List[Any] = num_conv_pos_embeddings
A : Tuple = num_conv_pos_embedding_groups
A : int = len(self.conv_dim )
A : Dict = num_hidden_layers
A : Optional[int] = intermediate_size
A : Any = squeeze_factor
A : int = hidden_act
A : str = num_attention_heads
A : Dict = hidden_dropout
A : Optional[Any] = attention_dropout
A : List[str] = activation_dropout
A : Union[str, Any] = feat_proj_dropout
A : Union[str, Any] = final_dropout
A : int = layerdrop
A : Optional[Any] = layer_norm_eps
A : Any = initializer_range
A : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A : Optional[Any] = apply_spec_augment
A : Optional[Any] = mask_time_prob
A : Union[str, Any] = mask_time_length
A : Optional[Any] = mask_time_min_masks
A : str = mask_feature_prob
A : Tuple = mask_feature_length
A : Any = mask_feature_min_masks
# ctc loss
A : List[Any] = ctc_loss_reduction
A : Dict = ctc_zero_infinity
# sequence classification
A : int = use_weighted_layer_sum
A : Optional[int] = classifier_proj_size
@property
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 311
|
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[int] = x
A : str = y
for step in range(snake_case__ ): # noqa: B007
A : str = a * a - b * b + x
A : List[str] = 2 * a * b + y
A : str = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) )
def lowerCAmelCase_ ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ):
'''simple docstring'''
A : List[Any] = Image.new('''RGB''' , (image_width, image_height) )
A : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(snake_case__ ):
for image_y in range(snake_case__ ):
# determine the figure-coordinates based on the image-coordinates
A : Optional[int] = figure_width / image_width * image_height
A : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
A : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height
A : str = get_distance(snake_case__ , snake_case__ , snake_case__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
A : str = get_color_coded_rgb(snake_case__ )
else:
A : List[Any] = get_black_and_white_rgb(snake_case__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowercase : Optional[Any] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 311
| 1
|
'''simple docstring'''
import argparse
import copy
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[Any] = {}
with open(snake_case__ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
A : List[str] = []
_list.append([line.split()[1], line.split()[2]] )
A : Any = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
A : Optional[int] = []
_list.append([line.split()[0], line.split()[2]] )
A : int = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
with open(snake_case__ ) as f:
A : Tuple = f.read(1 )
A : Any = start_node
A : List[Any] = []
A : List[str] = start_node
A : Union[str, Any] = 0
while visiting not in first_solution:
A : Optional[Any] = 1_0000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(snake_case__ ) and k[0] not in first_solution:
A : List[str] = k[1]
A : int = k[0]
first_solution.append(snake_case__ )
A : List[str] = distance_of_first_solution + int(snake_case__ )
A : Any = best_node
first_solution.append(snake_case__ )
A : Optional[int] = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
A : Tuple = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0000
)
return first_solution, distance_of_first_solution
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[Any] = []
for n in solution[1:-1]:
A : Union[str, Any] = solution.index(snake_case__ )
for kn in solution[1:-1]:
A : str = solution.index(snake_case__ )
if n == kn:
continue
A : Tuple = copy.deepcopy(snake_case__ )
A : str = kn
A : Union[str, Any] = n
A : Optional[int] = 0
for k in _tmp[:-1]:
A : List[str] = _tmp[_tmp.index(snake_case__ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
A : List[str] = distance + int(i[1] )
_tmp.append(snake_case__ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
A : Dict = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda snake_case__ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : str = 1
A : str = first_solution
A : Any = []
A : Optional[Any] = distance_of_first_solution
A : Optional[int] = solution
while count <= iters:
A : List[Any] = find_neighborhood(snake_case__ , snake_case__ )
A : Any = 0
A : str = neighborhood[index_of_best_solution]
A : List[Any] = len(snake_case__ ) - 1
A : List[Any] = False
while not found:
A : Dict = 0
while i < len(snake_case__ ):
if best_solution[i] != solution[i]:
A : List[str] = best_solution[i]
A : Optional[Any] = solution[i]
break
A : str = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
A : List[str] = True
A : Optional[int] = best_solution[:-1]
A : Optional[int] = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
A : Optional[Any] = cost
A : int = solution
else:
A : str = index_of_best_solution + 1
A : Optional[Any] = neighborhood[index_of_best_solution]
if len(snake_case__ ) >= size:
tabu_list.pop(0 )
A : List[Any] = count + 1
return best_solution_ever, best_cost
def lowerCAmelCase_ ( snake_case__=None ):
'''simple docstring'''
A : Union[str, Any] = generate_neighbours(args.File )
A, A : List[Any] = generate_first_solution(
args.File , snake_case__ )
A, A : List[str] = tabu_search(
snake_case__ , snake_case__ , snake_case__ , args.Iterations , args.Size , )
print(F'Best solution: {best_sol}, with total distance: {best_cost}.' )
if __name__ == "__main__":
lowercase : Tuple = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 311
|
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowercase : Optional[int] = [
'kernels/rwkv/wkv_cuda.cu',
'kernels/rwkv/wkv_op.cpp',
'kernels/deformable_detr/ms_deform_attn.h',
'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh',
'models/graphormer/algos_graphormer.pyx',
]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowercase : str = argparse.ArgumentParser()
parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.')
lowercase : Optional[Any] = parser.parse_args()
if args.check_lib:
lowercase : List[Any] = importlib.import_module('transformers')
lowercase : str = Path(transformers_module.__file__).parent
else:
lowercase : List[Any] = Path.cwd() / 'build/lib/transformers'
if not test_custom_files_are_present(transformers_path):
raise ValueError('The built release does not contain the custom files. Fix this before going further!')
| 311
| 1
|
'''simple docstring'''
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=True ):
'''simple docstring'''
model.train()
A : Union[str, Any] = model(snake_case__ )
A : List[str] = F.mse_loss(snake_case__ , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
set_seed(42 )
A : Optional[Any] = RegressionModel()
A : Union[str, Any] = deepcopy(snake_case__ )
A : Optional[Any] = RegressionDataset(length=80 )
A : Any = DataLoader(snake_case__ , batch_size=16 )
model.to(accelerator.device )
if sched:
A : int = AdamW(params=model.parameters() , lr=1E-3 )
A : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3 )
A : Optional[Any] = LambdaLR(snake_case__ , lr_lambda=lambda snake_case__ : epoch**0.65 )
A : Tuple = LambdaLR(snake_case__ , lr_lambda=lambda snake_case__ : epoch**0.65 )
# Make a copy of `model`
if sched:
A, A, A, A : Tuple = accelerator.prepare(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
else:
A, A : Optional[Any] = accelerator.prepare(snake_case__ , snake_case__ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A, A, A : Dict = get_training_setup(snake_case__ )
# Use a single batch
A, A : List[str] = next(iter(snake_case__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
A, A : Tuple = accelerator.gather((ddp_input, ddp_target) )
A, A : List[str] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(snake_case__ ):
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
else:
# Sync grads
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
A : List[Any] = ddp_input[torch.randperm(len(snake_case__ ) )]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A, A, A : Optional[Any] = get_training_setup(snake_case__ )
# Use a single batch
A, A : Tuple = next(iter(snake_case__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
A, A : Tuple = accelerator.gather((ddp_input, ddp_target) )
A, A : Dict = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(snake_case__ ):
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
else:
# Sync grads
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
A : Union[str, Any] = ddp_input[torch.randperm(len(snake_case__ ) )]
def lowerCAmelCase_ ( snake_case__=False , snake_case__=False ):
'''simple docstring'''
A : int = Accelerator(
split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
A, A, A : Optional[int] = get_training_setup(snake_case__ )
for iteration, batch in enumerate(snake_case__ ):
A, A : str = batch.values()
# Gather the distributed inputs and targs for the base model
A, A : Tuple = accelerator.gather((ddp_input, ddp_target) )
A, A : str = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(snake_case__ ):
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case__ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
A : Any = ddp_input[torch.randperm(len(snake_case__ ) )]
GradientState._reset_state()
def lowerCAmelCase_ ( snake_case__=False , snake_case__=False ):
'''simple docstring'''
A : Any = Accelerator(
split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
A, A, A, A, A, A, A : Tuple = get_training_setup(snake_case__ , snake_case__ )
for iteration, batch in enumerate(snake_case__ ):
A, A : List[Any] = batch.values()
# Gather the distributed inputs and targs for the base model
A, A : Union[str, Any] = accelerator.gather((ddp_input, ddp_target) )
A, A : Any = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case__ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(snake_case__ ):
step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'
A : Union[str, Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case__ ))
if accelerator.num_processes > 1:
check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Any = Accelerator()
A : Any = RegressionDataset(length=80 )
A : Union[str, Any] = DataLoader(snake_case__ , batch_size=16 )
A : Optional[int] = RegressionDataset(length=96 )
A : Optional[Any] = DataLoader(snake_case__ , batch_size=16 )
A, A : List[Any] = accelerator.prepare(snake_case__ , snake_case__ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(snake_case__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ )
if iteration < len(snake_case__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(snake_case__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ )
if batch_num < len(snake_case__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Tuple = Accelerator()
A : int = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(snake_case__ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(snake_case__ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , )
test_gradient_accumulation(snake_case__ , snake_case__ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , )
test_gradient_accumulation_with_opt_and_scheduler(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]:
"""simple docstring"""
A : List[str] = parent
A : Optional[Any] = batch_size
A : Tuple = image_size
A : int = patch_size
A : Optional[int] = num_channels
A : str = is_training
A : List[Any] = use_labels
A : Any = hidden_size
A : Any = num_hidden_layers
A : Optional[int] = num_attention_heads
A : Any = intermediate_size
A : List[str] = hidden_act
A : str = hidden_dropout_prob
A : Tuple = attention_probs_dropout_prob
A : Any = type_sequence_label_size
A : Optional[int] = initializer_range
A : Dict = scope
A : Tuple = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
A : List[Any] = (image_size // patch_size) ** 2
A : Tuple = num_patches + 2
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Tuple = None
if self.use_labels:
A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Tuple = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE )
A : str = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE )
A : List[Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
A : Optional[int] = 1
A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE )
A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Tuple = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
A : str = self.type_sequence_label_size
A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A : Optional[Any] = 1
A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[int] = self.prepare_config_and_inputs()
A, A, A : Tuple = config_and_inputs
A : Any = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': TFDeiTModel,
'''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = TFDeiTModelTester(self )
A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
pass
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
A : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A, A : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
A : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Union[str, Any] = [*signature.parameters.keys()]
A : List[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
A : Dict = self.default_image_processor
A : List[str] = prepare_img()
A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
A : Optional[int] = model(**SCREAMING_SNAKE_CASE )
# verify the logits
A : List[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : List[Any] = logging.get_logger(__name__)
lowercase : Optional[Any] = {
'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json',
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class A ( __snake_case ):
__magic_name__ = '''data2vec-audio'''
def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=19 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="sum" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1500) , SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE )
A : Optional[Any] = hidden_size
A : Any = feat_extract_activation
A : str = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : List[Any] = list(SCREAMING_SNAKE_CASE )
A : str = conv_bias
A : Any = num_conv_pos_embeddings
A : Tuple = num_conv_pos_embedding_groups
A : Union[str, Any] = conv_pos_kernel_size
A : Optional[int] = len(self.conv_dim )
A : str = num_hidden_layers
A : int = intermediate_size
A : Optional[int] = hidden_act
A : Dict = num_attention_heads
A : str = hidden_dropout
A : List[Any] = attention_dropout
A : int = activation_dropout
A : Any = feat_proj_dropout
A : Optional[int] = final_dropout
A : List[str] = layerdrop
A : int = layer_norm_eps
A : int = initializer_range
A : int = vocab_size
A : List[Any] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A : List[Any] = mask_time_prob
A : Tuple = mask_time_length
A : Dict = mask_time_min_masks
A : List[str] = mask_feature_prob
A : Tuple = mask_feature_length
A : Optional[int] = mask_feature_min_masks
# ctc loss
A : Tuple = ctc_loss_reduction
A : int = ctc_zero_infinity
# adapter
A : Optional[Any] = add_adapter
A : List[Any] = adapter_kernel_size
A : Optional[Any] = adapter_stride
A : List[str] = num_adapter_layers
A : Optional[Any] = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
A : Optional[int] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
A : Dict = list(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = list(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = list(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = xvector_output_dim
@property
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return math.prod(self.conv_stride )
| 311
|
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase : List[str] = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
| 1
|
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A ( __snake_case ):
__magic_name__ = (DDIMParallelScheduler,)
__magic_name__ = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Optional[Any] = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''clip_sample''': True,
}
config.update(**SCREAMING_SNAKE_CASE )
return config
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : int = self.scheduler_classes[0]
A : str = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : int = scheduler_class(**SCREAMING_SNAKE_CASE )
A, A : str = 10, 0.0
A : Dict = self.dummy_model()
A : List[str] = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in scheduler.timesteps:
A : Optional[int] = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[str] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
return sample
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE )
A : str = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(steps_offset=1 )
A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE , beta_end=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Optional[int] = self.scheduler_classes[0]
A : Any = self.get_scheduler_config()
A : Any = scheduler_class(**SCREAMING_SNAKE_CASE )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.scheduler_classes[0]
A : str = self.get_scheduler_config()
A : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE )
A, A : int = 10, 0.0
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
A : List[Any] = self.dummy_model()
A : List[str] = self.dummy_sample_deter
A : Dict = self.dummy_sample_deter + 0.1
A : Optional[Any] = self.dummy_sample_deter - 0.1
A : Optional[int] = samplea.shape[0]
A : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 )
A : Tuple = torch.arange(SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE )
A : Tuple = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
A : List[Any] = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE )
A : int = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
A : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2
assert abs(result_mean.item() - 0.4_982 ) < 1e-3
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = self.full_loop()
A : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
A : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 172.0_067 ) < 1e-2
assert abs(result_mean.item() - 0.223_967 ) < 1e-3
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Union[str, Any] = self.full_loop(prediction_type='''v_prediction''' )
A : Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 52.5_302 ) < 1e-2
assert abs(result_mean.item() - 0.0_684 ) < 1e-3
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Tuple = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE , beta_start=0.01 )
A : Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 149.8_295 ) < 1e-2
assert abs(result_mean.item() - 0.1_951 ) < 1e-3
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Any = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE , beta_start=0.01 )
A : Optional[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) )
A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 149.0_784 ) < 1e-2
assert abs(result_mean.item() - 0.1_941 ) < 1e-3
| 311
|
'''simple docstring'''
from __future__ import annotations
lowercase : Union[str, Any] = list[tuple[int, int]]
lowercase : Optional[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
A : int = pos_x
A : Optional[Any] = pos_y
A : Optional[Any] = (pos_y, pos_x)
A : str = goal_x
A : Optional[int] = goal_y
A : List[Any] = g_cost
A : str = parent
A : str = self.calculate_heuristic()
def __lowerCAmelCase ( self ) -> float:
"""simple docstring"""
A : Optional[int] = abs(self.pos_x - self.goal_x )
A : Optional[Any] = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return self.f_cost < other.f_cost
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE )
A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE )
A : Optional[Any] = [self.start]
A : list[Node] = []
A : Tuple = False
def __lowerCAmelCase ( self ) -> Path | None:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
A : Optional[int] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
A : Optional[int] = True
return self.retrace_path(SCREAMING_SNAKE_CASE )
self.closed_nodes.append(SCREAMING_SNAKE_CASE )
A : Any = self.get_successors(SCREAMING_SNAKE_CASE )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
# retrieve the best current path
A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
if not self.reached:
return [self.start.pos]
return None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]:
"""simple docstring"""
A : List[Any] = []
for action in delta:
A : List[str] = parent.pos_x + action[1]
A : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) )
return successors
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path:
"""simple docstring"""
A : int = node
A : Union[str, Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
A : int = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase : Tuple = (0, 0)
lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print('------')
lowercase : int = GreedyBestFirst(init, goal)
lowercase : Union[str, Any] = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase : Dict = 2
for elem in grid:
print(elem)
| 311
| 1
|
'''simple docstring'''
import math
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if initial_intensity < 0:
raise ValueError('''The value of intensity cannot be negative''' )
# handling of negative values of initial intensity
if angle < 0 or angle > 360:
raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(snake_case__ ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name='malus_law')
| 311
|
'''simple docstring'''
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
lowercase : Any = 'src/transformers'
lowercase : str = 'docs/source/en/tasks'
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
A : Union[str, Any] = f.readlines()
# Find the start prompt.
A : List[Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
A : List[str] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
lowercase : int = direct_transformers_import(TRANSFORMERS_PATH)
lowercase : str = {
'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
lowercase : Optional[int] = {
'summarization.md': ('nllb',),
'translation.md': ('nllb',),
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : int = TASK_GUIDE_TO_MODELS[task_guide]
A : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() )
A : Union[str, Any] = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n"
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A, A, A : Optional[int] = _find_text_in_file(
filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , )
A : Optional[int] = get_model_list_for_task(snake_case__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'
''' to fix this.''' )
if __name__ == "__main__":
lowercase : Dict = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
lowercase : List[Any] = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 311
| 1
|
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
lowercase : Tuple = logging.get_logger(__name__)
class A ( __snake_case ):
def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
warnings.warn(
'''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use DonutImageProcessor instead.''' , SCREAMING_SNAKE_CASE , )
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if len(snake_case__ ) <= 1:
return [tuple(snake_case__ )]
A : Tuple = []
def generate(snake_case__ , snake_case__ ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , snake_case__ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
A, A : Optional[Any] = arr[k - 1], arr[i]
else: # k is odd
A, A : Optional[Any] = arr[k - 1], arr[0]
generate(k - 1 , snake_case__ )
generate(len(snake_case__ ) , snake_case__ )
return res
if __name__ == "__main__":
lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip()
lowercase : int = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 311
| 1
|
'''simple docstring'''
import os
from pathlib import Path
def lowerCAmelCase_ ( ):
'''simple docstring'''
from torch.utils.cpp_extension import load
A : List[Any] = Path(snake_case__ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr'''
A : Tuple = [
root / filename
for filename in [
'''vision.cpp''',
os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ),
os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ),
]
]
load(
'''MultiScaleDeformableAttention''' , snake_case__ , with_cuda=snake_case__ , extra_include_paths=[str(snake_case__ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[
'''-DCUDA_HAS_FP16=1''',
'''-D__CUDA_NO_HALF_OPERATORS__''',
'''-D__CUDA_NO_HALF_CONVERSIONS__''',
'''-D__CUDA_NO_HALF2_OPERATORS__''',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 311
|
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( __snake_case ):
__magic_name__ = (UniPCMultistepScheduler,)
__magic_name__ = (('''num_inference_steps''', 25),)
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : str = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''solver_type''': '''bh2''',
}
config.update(**SCREAMING_SNAKE_CASE )
return config
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : List[Any] = dict(self.forward_default_kwargs )
A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
A : Optional[Any] = self.dummy_sample
A : int = 0.1 * sample
A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE )
A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order]
A, A : Tuple = sample, sample
for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ):
A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = dict(self.forward_default_kwargs )
A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
A : List[Any] = self.dummy_sample
A : int = 0.1 * sample
A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A : Optional[int] = self.get_scheduler_config()
A : Any = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
A : int = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE )
A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if scheduler is None:
A : Dict = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Tuple = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : int = 10
A : Tuple = self.dummy_model()
A : Any = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
return sample
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = dict(self.forward_default_kwargs )
A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
A : Dict = self.get_scheduler_config()
A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Optional[Any] = self.dummy_sample
A : Optional[int] = 0.1 * sample
if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
A : Tuple = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10]
A : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
A : List[Any] = scheduler.timesteps[5]
A : Dict = scheduler.timesteps[6]
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() )
A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE )
A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config )
A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config )
A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config )
A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config )
A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE )
A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , )
A : Dict = self.full_loop(
solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , )
assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers"
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE )
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : int = self.full_loop()
A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.full_loop(prediction_type='''v_prediction''' )
A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.1_014 ) < 1e-3
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = self.scheduler_classes[0]
A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 )
A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Tuple = 10
A : Union[str, Any] = self.dummy_model()
A : Dict = self.dummy_sample_deter.half()
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
assert sample.dtype == torch.floataa
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
for scheduler_class in self.scheduler_classes:
A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 311
| 1
|
'''simple docstring'''
lowercase : Dict = 2_56
# Modulus to hash a string
lowercase : Optional[int] = 1_00_00_03
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[Any] = len(snake_case__ )
A : Union[str, Any] = len(snake_case__ )
if p_len > t_len:
return False
A : str = 0
A : Optional[Any] = 0
A : Optional[Any] = 1
# Calculating the hash of pattern and substring of text
for i in range(snake_case__ ):
A : Optional[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
A : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
A : Union[str, Any] = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
A : int = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = '''abc1abc12'''
A : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
A : Optional[Any] = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(snake_case__ , snake_case__ ) and not rabin_karp(snake_case__ , snake_case__ )
# Test 2)
A : Dict = '''ABABX'''
A : int = '''ABABZABABYABABX'''
assert rabin_karp(snake_case__ , snake_case__ )
# Test 3)
A : List[str] = '''AAAB'''
A : List[str] = '''ABAAAAAB'''
assert rabin_karp(snake_case__ , snake_case__ )
# Test 4)
A : Optional[Any] = '''abcdabcy'''
A : Optional[Any] = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(snake_case__ , snake_case__ )
# Test 5)
A : Optional[Any] = '''Lü'''
A : int = '''Lüsai'''
assert rabin_karp(snake_case__ , snake_case__ )
A : str = '''Lue'''
assert not rabin_karp(snake_case__ , snake_case__ )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 311
|
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
super().__init__()
# make sure scheduler can always be converted to DDIM
A : Dict = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ):
A : List[Any] = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
A : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : int = self.scheduler.step(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample
A : Dict = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
| 311
| 1
|
'''simple docstring'''
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class A ( __snake_case ):
# to overwrite at feature extractactor specific tests
__magic_name__ = None
__magic_name__ = None
@property
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''feature_size''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''sampling_rate''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''padding_value''' ) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : List[Any] = self.feat_extract_tester.prepare_inputs_for_common()
A : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict )
A : Any = feat_extract.model_input_names[0]
A : Tuple = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , processed_features[input_name] ) ) )
A : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE )
A : int = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' )
A : Optional[Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
A : Any = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE )
A : int = self.feature_extraction_class(**self.feat_extract_dict )
A : Tuple = feat_extract.model_input_names[0]
A : Any = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' )
A : Dict = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
A : str = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE )
A : str = self.feature_extraction_class(**self.feat_extract_dict )
A : Union[str, Any] = feat_extract.model_input_names[0]
A : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' )
A : Optional[Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
A : Optional[Any] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=False ) -> Optional[int]:
"""simple docstring"""
def _inputs_have_equal_length(SCREAMING_SNAKE_CASE ):
A : Optional[Any] = len(input[0] )
for input_slice in input[1:]:
if len(SCREAMING_SNAKE_CASE ) != length:
return False
return True
def _inputs_are_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ):
return False
for input_slice_a, input_slice_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if not np.allclose(np.asarray(SCREAMING_SNAKE_CASE ) , np.asarray(SCREAMING_SNAKE_CASE ) , atol=1e-3 ):
return False
return True
A : int = self.feature_extraction_class(**self.feat_extract_dict )
A : Tuple = self.feat_extract_tester.prepare_inputs_for_common(numpify=SCREAMING_SNAKE_CASE )
A : Any = feat_extract.model_input_names[0]
A : List[Any] = BatchFeature({input_name: speech_inputs} )
A : Tuple = self.feat_extract_tester.seq_length_diff
A : Any = self.feat_extract_tester.max_seq_length + pad_diff
A : List[Any] = self.feat_extract_tester.min_seq_length
A : Any = self.feat_extract_tester.batch_size
A : Union[str, Any] = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
A : Tuple = feat_extract.pad(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = input_a[input_name]
A : Union[str, Any] = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' )
A : Dict = input_a[input_name]
A : Optional[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[-1] ) )
A : Optional[Any] = input_a[input_name]
A : List[str] = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )
A : List[str] = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(SCREAMING_SNAKE_CASE ):
feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''max_length''' )[input_name]
A : int = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE , return_tensors='''np''' )
A : Any = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
A : str = feat_extract.pad(SCREAMING_SNAKE_CASE , pad_to_multiple_of=10 )
A : Tuple = input_a[input_name]
A : str = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , pad_to_multiple_of=10 )
A : Dict = input_a[input_name]
A : Union[str, Any] = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , pad_to_multiple_of=10 , max_length=SCREAMING_SNAKE_CASE )
A : List[str] = input_a[input_name]
A : Optional[int] = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , pad_to_multiple_of=10 , max_length=SCREAMING_SNAKE_CASE , return_tensors='''np''' , )
A : int = input_a[input_name]
self.assertTrue(all(len(SCREAMING_SNAKE_CASE ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A : Optional[int] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(SCREAMING_SNAKE_CASE ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
A : Any = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=False ) -> Optional[Any]:
"""simple docstring"""
def _inputs_have_equal_length(SCREAMING_SNAKE_CASE ):
A : str = len(input[0] )
for input_slice in input[1:]:
if len(SCREAMING_SNAKE_CASE ) != length:
return False
return True
def _inputs_are_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ):
return False
for input_slice_a, input_slice_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if not np.allclose(np.asarray(SCREAMING_SNAKE_CASE ) , np.asarray(SCREAMING_SNAKE_CASE ) , atol=1e-3 ):
return False
return True
A : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
A : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=SCREAMING_SNAKE_CASE )
A : Tuple = feat_extract.model_input_names[0]
A : int = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
A : str = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=SCREAMING_SNAKE_CASE )
A : int = input_a[input_name]
A : str = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) )
A : List[Any] = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
# truncate to smallest with np
A : int = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=SCREAMING_SNAKE_CASE , )
A : Any = input_a[input_name]
A : Any = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' )
A : Tuple = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
# truncate to middle
A : Optional[int] = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=SCREAMING_SNAKE_CASE , return_tensors='''np''' , )
A : Any = input_a[input_name]
A : Tuple = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=SCREAMING_SNAKE_CASE )
A : int = input_a[input_name]
A : List[str] = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' )
A : List[Any] = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(SCREAMING_SNAKE_CASE ):
feat_extract.pad(SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(SCREAMING_SNAKE_CASE ):
feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , truncation=SCREAMING_SNAKE_CASE )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(SCREAMING_SNAKE_CASE ):
feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , truncation=SCREAMING_SNAKE_CASE )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(SCREAMING_SNAKE_CASE ):
feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
A : str = 12
A : List[str] = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , )
A : List[Any] = input_a[input_name]
A : str = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=SCREAMING_SNAKE_CASE , )
A : Dict = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
A : Tuple = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
A : int = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE ) )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self._check_padding(numpify=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self._check_padding(numpify=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self._check_truncation(numpify=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self._check_truncation(numpify=SCREAMING_SNAKE_CASE )
@require_torch
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : str = self.feature_extraction_class(**self.feat_extract_dict )
A : List[Any] = self.feat_extract_tester.prepare_inputs_for_common()
A : Tuple = feat_extract.model_input_names[0]
A : int = BatchFeature({input_name: speech_inputs} )
A : Union[str, Any] = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )[input_name]
A : List[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : str = self.feature_extraction_class(**self.feat_extract_dict )
A : Tuple = self.feat_extract_tester.prepare_inputs_for_common()
A : List[Any] = feat_extract.model_input_names[0]
A : str = BatchFeature({input_name: speech_inputs} )
A : Dict = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )[input_name]
A : Optional[int] = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''tf''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Any = self.feat_extract_dict
A : Tuple = True
A : List[str] = self.feature_extraction_class(**SCREAMING_SNAKE_CASE )
A : List[Any] = self.feat_extract_tester.prepare_inputs_for_common()
A : Any = [len(SCREAMING_SNAKE_CASE ) for x in speech_inputs]
A : Dict = feat_extract.model_input_names[0]
A : Dict = BatchFeature({input_name: speech_inputs} )
A : Dict = feat_extract.pad(SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )
self.assertIn('''attention_mask''' , SCREAMING_SNAKE_CASE )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = self.feat_extract_dict
A : Optional[int] = True
A : List[Any] = self.feature_extraction_class(**SCREAMING_SNAKE_CASE )
A : List[Any] = self.feat_extract_tester.prepare_inputs_for_common()
A : Tuple = [len(SCREAMING_SNAKE_CASE ) for x in speech_inputs]
A : Union[str, Any] = feat_extract.model_input_names[0]
A : int = BatchFeature({input_name: speech_inputs} )
A : List[str] = min(SCREAMING_SNAKE_CASE )
A : List[str] = feat_extract.pad(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''np''' )
self.assertIn('''attention_mask''' , SCREAMING_SNAKE_CASE )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 311
|
'''simple docstring'''
from __future__ import annotations
from random import random
class A :
def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = value
A : Any = random()
A : Node | None = None
A : Node | None = None
def __repr__( self ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return F'\'{self.value}: {self.prior:.5}\''
else:
return pformat(
{F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 )
def __str__( self ) -> str:
"""simple docstring"""
A : Optional[Any] = str(self.value ) + ''' '''
A : Union[str, Any] = str(self.left or '''''' )
A : Any = str(self.right or '''''' )
return value + left + right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
A, A : Any = split(root.left , snake_case__ )
return left, root
else:
A, A : Optional[int] = split(root.right , snake_case__ )
return root, right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
A : List[str] = merge(left.right , snake_case__ )
return left
else:
A : Tuple = merge(snake_case__ , right.left )
return right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[Any] = Node(snake_case__ )
A, A : Tuple = split(snake_case__ , snake_case__ )
return merge(merge(snake_case__ , snake_case__ ) , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A, A : Dict = split(snake_case__ , value - 1 )
A, A : Any = split(snake_case__ , snake_case__ )
return merge(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=''',''' )
inorder(root.right )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
A : int = insert(snake_case__ , int(arg[1:] ) )
elif arg[0] == "-":
A : int = erase(snake_case__ , int(arg[1:] ) )
else:
print('''Unknown command''' )
return root
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Union[str, Any] = None
print(
'''enter numbers to create a tree, + value to add value into treap, '''
'''- value to erase all nodes with value. \'q\' to quit. ''' )
A : Optional[int] = input()
while args != "q":
A : str = interact_treap(snake_case__ , snake_case__ )
print(snake_case__ )
A : Union[str, Any] = input()
print('''good by!''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
lowercase : int = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
A : Tuple = graph
# mapping node to its parent in resulting breadth first tree
A : dict[str, str | None] = {}
A : List[str] = source_vertex
def __lowerCAmelCase ( self ) -> None:
"""simple docstring"""
A : Union[str, Any] = {self.source_vertex}
A : Optional[int] = None
A : Union[str, Any] = [self.source_vertex] # first in first out queue
while queue:
A : Tuple = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(SCREAMING_SNAKE_CASE )
A : List[Any] = vertex
queue.append(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
if target_vertex == self.source_vertex:
return self.source_vertex
A : Any = self.parent.get(SCREAMING_SNAKE_CASE )
if target_vertex_parent is None:
A : Tuple = (
F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}'
)
raise ValueError(SCREAMING_SNAKE_CASE )
return self.shortest_path(SCREAMING_SNAKE_CASE ) + F'->{target_vertex}'
if __name__ == "__main__":
lowercase : List[str] = Graph(graph, 'G')
g.breath_first_search()
print(g.shortest_path('D'))
print(g.shortest_path('G'))
print(g.shortest_path('Foo'))
| 311
|
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]:
"""simple docstring"""
A : Tuple = '''bilinear'''
A : Optional[int] = max_size
A : Dict = short_edge_length
def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Tuple = []
for img in imgs:
A, A : str = img.shape[:2]
# later: provide list and randomly choose index for resize
A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if h < w:
A, A : Tuple = size, scale * w
else:
A, A : str = scale * h, size
if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size:
A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Tuple = newh * scale
A : int = neww * scale
A : List[str] = int(neww + 0.5 )
A : int = int(newh + 0.5 )
if img.dtype == np.uinta:
A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE )
A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
A : str = np.asarray(SCREAMING_SNAKE_CASE )
else:
A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
A : List[Any] = nn.functional.interpolate(
SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 )
img_augs.append(SCREAMING_SNAKE_CASE )
return img_augs
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
A : str = cfg.INPUT.FORMAT
A : int = cfg.SIZE_DIVISIBILITY
A : Optional[int] = cfg.PAD_VALUE
A : Dict = cfg.INPUT.MAX_SIZE_TEST
A : Optional[Any] = cfg.MODEL.DEVICE
A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) )
A : List[str] = [im.shape[-2:] for im in images]
A : Optional[Any] = [
nn.functional.pad(
SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
"""simple docstring"""
with torch.no_grad():
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : str = [images]
if single_image:
assert len(SCREAMING_SNAKE_CASE ) == 1
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
A : Tuple = torch.tensor([im.shape[:2] for im in images] )
A : Dict = self.aug(SCREAMING_SNAKE_CASE )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images]
# now pad them to do the following operations
A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!"
A, A : str = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case__ )
tensor[:, 1].clamp_(min=0 , max=snake_case__ )
tensor[:, 2].clamp_(min=0 , max=snake_case__ )
tensor[:, 3].clamp_(min=0 , max=snake_case__ )
| 311
| 1
|
'''simple docstring'''
import re
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[Any] = split_input(str_ )
return "".join(
[''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
try:
A : Union[str, Any] = split_input(snake_case__ )
if upper:
A : Dict = ''''''.join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
A : Any = ''''''.join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return to_simple_case(snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
try:
A : Tuple = to_simple_case(snake_case__ )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
return to_complex_case(snake_case__ , snake_case__ , '''_''' )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
return to_complex_case(snake_case__ , snake_case__ , '''-''' )
if __name__ == "__main__":
__import__('doctest').testmod()
| 311
|
'''simple docstring'''
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
'--original_config_file',
default=None,
type=str,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--scheduler_type',
default='pndm',
type=str,
help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']',
)
parser.add_argument(
'--pipeline_type',
default=None,
type=str,
help=(
'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\''
'. If `None` pipeline will be automatically inferred.'
),
)
parser.add_argument(
'--image_size',
default=None,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--prediction_type',
default=None,
type=str,
help=(
'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable'
' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
parser.add_argument(
'--stable_unclip',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.',
)
parser.add_argument(
'--stable_unclip_prior',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.',
)
parser.add_argument(
'--clip_stats_path',
type=str,
help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.',
required=False,
)
parser.add_argument(
'--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.'
)
parser.add_argument('--half', action='store_true', help='Save weights in half precision.')
parser.add_argument(
'--vae_path',
type=str,
default=None,
required=False,
help='Set to a path, hub id to an already converted vae to not convert it again.',
)
lowercase : Tuple = parser.parse_args()
lowercase : Union[str, Any] = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowercase : Optional[int] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowercase : Dict = TaTokenizerFast
lowercase : Optional[int] = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Union[str, Any] = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Dict = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowercase : Any = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
)
| 311
|
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase : str = datasets.utils.logging.get_logger(__name__)
lowercase : Union[str, Any] = ['names', 'prefix']
lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
lowercase : List[Any] = ['encoding_errors', 'on_bad_lines']
lowercase : Any = ['date_format']
@dataclass
class A ( datasets.BuilderConfig ):
__magic_name__ = ","
__magic_name__ = None
__magic_name__ = "infer"
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = "."
__magic_name__ = None
__magic_name__ = '"'
__magic_name__ = 0
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = 0
__magic_name__ = True
__magic_name__ = False
__magic_name__ = None
__magic_name__ = 10000
__magic_name__ = None
__magic_name__ = "strict"
__magic_name__ = "error"
__magic_name__ = None
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
if self.delimiter is not None:
A : Optional[Any] = self.delimiter
if self.column_names is not None:
A : Optional[Any] = self.column_names
@property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : str = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A ( datasets.ArrowBasedBuilder ):
__magic_name__ = CsvConfig
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
A : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ):
A : str = data_files
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = [files]
A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
A : Tuple = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : List[str] = [files]
A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) )
return splits
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
A : Optional[int] = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ):
# cheaper cast
A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return pa_table
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
A : int = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ):
A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ):
A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE )
except ValueError as e:
logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' )
raise
| 311
| 1
|
'''simple docstring'''
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
lowercase : Dict = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : int = git.Repo(search_parent_directories=snake_case__ )
A : Any = {
'''repo_id''': str(snake_case__ ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
}
with open(os.path.join(snake_case__ , '''git_log.json''' ) , '''w''' ) as f:
json.dump(snake_case__ , snake_case__ , indent=4 )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if params.n_gpu <= 0:
A : List[str] = 0
A : Tuple = -1
A : str = True
A : List[Any] = False
return
assert torch.cuda.is_available()
logger.info('''Initializing GPUs''' )
if params.n_gpu > 1:
assert params.local_rank != -1
A : List[Any] = int(os.environ['''WORLD_SIZE'''] )
A : Union[str, Any] = int(os.environ['''N_GPU_NODE'''] )
A : Dict = int(os.environ['''RANK'''] )
# number of nodes / node ID
A : int = params.world_size // params.n_gpu_per_node
A : Optional[Any] = params.global_rank // params.n_gpu_per_node
A : Union[str, Any] = True
assert params.n_nodes == int(os.environ['''N_NODES'''] )
assert params.node_id == int(os.environ['''NODE_RANK'''] )
# local job (single GPU)
else:
assert params.local_rank == -1
A : Dict = 1
A : Dict = 0
A : Tuple = 0
A : str = 0
A : List[Any] = 1
A : int = 1
A : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
A : str = params.node_id == 0 and params.local_rank == 0
A : Optional[Any] = params.n_nodes > 1
# summary
A : List[str] = F'--- Global rank: {params.global_rank} - '
logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes )
logger.info(PREFIX + '''Node ID : %i''' % params.node_id )
logger.info(PREFIX + '''Local rank : %i''' % params.local_rank )
logger.info(PREFIX + '''World size : %i''' % params.world_size )
logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node )
logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) )
logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) )
logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) )
logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('''Initializing PyTorch distributed''' )
torch.distributed.init_process_group(
init_method='''env://''' , backend='''nccl''' , )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 311
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : int = logging.get_logger(__name__)
lowercase : int = {
'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class A ( __snake_case ):
__magic_name__ = '''sew'''
def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="group" , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE )
A : Optional[Any] = hidden_size
A : Any = feat_extract_norm
A : Optional[int] = feat_extract_activation
A : Tuple = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : int = conv_bias
A : List[Any] = num_conv_pos_embeddings
A : Tuple = num_conv_pos_embedding_groups
A : int = len(self.conv_dim )
A : Dict = num_hidden_layers
A : Optional[int] = intermediate_size
A : Any = squeeze_factor
A : int = hidden_act
A : str = num_attention_heads
A : Dict = hidden_dropout
A : Optional[Any] = attention_dropout
A : List[str] = activation_dropout
A : Union[str, Any] = feat_proj_dropout
A : Union[str, Any] = final_dropout
A : int = layerdrop
A : Optional[Any] = layer_norm_eps
A : Any = initializer_range
A : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A : Optional[Any] = apply_spec_augment
A : Optional[Any] = mask_time_prob
A : Union[str, Any] = mask_time_length
A : Optional[Any] = mask_time_min_masks
A : str = mask_feature_prob
A : Tuple = mask_feature_length
A : Any = mask_feature_min_masks
# ctc loss
A : List[Any] = ctc_loss_reduction
A : Dict = ctc_zero_infinity
# sequence classification
A : int = use_weighted_layer_sum
A : Optional[int] = classifier_proj_size
@property
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 311
| 1
|
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if number < 0:
raise ValueError('''number must not be negative''' )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = SwinConfig()
A : List[Any] = swin_name.split('''_''' )
A : Tuple = name_split[1]
A : Union[str, Any] = int(name_split[4] )
A : str = int(name_split[3][-1] )
if model_size == "tiny":
A : Optional[int] = 96
A : Optional[Any] = (2, 2, 6, 2)
A : Any = (3, 6, 12, 24)
elif model_size == "small":
A : Optional[int] = 96
A : str = (2, 2, 18, 2)
A : Tuple = (3, 6, 12, 24)
elif model_size == "base":
A : int = 128
A : Optional[Any] = (2, 2, 18, 2)
A : List[str] = (4, 8, 16, 32)
else:
A : Dict = 192
A : Optional[Any] = (2, 2, 18, 2)
A : Optional[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
A : Dict = 2_1841
else:
A : str = 1000
A : List[str] = '''huggingface/label-files'''
A : Any = '''imagenet-1k-id2label.json'''
A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) )
A : str = {int(snake_case__ ): v for k, v in idalabel.items()}
A : Tuple = idalabel
A : Tuple = {v: k for k, v in idalabel.items()}
A : Tuple = img_size
A : Dict = num_classes
A : Optional[Any] = embed_dim
A : str = depths
A : str = num_heads
A : Optional[int] = window_size
return config
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if "patch_embed.proj" in name:
A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
A : Optional[int] = '''encoder.''' + name
if "attn.proj" in name:
A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
A : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
A : Any = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
A : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
A : str = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "norm.weight":
A : Tuple = '''layernorm.weight'''
if name == "norm.bias":
A : Tuple = '''layernorm.bias'''
if "head" in name:
A : Any = name.replace('''head''' , '''classifier''' )
else:
A : List[Any] = '''swin.''' + name
return name
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
A : Dict = orig_state_dict.pop(snake_case__ )
if "mask" in key:
continue
elif "qkv" in key:
A : Dict = key.split('''.''' )
A : Optional[int] = int(key_split[1] )
A : List[str] = int(key_split[3] )
A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
A : Any = val[:dim, :]
A : Dict = val[
dim : dim * 2, :
]
A : List[str] = val[-dim:, :]
else:
A : Any = val[
:dim
]
A : Optional[int] = val[
dim : dim * 2
]
A : Any = val[
-dim:
]
else:
A : str = val
return orig_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ )
timm_model.eval()
A : Optional[Any] = get_swin_config(snake_case__ )
A : Optional[int] = SwinForImageClassification(snake_case__ )
model.eval()
A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ )
model.load_state_dict(snake_case__ )
A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) )
A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' )
A : Any = timm_model(inputs['''pixel_values'''] )
A : Optional[Any] = model(**snake_case__ ).logits
assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 )
print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swin_name',
default='swin_tiny_patch4_window7_224',
type=str,
help='Name of the Swin timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
lowercase : int = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
import math
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowercase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError('''n must be an integer''' )
if n <= 0:
raise ValueError('''n must be >= 0''' )
A : Optional[int] = []
for num in range(len(snake_case__ ) ):
A : Dict = 0
while 2 * i * i <= odd_composites[num]:
A : Optional[Any] = odd_composites[num] - 2 * i * i
if is_prime(snake_case__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(snake_case__ ) == n:
return list_nums
return []
def lowerCAmelCase_ ( ):
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 311
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Optional[int] = logging.get_logger(__name__)
lowercase : Tuple = {
'google/pix2struct-textcaps-base': (
'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json'
),
}
class A ( __snake_case ):
__magic_name__ = '''pix2struct_text_model'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {
'''hidden_size''': '''hidden_size''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]:
"""simple docstring"""
A : str = vocab_size
A : List[str] = hidden_size
A : List[Any] = d_kv
A : Optional[Any] = d_ff
A : Dict = num_layers
A : Dict = num_heads
A : Optional[int] = relative_attention_num_buckets
A : Optional[Any] = relative_attention_max_distance
A : Dict = dropout_rate
A : Dict = layer_norm_epsilon
A : Tuple = initializer_factor
A : Union[str, Any] = use_cache
A : int = eos_token_id
A : List[str] = decoder_start_token_id
# for backwards compatibility
A : int = dense_act_fn
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Union[str, Any] = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct_vision_model'''
def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : List[str] = hidden_size
A : Optional[Any] = patch_embed_hidden_size
A : Union[str, Any] = d_ff
A : Dict = dropout_rate
A : str = num_hidden_layers
A : Dict = num_attention_heads
A : Tuple = initializer_range
A : List[str] = initializer_factor
A : Union[str, Any] = attention_dropout
A : Tuple = layer_norm_eps
A : int = dense_act_fn
A : Optional[int] = seq_len
A : Tuple = relative_attention_num_buckets
A : str = relative_attention_max_distance
A : Optional[Any] = d_kv
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Optional[Any] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct'''
__magic_name__ = True
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
if text_config is None:
A : Dict = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
A : str = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE )
A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE )
A : Any = self.text_config.decoder_start_token_id
A : Any = self.text_config.pad_token_id
A : Dict = self.text_config.eos_token_id
A : Union[str, Any] = initializer_factor
A : Tuple = initializer_range
A : Optional[Any] = self.initializer_range
A : int = self.initializer_range
A : Tuple = is_vqa
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Tuple = copy.deepcopy(self.__dict__ )
A : Dict = self.text_config.to_dict()
A : int = self.vision_config.to_dict()
A : Any = self.__class__.model_type
return output
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase : Optional[int] = {
'configuration_time_series_transformer': [
'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TimeSeriesTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : int = [
'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TimeSeriesTransformerForPrediction',
'TimeSeriesTransformerModel',
'TimeSeriesTransformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = 2
A : Dict = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(snake_case__ )
if n > 1:
factors.append(snake_case__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError('''List is empty''' )
A : Optional[Any] = sum(snake_case__ ) / len(snake_case__ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(0 , snake_case__ ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(''' ''' , end='''''' )
for _ in range(0 , i + 1 ): # printing stars
print('''* ''' , end='''''' )
print()
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(snake_case__ , 0 , -1 ):
for _ in range(snake_case__ , 0 , -1 ): # printing stars
print('''* ''' , end='''''' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(''' ''' , end='''''' )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if n <= 0:
print(''' ... .... nothing printing :(''' )
return
floyd(snake_case__ ) # upper half
reverse_floyd(snake_case__ ) # lower half
if __name__ == "__main__":
print(R'| /\ | |- | |- |--| |\ /| |-')
print(R'|/ \| |- |_ |_ |__| | \/ | |_')
lowercase : List[str] = 1
while K:
lowercase : List[Any] = int(input('enter the number and , and see the magic : '))
print()
pretty_print(user_number)
lowercase : Any = int(input('press 0 to exit... and 1 to continue...'))
print('Good Bye...')
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowercase : int = {
'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'],
'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'AdaptiveEmbedding',
'TransfoXLForSequenceClassification',
'TransfoXLLMHeadModel',
'TransfoXLModel',
'TransfoXLPreTrainedModel',
'load_tf_weights_in_transfo_xl',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : str = [
'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFAdaptiveEmbedding',
'TFTransfoXLForSequenceClassification',
'TFTransfoXLLMHeadModel',
'TFTransfoXLMainLayer',
'TFTransfoXLModel',
'TFTransfoXLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
A : List[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , )
A : Optional[Any] = image.to(self.device )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
| 311
| 1
|
'''simple docstring'''
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('>=', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
lowercase : Optional[Any] = get_logger(__name__)
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0 ):
'''simple docstring'''
os.makedirs(snake_case__ , exist_ok=snake_case__ )
with FSDP.state_dict_type(
snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
A : str = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
A : List[str] = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin'
A : Any = os.path.join(snake_case__ , snake_case__ )
if accelerator.process_index == 0:
logger.info(F'Saving model to {output_model_file}' )
torch.save(snake_case__ , snake_case__ )
logger.info(F'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
A : List[str] = (
F'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
A : List[Any] = os.path.join(snake_case__ , snake_case__ )
logger.info(F'Saving model to {output_model_file}' )
torch.save(snake_case__ , snake_case__ )
logger.info(F'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
A : int = os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' )
os.makedirs(snake_case__ , exist_ok=snake_case__ )
logger.info(F'Saving model to {ckpt_dir}' )
A : Optional[int] = {'''model''': state_dict}
dist_cp.save_state_dict(
state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , )
logger.info(F'Model saved to {ckpt_dir}' )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(snake_case__ ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'''Set the `sync_module_states` flag to `True` so that model states are synced across processes when '''
'''initializing FSDP object''' )
return
A : str = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin'
A : List[str] = os.path.join(snake_case__ , snake_case__ )
logger.info(F'Loading model from {input_model_file}' )
A : List[Any] = torch.load(snake_case__ )
logger.info(F'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
A : Any = (
F'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
A : int = os.path.join(snake_case__ , snake_case__ )
logger.info(F'Loading model from {input_model_file}' )
A : Optional[int] = torch.load(snake_case__ )
logger.info(F'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
A : Optional[int] = (
os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' )
if F'{MODEL_NAME}' not in input_dir
else input_dir
)
logger.info(F'Loading model from {ckpt_dir}' )
A : Optional[int] = {'''model''': model.state_dict()}
dist_cp.load_state_dict(
state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , )
A : Union[str, Any] = state_dict['''model''']
logger.info(F'Model loaded from {ckpt_dir}' )
model.load_state_dict(snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0 ):
'''simple docstring'''
os.makedirs(snake_case__ , exist_ok=snake_case__ )
with FSDP.state_dict_type(
snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
A : Any = FSDP.optim_state_dict(snake_case__ , snake_case__ )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
A : Optional[Any] = (
F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
A : Dict = os.path.join(snake_case__ , snake_case__ )
logger.info(F'Saving Optimizer state to {output_optimizer_file}' )
torch.save(snake_case__ , snake_case__ )
logger.info(F'Optimizer state saved in {output_optimizer_file}' )
else:
A : Any = os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' )
os.makedirs(snake_case__ , exist_ok=snake_case__ )
logger.info(F'Saving Optimizer state to {ckpt_dir}' )
dist_cp.save_state_dict(
state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , )
logger.info(F'Optimizer state saved in {ckpt_dir}' )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0 ):
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
A : Tuple = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
A : Optional[Any] = (
F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
A : Optional[int] = os.path.join(snake_case__ , snake_case__ )
logger.info(F'Loading Optimizer state from {input_optimizer_file}' )
A : List[Any] = torch.load(snake_case__ )
logger.info(F'Optimizer state loaded from {input_optimizer_file}' )
else:
A : Dict = (
os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' )
if F'{OPTIMIZER_NAME}' not in input_dir
else input_dir
)
logger.info(F'Loading Optimizer from {ckpt_dir}' )
A : str = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , )
A : Optional[int] = optim_state['''optimizer''']
logger.info(F'Optimizer loaded from {ckpt_dir}' )
A : List[Any] = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ )
optimizer.load_state_dict(snake_case__ )
| 311
|
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str:
"""simple docstring"""
A : Any = parent
A : List[Any] = batch_size
A : Union[str, Any] = seq_length
A : Any = is_training
A : int = use_input_mask
A : Union[str, Any] = vocab_size
A : List[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : Optional[int] = num_attention_heads
A : str = intermediate_size
A : Tuple = hidden_act
A : Union[str, Any] = hidden_dropout_prob
A : Union[str, Any] = attention_probs_dropout_prob
A : int = max_position_embeddings
A : Optional[int] = initializer_range
A : Any = use_labels
A : Optional[int] = scope
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[int] = None
if self.use_input_mask:
A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Dict = self.get_config()
return config, input_ids, input_mask, token_labels
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
),
) : Any = self.prepare_config_and_inputs()
A : Tuple = True
A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
A : int = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = True
A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )
A : List[Any] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = True
A : Tuple = True
A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval()
# first forward pass
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , )
A : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 )
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
A : Any = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
# select random slice
A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A : str = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A, A, A : Optional[int] = self.prepare_config_and_inputs()
A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
__magic_name__ = (BertGenerationDecoder,) if is_torch_available() else ()
__magic_name__ = (
{'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[str] = BertGenerationEncoderTester(self )
A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs()
A : str = '''bert'''
self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
A : Union[str, Any] = None
self.model_tester.create_and_check_model_as_decoder(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Dict = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Dict = torch.tensor(
[[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 50358] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Any = torch.tensor(
[[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(snake_case__ , snake_case__ ):
raise TypeError('''Input value must be a \'int\' type''' )
return bin(snake_case__ ).count('''1''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ )
A : Any = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ )
class A ( __snake_case ):
__magic_name__ = '''sigmoid'''
__magic_name__ = '''softmax'''
__magic_name__ = '''none'''
@add_end_docstrings(
__snake_case , R'''
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return all prediction scores or just the one of the predicted class.
function_to_apply (`str`, *optional*, defaults to `"default"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model
has several labels, will apply the softmax function on the output.
- `"sigmoid"`: Applies the sigmoid function on the output.
- `"softmax"`: Applies the softmax function on the output.
- `"none"`: Does not apply any function on the output.
''' , )
class A ( __snake_case ):
__magic_name__ = False
__magic_name__ = ClassificationFunction.NONE
def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Optional[Any] = tokenizer_kwargs
A : int = {}
if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None:
A : int = self.model.config.return_all_scores
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None:
A : Union[str, Any] = top_k
A : Dict = False
elif return_all_scores is not None:
warnings.warn(
'''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'''
''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , )
if return_all_scores:
A : Optional[int] = None
else:
A : Dict = 1
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : Dict = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
A : int = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
A : Any = '''top_k''' not in kwargs
if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]:
"""simple docstring"""
A : List[Any] = self.framework
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'''
''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' )
return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return self.model(**SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]:
"""simple docstring"""
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
A : Optional[int] = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
A : Any = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None:
A : Optional[int] = self.model.config.function_to_apply
else:
A : Optional[int] = ClassificationFunction.NONE
A : Any = model_outputs['''logits'''][0]
A : List[Any] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
A : int = sigmoid(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.SOFTMAX:
A : Any = softmax(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.NONE:
A : int = outputs
else:
raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
A : int = [
{'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE )
]
if not _legacy:
dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE )
if top_k is not None:
A : Union[str, Any] = dict_scores[:top_k]
return dict_scores
| 311
| 1
|
'''simple docstring'''
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = SwinConfig()
A : List[Any] = swin_name.split('''_''' )
A : Tuple = name_split[1]
A : Union[str, Any] = int(name_split[4] )
A : str = int(name_split[3][-1] )
if model_size == "tiny":
A : Optional[int] = 96
A : Optional[Any] = (2, 2, 6, 2)
A : Any = (3, 6, 12, 24)
elif model_size == "small":
A : Optional[int] = 96
A : str = (2, 2, 18, 2)
A : Tuple = (3, 6, 12, 24)
elif model_size == "base":
A : int = 128
A : Optional[Any] = (2, 2, 18, 2)
A : List[str] = (4, 8, 16, 32)
else:
A : Dict = 192
A : Optional[Any] = (2, 2, 18, 2)
A : Optional[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
A : Dict = 2_1841
else:
A : str = 1000
A : List[str] = '''huggingface/label-files'''
A : Any = '''imagenet-1k-id2label.json'''
A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) )
A : str = {int(snake_case__ ): v for k, v in idalabel.items()}
A : Tuple = idalabel
A : Tuple = {v: k for k, v in idalabel.items()}
A : Tuple = img_size
A : Dict = num_classes
A : Optional[Any] = embed_dim
A : str = depths
A : str = num_heads
A : Optional[int] = window_size
return config
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if "patch_embed.proj" in name:
A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
A : Optional[int] = '''encoder.''' + name
if "attn.proj" in name:
A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
A : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
A : Any = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
A : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
A : str = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "norm.weight":
A : Tuple = '''layernorm.weight'''
if name == "norm.bias":
A : Tuple = '''layernorm.bias'''
if "head" in name:
A : Any = name.replace('''head''' , '''classifier''' )
else:
A : List[Any] = '''swin.''' + name
return name
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
A : Dict = orig_state_dict.pop(snake_case__ )
if "mask" in key:
continue
elif "qkv" in key:
A : Dict = key.split('''.''' )
A : Optional[int] = int(key_split[1] )
A : List[str] = int(key_split[3] )
A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
A : Any = val[:dim, :]
A : Dict = val[
dim : dim * 2, :
]
A : List[str] = val[-dim:, :]
else:
A : Any = val[
:dim
]
A : Optional[int] = val[
dim : dim * 2
]
A : Any = val[
-dim:
]
else:
A : str = val
return orig_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ )
timm_model.eval()
A : Optional[Any] = get_swin_config(snake_case__ )
A : Optional[int] = SwinForImageClassification(snake_case__ )
model.eval()
A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ )
model.load_state_dict(snake_case__ )
A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) )
A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' )
A : Any = timm_model(inputs['''pixel_values'''] )
A : Optional[Any] = model(**snake_case__ ).logits
assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 )
print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swin_name',
default='swin_tiny_patch4_window7_224',
type=str,
help='Name of the Swin timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
lowercase : int = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 311
|
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def lowerCAmelCase_ ( snake_case__ = "laptop" ):
'''simple docstring'''
A : Tuple = F'https://www.amazon.in/laptop/s?k={product}'
A : Optional[int] = {
'''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''',
'''Accept-Language''': '''en-US, en;q=0.5''',
}
A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text )
# Initialize a Pandas dataframe with the column titles
A : List[str] = DataFrame(
columns=[
'''Product Title''',
'''Product Link''',
'''Current Price of the product''',
'''Product Rating''',
'''MRP of the product''',
'''Discount''',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ):
try:
A : Optional[Any] = item.ha.text
A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href''']
A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text
try:
A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text
except AttributeError:
A : Optional[int] = '''Not available'''
try:
A : str = (
'''₹'''
+ item.find(
'''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1]
)
except AttributeError:
A : List[Any] = ''''''
try:
A : Dict = float(
(
(
float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
- float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) )
)
/ float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
)
* 100 )
except ValueError:
A : str = float('''nan''' )
except AttributeError:
pass
A : Union[str, Any] = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
A : List[str] = ''' '''
A : Optional[Any] = ''' '''
data_frame.index += 1
return data_frame
if __name__ == "__main__":
lowercase : Union[str, Any] = 'headphones'
get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
| 311
| 1
|
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowercase : Optional[int] = [
'kernels/rwkv/wkv_cuda.cu',
'kernels/rwkv/wkv_op.cpp',
'kernels/deformable_detr/ms_deform_attn.h',
'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh',
'models/graphormer/algos_graphormer.pyx',
]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowercase : str = argparse.ArgumentParser()
parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.')
lowercase : Optional[Any] = parser.parse_args()
if args.check_lib:
lowercase : List[Any] = importlib.import_module('transformers')
lowercase : str = Path(transformers_module.__file__).parent
else:
lowercase : List[Any] = Path.cwd() / 'build/lib/transformers'
if not test_custom_files_are_present(transformers_path):
raise ValueError('The built release does not contain the custom files. Fix this before going further!')
| 311
|
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[int] = x
A : str = y
for step in range(snake_case__ ): # noqa: B007
A : str = a * a - b * b + x
A : List[str] = 2 * a * b + y
A : str = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) )
def lowerCAmelCase_ ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ):
'''simple docstring'''
A : List[Any] = Image.new('''RGB''' , (image_width, image_height) )
A : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(snake_case__ ):
for image_y in range(snake_case__ ):
# determine the figure-coordinates based on the image-coordinates
A : Optional[int] = figure_width / image_width * image_height
A : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
A : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height
A : str = get_distance(snake_case__ , snake_case__ , snake_case__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
A : str = get_color_coded_rgb(snake_case__ )
else:
A : List[Any] = get_black_and_white_rgb(snake_case__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowercase : Optional[Any] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 311
| 1
|
'''simple docstring'''
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : List[Any] = inspect.getfile(accelerate.test_utils )
A : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
A : Optional[Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] )
@require_tpu
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = F'\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '.split()
A : Dict = [sys.executable] + distributed_args
execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() )
| 311
|
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowercase : Optional[int] = [
'kernels/rwkv/wkv_cuda.cu',
'kernels/rwkv/wkv_op.cpp',
'kernels/deformable_detr/ms_deform_attn.h',
'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh',
'models/graphormer/algos_graphormer.pyx',
]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowercase : str = argparse.ArgumentParser()
parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.')
lowercase : Optional[Any] = parser.parse_args()
if args.check_lib:
lowercase : List[Any] = importlib.import_module('transformers')
lowercase : str = Path(transformers_module.__file__).parent
else:
lowercase : List[Any] = Path.cwd() / 'build/lib/transformers'
if not test_custom_files_are_present(transformers_path):
raise ValueError('The built release does not contain the custom files. Fix this before going further!')
| 311
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Any = tempfile.mkdtemp()
# fmt: off
A : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
A : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
A : Tuple = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
A : Optional[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A : int = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : int = self.get_tokenizer()
A : Union[str, Any] = self.get_image_processor()
A : List[str] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
A : Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Any = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
A : Optional[int] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 )
A : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Dict = self.get_image_processor()
A : List[Any] = self.get_tokenizer()
A : str = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : List[str] = self.prepare_image_inputs()
A : int = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''np''' )
A : List[Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[Any] = self.get_image_processor()
A : int = self.get_tokenizer()
A : Tuple = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : Dict = '''lower newer'''
A : Tuple = processor(text=SCREAMING_SNAKE_CASE )
A : List[Any] = tokenizer(SCREAMING_SNAKE_CASE )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[Any] = self.get_image_processor()
A : int = self.get_tokenizer()
A : Any = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : Dict = '''lower newer'''
A : Any = self.prepare_image_inputs()
A : str = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(SCREAMING_SNAKE_CASE ):
processor()
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : List[str] = self.get_image_processor()
A : Optional[Any] = self.get_tokenizer()
A : Tuple = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A : List[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE )
A : str = tokenizer.batch_decode(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = self.get_image_processor()
A : Union[str, Any] = self.get_tokenizer()
A : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : Tuple = '''lower newer'''
A : Optional[Any] = self.prepare_image_inputs()
A : Tuple = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 311
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]:
"""simple docstring"""
A : List[str] = parent
A : Optional[Any] = batch_size
A : Tuple = image_size
A : int = patch_size
A : Optional[int] = num_channels
A : str = is_training
A : List[Any] = use_labels
A : Any = hidden_size
A : Any = num_hidden_layers
A : Optional[int] = num_attention_heads
A : Any = intermediate_size
A : List[str] = hidden_act
A : str = hidden_dropout_prob
A : Tuple = attention_probs_dropout_prob
A : Any = type_sequence_label_size
A : Optional[int] = initializer_range
A : Dict = scope
A : Tuple = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
A : List[Any] = (image_size // patch_size) ** 2
A : Tuple = num_patches + 2
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Tuple = None
if self.use_labels:
A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Tuple = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE )
A : str = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE )
A : List[Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
A : Optional[int] = 1
A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE )
A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Tuple = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
A : str = self.type_sequence_label_size
A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A : Optional[Any] = 1
A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[int] = self.prepare_config_and_inputs()
A, A, A : Tuple = config_and_inputs
A : Any = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': TFDeiTModel,
'''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = TFDeiTModelTester(self )
A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
pass
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
A : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A, A : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
A : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Union[str, Any] = [*signature.parameters.keys()]
A : List[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
A : Dict = self.default_image_processor
A : List[str] = prepare_img()
A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
A : Optional[int] = model(**SCREAMING_SNAKE_CASE )
# verify the logits
A : List[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
lowercase : int = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
lowercase : Union[str, Any] = [{'type': 'code', 'content': INSTALL_CONTENT}]
lowercase : Optional[int] = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 311
|
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase : List[str] = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
| 1
|
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE="last" , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = parent
A : Tuple = batch_size
A : Any = seq_length
A : str = is_training
A : Any = use_input_lengths
A : Optional[Any] = use_token_type_ids
A : str = use_labels
A : Optional[Any] = gelu_activation
A : Dict = sinusoidal_embeddings
A : Any = causal
A : List[str] = asm
A : Union[str, Any] = n_langs
A : int = vocab_size
A : str = n_special
A : Dict = hidden_size
A : Optional[Any] = num_hidden_layers
A : int = num_attention_heads
A : Any = hidden_dropout_prob
A : str = attention_probs_dropout_prob
A : int = max_position_embeddings
A : List[str] = type_vocab_size
A : Optional[int] = type_sequence_label_size
A : Any = initializer_range
A : Optional[Any] = num_labels
A : Dict = num_choices
A : Optional[int] = summary_type
A : Tuple = use_proj
A : int = scope
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
A : Any = None
if self.use_input_lengths:
A : List[str] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
A : int = None
if self.use_token_type_ids:
A : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
A : str = None
A : int = None
A : Optional[Any] = None
if self.use_labels:
A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A : str = ids_tensor([self.batch_size] , 2 ).float()
A : str = ids_tensor([self.batch_size] , self.num_choices )
A : List[Any] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : List[Any] = FlaubertModel(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , lengths=SCREAMING_SNAKE_CASE , langs=SCREAMING_SNAKE_CASE )
A : Dict = model(SCREAMING_SNAKE_CASE , langs=SCREAMING_SNAKE_CASE )
A : Optional[Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Dict:
"""simple docstring"""
A : Optional[Any] = FlaubertWithLMHeadModel(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : str = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : int = FlaubertForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Any = model(SCREAMING_SNAKE_CASE )
A : List[Any] = model(SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : int = FlaubertForQuestionAnswering(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE )
A : int = model(
SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , cls_index=SCREAMING_SNAKE_CASE , is_impossible=SCREAMING_SNAKE_CASE , p_mask=SCREAMING_SNAKE_CASE , )
A : Any = model(
SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , cls_index=SCREAMING_SNAKE_CASE , is_impossible=SCREAMING_SNAKE_CASE , )
((A), ) : str = result_with_labels.to_tuple()
A : int = model(SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE )
((A), ) : Dict = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Tuple = FlaubertForSequenceClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : int = model(SCREAMING_SNAKE_CASE )
A : Tuple = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Dict:
"""simple docstring"""
A : Tuple = self.num_labels
A : Dict = FlaubertForTokenClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> int:
"""simple docstring"""
A : Optional[Any] = self.num_choices
A : Dict = FlaubertForMultipleChoice(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : Optional[Any] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Optional[int] = self.prepare_config_and_inputs()
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : Optional[Any] = config_and_inputs
A : Dict = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''lengths''': input_lengths,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple:
"""simple docstring"""
A : List[str] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
A : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE )
A : str = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE )
return inputs_dict
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : List[Any] = FlaubertModelTester(self )
A : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , emb_dim=37 )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : str = FlaubertModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@slow
@require_torch_gpu
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A, A : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
A : Tuple = True
A : List[Any] = model_class(config=SCREAMING_SNAKE_CASE )
A : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[int] = torch.jit.trace(
SCREAMING_SNAKE_CASE , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''traced_model.pt''' ) )
A : int = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE )
loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE ) )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[int] = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' )
A : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
A : List[str] = model(SCREAMING_SNAKE_CASE )[0]
A : Any = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : str = torch.tensor(
[[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
|
'''simple docstring'''
from __future__ import annotations
lowercase : Union[str, Any] = list[tuple[int, int]]
lowercase : Optional[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
A : int = pos_x
A : Optional[Any] = pos_y
A : Optional[Any] = (pos_y, pos_x)
A : str = goal_x
A : Optional[int] = goal_y
A : List[Any] = g_cost
A : str = parent
A : str = self.calculate_heuristic()
def __lowerCAmelCase ( self ) -> float:
"""simple docstring"""
A : Optional[int] = abs(self.pos_x - self.goal_x )
A : Optional[Any] = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return self.f_cost < other.f_cost
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE )
A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE )
A : Optional[Any] = [self.start]
A : list[Node] = []
A : Tuple = False
def __lowerCAmelCase ( self ) -> Path | None:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
A : Optional[int] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
A : Optional[int] = True
return self.retrace_path(SCREAMING_SNAKE_CASE )
self.closed_nodes.append(SCREAMING_SNAKE_CASE )
A : Any = self.get_successors(SCREAMING_SNAKE_CASE )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
# retrieve the best current path
A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
if not self.reached:
return [self.start.pos]
return None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]:
"""simple docstring"""
A : List[Any] = []
for action in delta:
A : List[str] = parent.pos_x + action[1]
A : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) )
return successors
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path:
"""simple docstring"""
A : int = node
A : Union[str, Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
A : int = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase : Tuple = (0, 0)
lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print('------')
lowercase : int = GreedyBestFirst(init, goal)
lowercase : Union[str, Any] = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase : Dict = 2
for elem in grid:
print(elem)
| 311
| 1
|
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class A ( __snake_case ):
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[Any] = tempfile.mkdtemp()
A : Dict = 8
# DPR tok
A : Any = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
A : Optional[Any] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
A : List[Any] = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
A : Optional[Any] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
A : Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) )
A : Optional[int] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
A : Any = {'''unk_token''': '''<unk>'''}
A : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
A : Tuple = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
A : List[str] = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE ) )
def __lowerCAmelCase ( self ) -> DPRQuestionEncoderTokenizer:
"""simple docstring"""
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def __lowerCAmelCase ( self ) -> DPRContextEncoderTokenizer:
"""simple docstring"""
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def __lowerCAmelCase ( self ) -> BartTokenizer:
"""simple docstring"""
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Optional[Any] = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : List[str] = self.get_dummy_dataset()
A : int = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
A : Dict = dataset
A : Optional[Any] = RagRetriever(
SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = self.get_dummy_dataset()
A : Tuple = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , )
if from_disk:
A : Dict = os.path.join(self.tmpdirname , '''dataset''' )
A : List[Any] = os.path.join(self.tmpdirname , '''index.faiss''' )
dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) )
dataset.drop_index('''embeddings''' )
dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) )
del dataset
A : Any = RagRetriever(
SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
A : Tuple = RagRetriever(
SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , )
return retriever
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[Any] = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
A : str = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' )
dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' )
pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) )
A : Optional[Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' )
A : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset}
pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , '''wb''' ) )
A : str = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , )
A : Tuple = RagRetriever(
SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = 1
A : Dict = self.get_dummy_canonical_hf_index_retriever()
A : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A, A, A : List[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : str = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
A : List[str] = self.get_dummy_dataset()
retriever.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A : int = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : str = 1
A : int = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A, A, A : List[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : int = 1
A : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A, A, A : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(SCREAMING_SNAKE_CASE )
A : Any = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : int = 1
A : Dict = self.get_dummy_legacy_index_retriever()
A : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A, A, A : Tuple = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''text'''] ) , SCREAMING_SNAKE_CASE )
self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Union[str, Any] = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
import torch
A : Any = 1
A : Dict = self.get_dummy_canonical_hf_index_retriever()
A : Tuple = [[5, 7], [10, 11]]
A : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A : Tuple = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE )
A, A, A : Union[str, Any] = (
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray )
A : Optional[Any] = retriever(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , )
A, A, A, A : int = ( # noqa: F841
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
out['''doc_ids'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor )
self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor )
self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Optional[int] = self.get_dpr_ctx_encoder_tokenizer()
A : Union[str, Any] = 1
A : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE )
retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE )
A : Tuple = [[5, 7], [10, 11]]
A : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
A : Union[str, Any] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE )
self.assertEqual(
len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
| 311
|
'''simple docstring'''
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
lowercase : Any = 'src/transformers'
lowercase : str = 'docs/source/en/tasks'
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
A : Union[str, Any] = f.readlines()
# Find the start prompt.
A : List[Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
A : List[str] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
lowercase : int = direct_transformers_import(TRANSFORMERS_PATH)
lowercase : str = {
'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
lowercase : Optional[int] = {
'summarization.md': ('nllb',),
'translation.md': ('nllb',),
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : int = TASK_GUIDE_TO_MODELS[task_guide]
A : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() )
A : Union[str, Any] = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n"
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A, A, A : Optional[int] = _find_text_in_file(
filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , )
A : Optional[int] = get_model_list_for_task(snake_case__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'
''' to fix this.''' )
if __name__ == "__main__":
lowercase : Dict = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
lowercase : List[Any] = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 311
| 1
|
'''simple docstring'''
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def lowerCAmelCase_ ( snake_case__ = True , *snake_case__ , **snake_case__ ):
'''simple docstring'''
if not is_tqdm_available():
raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' )
A : List[Any] = False
if main_process_only:
A : str = PartialState().local_process_index == 0
return _tqdm(*snake_case__ , **snake_case__ , disable=snake_case__ )
| 311
|
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if len(snake_case__ ) <= 1:
return [tuple(snake_case__ )]
A : Tuple = []
def generate(snake_case__ , snake_case__ ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , snake_case__ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
A, A : Optional[Any] = arr[k - 1], arr[i]
else: # k is odd
A, A : Optional[Any] = arr[k - 1], arr[0]
generate(k - 1 , snake_case__ )
generate(len(snake_case__ ) , snake_case__ )
return res
if __name__ == "__main__":
lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip()
lowercase : int = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 311
| 1
|
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowercase : Any = _symbol_database.Default()
lowercase : int = _descriptor_pool.Default().AddSerializedFile(
B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
lowercase : Optional[int] = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowercase : List[Any] = None
lowercase : Tuple = B'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowercase : List[str] = 45
lowercase : List[Any] = 15_81
lowercase : List[str] = 15_17
lowercase : List[Any] = 15_70
lowercase : Optional[int] = 15_84
lowercase : Any = 17_93
lowercase : Any = 17_95
lowercase : Tuple = 19_16
lowercase : Any = 18_64
lowercase : List[Any] = 19_05
lowercase : str = 19_19
lowercase : Any = 24_29
lowercase : Optional[int] = 22_08
lowercase : Dict = 24_18
lowercase : Tuple = 23_23
lowercase : Tuple = 24_07
# @@protoc_insertion_point(module_scope)
| 311
|
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( __snake_case ):
__magic_name__ = (UniPCMultistepScheduler,)
__magic_name__ = (('''num_inference_steps''', 25),)
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : str = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''solver_type''': '''bh2''',
}
config.update(**SCREAMING_SNAKE_CASE )
return config
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : List[Any] = dict(self.forward_default_kwargs )
A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
A : Optional[Any] = self.dummy_sample
A : int = 0.1 * sample
A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE )
A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order]
A, A : Tuple = sample, sample
for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ):
A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = dict(self.forward_default_kwargs )
A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
A : List[Any] = self.dummy_sample
A : int = 0.1 * sample
A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A : Optional[int] = self.get_scheduler_config()
A : Any = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
A : int = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE )
A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if scheduler is None:
A : Dict = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Tuple = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : int = 10
A : Tuple = self.dummy_model()
A : Any = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
return sample
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = dict(self.forward_default_kwargs )
A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
A : Dict = self.get_scheduler_config()
A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Optional[Any] = self.dummy_sample
A : Optional[int] = 0.1 * sample
if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
A : Tuple = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10]
A : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
A : List[Any] = scheduler.timesteps[5]
A : Dict = scheduler.timesteps[6]
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() )
A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE )
A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config )
A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config )
A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config )
A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config )
A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE )
A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , )
A : Dict = self.full_loop(
solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , )
assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers"
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE )
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : int = self.full_loop()
A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.full_loop(prediction_type='''v_prediction''' )
A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.1_014 ) < 1e-3
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = self.scheduler_classes[0]
A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 )
A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Tuple = 10
A : Union[str, Any] = self.dummy_model()
A : Dict = self.dummy_sample_deter.half()
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
assert sample.dtype == torch.floataa
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
for scheduler_class in self.scheduler_classes:
A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 311
| 1
|
'''simple docstring'''
lowercase : Union[str, Any] = 0 # The first color of the flag.
lowercase : Union[str, Any] = 1 # The second color of the flag.
lowercase : Optional[int] = 2 # The third color of the flag.
lowercase : Tuple = (red, white, blue)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not sequence:
return []
if len(snake_case__ ) == 1:
return list(snake_case__ )
A : Dict = 0
A : Optional[int] = len(snake_case__ ) - 1
A : Tuple = 0
while mid <= high:
if sequence[mid] == colors[0]:
A, A : List[Any] = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
A, A : int = sequence[high], sequence[mid]
high -= 1
else:
A : Optional[Any] = F'The elements inside the sequence must contains only {colors} values'
raise ValueError(snake_case__ )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase : List[str] = input('Enter numbers separated by commas:\n').strip()
lowercase : Dict = [int(item.strip()) for item in user_input.split(',')]
print(f'''{dutch_national_flag_sort(unsorted)}''')
| 311
|
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
super().__init__()
# make sure scheduler can always be converted to DDIM
A : Dict = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ):
A : List[Any] = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
A : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : int = self.scheduler.step(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample
A : Dict = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A, A : Optional[int] = set(snake_case__ ), [start]
while stack:
A : Any = stack.pop()
explored.add(snake_case__ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(snake_case__ )
return explored
lowercase : Optional[Any] = {
'A': ['B', 'C', 'D'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B', 'D'],
'E': ['B', 'F'],
'F': ['C', 'E', 'G'],
'G': ['F'],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, 'A'))
| 311
|
'''simple docstring'''
from __future__ import annotations
from random import random
class A :
def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = value
A : Any = random()
A : Node | None = None
A : Node | None = None
def __repr__( self ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return F'\'{self.value}: {self.prior:.5}\''
else:
return pformat(
{F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 )
def __str__( self ) -> str:
"""simple docstring"""
A : Optional[Any] = str(self.value ) + ''' '''
A : Union[str, Any] = str(self.left or '''''' )
A : Any = str(self.right or '''''' )
return value + left + right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
A, A : Any = split(root.left , snake_case__ )
return left, root
else:
A, A : Optional[int] = split(root.right , snake_case__ )
return root, right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
A : List[str] = merge(left.right , snake_case__ )
return left
else:
A : Tuple = merge(snake_case__ , right.left )
return right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[Any] = Node(snake_case__ )
A, A : Tuple = split(snake_case__ , snake_case__ )
return merge(merge(snake_case__ , snake_case__ ) , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A, A : Dict = split(snake_case__ , value - 1 )
A, A : Any = split(snake_case__ , snake_case__ )
return merge(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=''',''' )
inorder(root.right )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
A : int = insert(snake_case__ , int(arg[1:] ) )
elif arg[0] == "-":
A : int = erase(snake_case__ , int(arg[1:] ) )
else:
print('''Unknown command''' )
return root
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Union[str, Any] = None
print(
'''enter numbers to create a tree, + value to add value into treap, '''
'''- value to erase all nodes with value. \'q\' to quit. ''' )
A : Optional[int] = input()
while args != "q":
A : str = interact_treap(snake_case__ , snake_case__ )
print(snake_case__ )
A : Union[str, Any] = input()
print('''good by!''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 311
| 1
|
'''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : Optional[Any] = 3
A : List[Any] = 250
A : Tuple = ids_tensor((batch_size, length) , SCREAMING_SNAKE_CASE )
A : Tuple = torch.ones((batch_size, length) , device=SCREAMING_SNAKE_CASE , dtype=torch.float ) / length
return input_ids, scores
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A : Any = self._get_tensors(5 )
A : Optional[Any] = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A, A : Optional[int] = self._get_tensors(9 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A, A : List[Any] = self._get_tensors(10 )
self.assertTrue(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : str = MaxLengthCriteria(max_length=10 )
A, A : int = self._get_tensors(5 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A, A : List[Any] = self._get_tensors(9 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A, A : Any = self._get_tensors(10 )
self.assertTrue(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : int = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
A, A : List[str] = self._get_tensors(5 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A, A : Any = self._get_tensors(9 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A, A : int = self._get_tensors(10 )
self.assertTrue(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A : Optional[Any] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A, A : Union[str, Any] = self._get_tensors(5 )
A : List[Any] = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(SCREAMING_SNAKE_CASE ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
A : int = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1 )
| 311
|
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]:
"""simple docstring"""
A : Tuple = '''bilinear'''
A : Optional[int] = max_size
A : Dict = short_edge_length
def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Tuple = []
for img in imgs:
A, A : str = img.shape[:2]
# later: provide list and randomly choose index for resize
A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if h < w:
A, A : Tuple = size, scale * w
else:
A, A : str = scale * h, size
if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size:
A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Tuple = newh * scale
A : int = neww * scale
A : List[str] = int(neww + 0.5 )
A : int = int(newh + 0.5 )
if img.dtype == np.uinta:
A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE )
A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
A : str = np.asarray(SCREAMING_SNAKE_CASE )
else:
A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
A : List[Any] = nn.functional.interpolate(
SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 )
img_augs.append(SCREAMING_SNAKE_CASE )
return img_augs
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
A : str = cfg.INPUT.FORMAT
A : int = cfg.SIZE_DIVISIBILITY
A : Optional[int] = cfg.PAD_VALUE
A : Dict = cfg.INPUT.MAX_SIZE_TEST
A : Optional[Any] = cfg.MODEL.DEVICE
A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) )
A : List[str] = [im.shape[-2:] for im in images]
A : Optional[Any] = [
nn.functional.pad(
SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
"""simple docstring"""
with torch.no_grad():
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : str = [images]
if single_image:
assert len(SCREAMING_SNAKE_CASE ) == 1
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
A : Tuple = torch.tensor([im.shape[:2] for im in images] )
A : Dict = self.aug(SCREAMING_SNAKE_CASE )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images]
# now pad them to do the following operations
A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!"
A, A : str = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case__ )
tensor[:, 1].clamp_(min=0 , max=snake_case__ )
tensor[:, 2].clamp_(min=0 , max=snake_case__ )
tensor[:, 3].clamp_(min=0 , max=snake_case__ )
| 311
| 1
|
'''simple docstring'''
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = parent
A : Optional[Any] = batch_size
A : Optional[Any] = seq_length
A : List[Any] = is_training
A : Optional[Any] = use_input_mask
A : Dict = use_token_type_ids
A : List[str] = use_labels
A : List[Any] = vocab_size
A : Optional[Any] = hidden_size
A : int = embedding_size
A : Union[str, Any] = num_hidden_layers
A : Tuple = num_attention_heads
A : Optional[int] = intermediate_size
A : Union[str, Any] = hidden_act
A : List[Any] = hidden_dropout_prob
A : Dict = attention_probs_dropout_prob
A : str = max_position_embeddings
A : str = type_vocab_size
A : Dict = type_sequence_label_size
A : str = initializer_range
A : Optional[int] = num_labels
A : Tuple = num_choices
A : str = scope
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : int = None
if self.use_input_mask:
A : str = random_attention_mask([self.batch_size, self.seq_length] )
A : Optional[Any] = None
if self.use_token_type_ids:
A : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A : Dict = None
A : int = None
A : Optional[Any] = None
if self.use_labels:
A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
A : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : List[Any] = MegatronBertModel(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE )
A : Optional[int] = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
A : Union[str, Any] = MegatronBertForMaskedLM(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : int = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : str = MegatronBertForCausalLM(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Tuple = MegatronBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
A : Optional[Any] = MegatronBertForPreTraining(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[str] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , next_sentence_label=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : Any = MegatronBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : Optional[int] = self.num_labels
A : List[Any] = MegatronBertForSequenceClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : Dict = self.num_labels
A : Union[str, Any] = MegatronBertForTokenClassification(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : int = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : List[Any] = self.num_choices
A : Optional[int] = MegatronBertForMultipleChoice(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : Tuple = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : str = self.prepare_config_and_inputs()
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : str = config_and_inputs
A : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': MegatronBertModel,
'''fill-mask''': MegatronBertForMaskedLM,
'''question-answering''': MegatronBertForQuestionAnswering,
'''text-classification''': MegatronBertForSequenceClassification,
'''text-generation''': MegatronBertForCausalLM,
'''token-classification''': MegatronBertForTokenClassification,
'''zero-shot''': MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__magic_name__ = True
# test_resize_embeddings = False
__magic_name__ = False
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Optional[int]:
"""simple docstring"""
A : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if model_class in get_values(SCREAMING_SNAKE_CASE ):
A : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE )
A : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE )
return inputs_dict
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : int = MegatronBertModelTester(self )
A : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return torch.tensor(
snake_case__ , dtype=torch.long , device=snake_case__ , )
lowercase : Optional[Any] = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
class A ( unittest.TestCase ):
@slow
@unittest.skip('''Model is not available.''' )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Tuple = '''nvidia/megatron-bert-uncased-345m'''
if "MYDIR" in os.environ:
A : List[Any] = os.path.join(os.environ['''MYDIR'''] , SCREAMING_SNAKE_CASE )
A : Optional[Any] = MegatronBertModel.from_pretrained(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.half()
A : Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] )
with torch.no_grad():
A : List[str] = model(SCREAMING_SNAKE_CASE )[0]
A : List[Any] = torch.Size((1, 9, 1024) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Any = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728]
for ii in range(3 ):
for jj in range(3 ):
A : Union[str, Any] = output[0, ii, jj]
A : str = expected[3 * ii + jj]
A : List[str] = '''ii={} jj={} a={} b={}'''.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertTrue(math.isclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rel_tol=SCREAMING_SNAKE_CASE , abs_tol=SCREAMING_SNAKE_CASE ) , msg=SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
'--original_config_file',
default=None,
type=str,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--scheduler_type',
default='pndm',
type=str,
help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']',
)
parser.add_argument(
'--pipeline_type',
default=None,
type=str,
help=(
'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\''
'. If `None` pipeline will be automatically inferred.'
),
)
parser.add_argument(
'--image_size',
default=None,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--prediction_type',
default=None,
type=str,
help=(
'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable'
' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
parser.add_argument(
'--stable_unclip',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.',
)
parser.add_argument(
'--stable_unclip_prior',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.',
)
parser.add_argument(
'--clip_stats_path',
type=str,
help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.',
required=False,
)
parser.add_argument(
'--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.'
)
parser.add_argument('--half', action='store_true', help='Save weights in half precision.')
parser.add_argument(
'--vae_path',
type=str,
default=None,
required=False,
help='Set to a path, hub id to an already converted vae to not convert it again.',
)
lowercase : Tuple = parser.parse_args()
lowercase : Union[str, Any] = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 311
| 1
|
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class A ( __snake_case ):
def __init__( self , *SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = eval_examples
A : int = post_process_function
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = "eval" ) -> Any:
"""simple docstring"""
A : Any = self.eval_dataset if eval_dataset is None else eval_dataset
A : Union[str, Any] = self.get_eval_dataloader(SCREAMING_SNAKE_CASE )
A : Optional[int] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
A : Optional[int] = self.compute_metrics
A : Union[str, Any] = None
A : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
A : Optional[int] = time.time()
try:
A : Tuple = eval_loop(
SCREAMING_SNAKE_CASE , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE , metric_key_prefix=SCREAMING_SNAKE_CASE , )
finally:
A : List[Any] = compute_metrics
A : Union[str, Any] = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
A : Optional[Any] = self.post_process_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , output.predictions )
A : Any = self.compute_metrics(SCREAMING_SNAKE_CASE )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
A : Optional[Any] = metrics.pop(SCREAMING_SNAKE_CASE )
metrics.update(output.metrics )
else:
A : str = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(SCREAMING_SNAKE_CASE )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
A : str = self.callback_handler.on_evaluate(self.args , self.state , self.control , SCREAMING_SNAKE_CASE )
return metrics
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = "test" ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[int] = self.get_test_dataloader(SCREAMING_SNAKE_CASE )
# Temporarily disable metric computation, we will do it in the loop here.
A : Union[str, Any] = self.compute_metrics
A : Union[str, Any] = None
A : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
A : int = time.time()
try:
A : int = eval_loop(
SCREAMING_SNAKE_CASE , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE , metric_key_prefix=SCREAMING_SNAKE_CASE , )
finally:
A : int = compute_metrics
A : List[Any] = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
A : Optional[int] = self.post_process_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , output.predictions , '''predict''' )
A : int = self.compute_metrics(SCREAMING_SNAKE_CASE )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
A : Tuple = metrics.pop(SCREAMING_SNAKE_CASE )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase : str = datasets.utils.logging.get_logger(__name__)
lowercase : Union[str, Any] = ['names', 'prefix']
lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
lowercase : List[Any] = ['encoding_errors', 'on_bad_lines']
lowercase : Any = ['date_format']
@dataclass
class A ( datasets.BuilderConfig ):
__magic_name__ = ","
__magic_name__ = None
__magic_name__ = "infer"
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = "."
__magic_name__ = None
__magic_name__ = '"'
__magic_name__ = 0
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = 0
__magic_name__ = True
__magic_name__ = False
__magic_name__ = None
__magic_name__ = 10000
__magic_name__ = None
__magic_name__ = "strict"
__magic_name__ = "error"
__magic_name__ = None
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
if self.delimiter is not None:
A : Optional[Any] = self.delimiter
if self.column_names is not None:
A : Optional[Any] = self.column_names
@property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : str = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A ( datasets.ArrowBasedBuilder ):
__magic_name__ = CsvConfig
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
A : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ):
A : str = data_files
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = [files]
A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
A : Tuple = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : List[str] = [files]
A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) )
return splits
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
A : Optional[int] = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ):
# cheaper cast
A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return pa_table
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
A : int = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ):
A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ):
A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE )
except ValueError as e:
logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' )
raise
| 311
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Dict = tempfile.mkdtemp()
# fmt: off
A : List[Any] = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
A : Any = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) )
A : Dict = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
A : Dict = {'''unk_token''': '''<unk>'''}
A : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE ) )
A : Any = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073],
'''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
A : List[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A : List[Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Optional[int] = self.get_tokenizer()
A : Union[str, Any] = self.get_rust_tokenizer()
A : Optional[int] = self.get_image_processor()
A : Optional[Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
processor_slow.save_pretrained(self.tmpdirname )
A : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE )
A : Tuple = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
processor_fast.save_pretrained(self.tmpdirname )
A : Any = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : int = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
A : Tuple = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE )
A : str = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Tuple = self.get_image_processor()
A : List[str] = self.get_tokenizer()
A : Union[str, Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : Dict = self.prepare_image_inputs()
A : Optional[Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''np''' )
A : Optional[int] = processor(images=SCREAMING_SNAKE_CASE , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Union[str, Any] = self.get_image_processor()
A : Tuple = self.get_tokenizer()
A : List[Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : Tuple = '''lower newer'''
A : List[Any] = processor(text=SCREAMING_SNAKE_CASE , return_tensors='''np''' )
A : int = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='''np''' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : int = self.get_image_processor()
A : List[str] = self.get_tokenizer()
A : Optional[int] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : int = '''lower newer'''
A : Optional[int] = self.prepare_image_inputs()
A : Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE ):
processor()
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = '''google/owlvit-base-patch32'''
A : Optional[int] = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
A : List[str] = ['''cat''', '''nasa badge''']
A : int = processor(text=SCREAMING_SNAKE_CASE )
A : List[Any] = 16
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE ):
processor()
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Any = '''google/owlvit-base-patch32'''
A : str = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
A : Optional[int] = [['''cat''', '''nasa badge'''], ['''person''']]
A : Any = processor(text=SCREAMING_SNAKE_CASE )
A : Optional[Any] = 16
A : Dict = len(SCREAMING_SNAKE_CASE )
A : List[str] = max([len(SCREAMING_SNAKE_CASE ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE ):
processor()
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : int = '''google/owlvit-base-patch32'''
A : Optional[Any] = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE )
A : Optional[Any] = ['''cat''', '''nasa badge''']
A : str = processor(text=SCREAMING_SNAKE_CASE )
A : Optional[int] = 16
A : str = inputs['''input_ids''']
A : Optional[int] = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] )
self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[int] = self.get_image_processor()
A : int = self.get_tokenizer()
A : Union[str, Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : Any = self.prepare_image_inputs()
A : Tuple = self.prepare_image_inputs()
A : Tuple = processor(images=SCREAMING_SNAKE_CASE , query_images=SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE ):
processor()
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = self.get_image_processor()
A : Optional[Any] = self.get_tokenizer()
A : str = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE )
A : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A : Union[str, Any] = processor.batch_decode(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : int = logging.get_logger(__name__)
lowercase : int = {
'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class A ( __snake_case ):
__magic_name__ = '''sew'''
def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="group" , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE )
A : Optional[Any] = hidden_size
A : Any = feat_extract_norm
A : Optional[int] = feat_extract_activation
A : Tuple = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : int = conv_bias
A : List[Any] = num_conv_pos_embeddings
A : Tuple = num_conv_pos_embedding_groups
A : int = len(self.conv_dim )
A : Dict = num_hidden_layers
A : Optional[int] = intermediate_size
A : Any = squeeze_factor
A : int = hidden_act
A : str = num_attention_heads
A : Dict = hidden_dropout
A : Optional[Any] = attention_dropout
A : List[str] = activation_dropout
A : Union[str, Any] = feat_proj_dropout
A : Union[str, Any] = final_dropout
A : int = layerdrop
A : Optional[Any] = layer_norm_eps
A : Any = initializer_range
A : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A : Optional[Any] = apply_spec_augment
A : Optional[Any] = mask_time_prob
A : Union[str, Any] = mask_time_length
A : Optional[Any] = mask_time_min_masks
A : str = mask_feature_prob
A : Tuple = mask_feature_length
A : Any = mask_feature_min_masks
# ctc loss
A : List[Any] = ctc_loss_reduction
A : Dict = ctc_zero_infinity
# sequence classification
A : int = use_weighted_layer_sum
A : Optional[int] = classifier_proj_size
@property
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 311
| 1
|
'''simple docstring'''
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def lowerCAmelCase_ ( snake_case__ = 3 ):
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('''number of qubits must be a integer.''' )
if number_of_qubits <= 0:
raise ValueError('''number of qubits must be > 0.''' )
if math.floor(snake_case__ ) != number_of_qubits:
raise ValueError('''number of qubits must be exact integer.''' )
if number_of_qubits > 10:
raise ValueError('''number of qubits too large to simulate(>10).''' )
A : Optional[int] = QuantumRegister(snake_case__ , '''qr''' )
A : Optional[Any] = ClassicalRegister(snake_case__ , '''cr''' )
A : List[str] = QuantumCircuit(snake_case__ , snake_case__ )
A : Optional[int] = number_of_qubits
for i in range(snake_case__ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(snake_case__ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case__ , snake_case__ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(snake_case__ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(snake_case__ , snake_case__ )
# simulate with 10000 shots
A : List[str] = Aer.get_backend('''qasm_simulator''' )
A : Tuple = execute(snake_case__ , snake_case__ , shots=1_0000 )
return job.result().get_counts(snake_case__ )
if __name__ == "__main__":
print(
f'''Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'''
)
| 311
|
'''simple docstring'''
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = SwinConfig()
A : List[Any] = swin_name.split('''_''' )
A : Tuple = name_split[1]
A : Union[str, Any] = int(name_split[4] )
A : str = int(name_split[3][-1] )
if model_size == "tiny":
A : Optional[int] = 96
A : Optional[Any] = (2, 2, 6, 2)
A : Any = (3, 6, 12, 24)
elif model_size == "small":
A : Optional[int] = 96
A : str = (2, 2, 18, 2)
A : Tuple = (3, 6, 12, 24)
elif model_size == "base":
A : int = 128
A : Optional[Any] = (2, 2, 18, 2)
A : List[str] = (4, 8, 16, 32)
else:
A : Dict = 192
A : Optional[Any] = (2, 2, 18, 2)
A : Optional[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
A : Dict = 2_1841
else:
A : str = 1000
A : List[str] = '''huggingface/label-files'''
A : Any = '''imagenet-1k-id2label.json'''
A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) )
A : str = {int(snake_case__ ): v for k, v in idalabel.items()}
A : Tuple = idalabel
A : Tuple = {v: k for k, v in idalabel.items()}
A : Tuple = img_size
A : Dict = num_classes
A : Optional[Any] = embed_dim
A : str = depths
A : str = num_heads
A : Optional[int] = window_size
return config
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if "patch_embed.proj" in name:
A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
A : Optional[int] = '''encoder.''' + name
if "attn.proj" in name:
A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
A : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
A : Any = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
A : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
A : str = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "norm.weight":
A : Tuple = '''layernorm.weight'''
if name == "norm.bias":
A : Tuple = '''layernorm.bias'''
if "head" in name:
A : Any = name.replace('''head''' , '''classifier''' )
else:
A : List[Any] = '''swin.''' + name
return name
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
A : Dict = orig_state_dict.pop(snake_case__ )
if "mask" in key:
continue
elif "qkv" in key:
A : Dict = key.split('''.''' )
A : Optional[int] = int(key_split[1] )
A : List[str] = int(key_split[3] )
A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
A : Any = val[:dim, :]
A : Dict = val[
dim : dim * 2, :
]
A : List[str] = val[-dim:, :]
else:
A : Any = val[
:dim
]
A : Optional[int] = val[
dim : dim * 2
]
A : Any = val[
-dim:
]
else:
A : str = val
return orig_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ )
timm_model.eval()
A : Optional[Any] = get_swin_config(snake_case__ )
A : Optional[int] = SwinForImageClassification(snake_case__ )
model.eval()
A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ )
model.load_state_dict(snake_case__ )
A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) )
A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' )
A : Any = timm_model(inputs['''pixel_values'''] )
A : Optional[Any] = model(**snake_case__ ).logits
assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 )
print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swin_name',
default='swin_tiny_patch4_window7_224',
type=str,
help='Name of the Swin timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
lowercase : int = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 311
| 1
|
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase : List[str] = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Optional[int] = logging.get_logger(__name__)
lowercase : Tuple = {
'google/pix2struct-textcaps-base': (
'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json'
),
}
class A ( __snake_case ):
__magic_name__ = '''pix2struct_text_model'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {
'''hidden_size''': '''hidden_size''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]:
"""simple docstring"""
A : str = vocab_size
A : List[str] = hidden_size
A : List[Any] = d_kv
A : Optional[Any] = d_ff
A : Dict = num_layers
A : Dict = num_heads
A : Optional[int] = relative_attention_num_buckets
A : Optional[Any] = relative_attention_max_distance
A : Dict = dropout_rate
A : Dict = layer_norm_epsilon
A : Tuple = initializer_factor
A : Union[str, Any] = use_cache
A : int = eos_token_id
A : List[str] = decoder_start_token_id
# for backwards compatibility
A : int = dense_act_fn
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Union[str, Any] = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct_vision_model'''
def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : List[str] = hidden_size
A : Optional[Any] = patch_embed_hidden_size
A : Union[str, Any] = d_ff
A : Dict = dropout_rate
A : str = num_hidden_layers
A : Dict = num_attention_heads
A : Tuple = initializer_range
A : List[str] = initializer_factor
A : Union[str, Any] = attention_dropout
A : Tuple = layer_norm_eps
A : int = dense_act_fn
A : Optional[int] = seq_len
A : Tuple = relative_attention_num_buckets
A : str = relative_attention_max_distance
A : Optional[Any] = d_kv
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Optional[Any] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct'''
__magic_name__ = True
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
if text_config is None:
A : Dict = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
A : str = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE )
A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE )
A : Any = self.text_config.decoder_start_token_id
A : Any = self.text_config.pad_token_id
A : Dict = self.text_config.eos_token_id
A : Union[str, Any] = initializer_factor
A : Tuple = initializer_range
A : Optional[Any] = self.initializer_range
A : int = self.initializer_range
A : Tuple = is_vqa
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Tuple = copy.deepcopy(self.__dict__ )
A : Dict = self.text_config.to_dict()
A : int = self.vision_config.to_dict()
A : Any = self.__class__.model_type
return output
| 311
| 1
|
'''simple docstring'''
import math
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : str = [True] * n
A : Union[str, Any] = False
A : Optional[Any] = False
A : List[str] = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
A : Dict = i * 2
while index < n:
A : int = False
A : int = index + i
A : Union[str, Any] = [2]
for i in range(3 , snake_case__ , 2 ):
if is_prime[i]:
primes.append(snake_case__ )
return primes
def lowerCAmelCase_ ( snake_case__ = 9999_6666_3333 ):
'''simple docstring'''
A : Any = math.floor(math.sqrt(snake_case__ ) ) + 100
A : List[Any] = prime_sieve(snake_case__ )
A : Optional[int] = 0
A : Any = 0
A : str = primes[prime_index]
while (last_prime**2) <= limit:
A : Any = primes[prime_index + 1]
A : Any = last_prime**2
A : Dict = next_prime**2
# Get numbers divisible by lps(current)
A : str = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : Dict = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Tuple = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 311
|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = 2
A : Dict = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(snake_case__ )
if n > 1:
factors.append(snake_case__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowercase : Dict = logging.get_logger(__name__)
lowercase : Tuple = {
'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json',
}
class A ( __snake_case , __snake_case ):
__magic_name__ = '''convnextv2'''
def __init__( self , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : Union[str, Any] = num_channels
A : List[str] = patch_size
A : str = num_stages
A : Optional[Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
A : Dict = [3, 3, 9, 3] if depths is None else depths
A : Union[str, Any] = hidden_act
A : List[Any] = initializer_range
A : Optional[int] = layer_norm_eps
A : List[Any] = drop_path_rate
A : List[Any] = image_size
A : Any = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )]
A, A : Optional[Any] = get_aligned_output_features_output_indices(
out_features=SCREAMING_SNAKE_CASE , out_indices=SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
| 311
|
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(0 , snake_case__ ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(''' ''' , end='''''' )
for _ in range(0 , i + 1 ): # printing stars
print('''* ''' , end='''''' )
print()
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(snake_case__ , 0 , -1 ):
for _ in range(snake_case__ , 0 , -1 ): # printing stars
print('''* ''' , end='''''' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(''' ''' , end='''''' )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if n <= 0:
print(''' ... .... nothing printing :(''' )
return
floyd(snake_case__ ) # upper half
reverse_floyd(snake_case__ ) # lower half
if __name__ == "__main__":
print(R'| /\ | |- | |- |--| |\ /| |-')
print(R'|/ \| |- |_ |_ |__| | \/ | |_')
lowercase : List[str] = 1
while K:
lowercase : List[Any] = int(input('enter the number and , and see the magic : '))
print()
pretty_print(user_number)
lowercase : Any = int(input('press 0 to exit... and 1 to continue...'))
print('Good Bye...')
| 311
| 1
|
'''simple docstring'''
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
A : str = flax_key_tuple[:-1] + ('''weight''',)
A : Any = torch.permute(snake_case__ , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ):
# linear layer
A : Optional[Any] = flax_key_tuple[:-1] + ('''weight''',)
A : Optional[Any] = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
A : Union[str, Any] = flax_key_tuple[:-1] + ('''weight''',)
return flax_key_tuple, flax_tensor
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
if "metadata" in layer:
A : List[str] = layer.split('''metadata''' )
A : Union[str, Any] = ''''''.join(split_layer[0] )[:-1]
A : Dict = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )]
elif "kvstore" in layer:
A : Tuple = layer.split('''kvstore''' )
A : List[Any] = ''''''.join(split_layer[0] )[:-1]
A : str = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )]
else:
A : str = layer.split('''/''' )
A : Tuple = '''/'''.join(split_layer[:-1] )
A : str = (split_layer[-1],)
if "kvstore/path" in layer:
A : Any = F'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
A : Tuple = '''file'''
else:
A : Dict = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[int] = rename_keys(snake_case__ )
A : Optional[Any] = {}
for k, v in current_block.items():
A : Dict = v
A : Tuple = new_current_block
torch.save(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = WEIGHTS_NAME ):
'''simple docstring'''
A : Optional[Any] = convert_file_size_to_int(snake_case__ )
A : List[Any] = []
A : List[Any] = {}
A : Dict = 0
A : Tuple = 0
os.makedirs(snake_case__ , exist_ok=snake_case__ )
with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp:
A : str = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target''']
A : int = flatten_dict(snake_case__ , sep='''/''' )
A : Optional[Any] = {}
for layer in checkpoint_info.keys():
A, A, A : Dict = get_key_and_tensorstore_dict(
snake_case__ , snake_case__ , snake_case__ )
if curr_real_layer_name in all_layers:
A : Tuple = content
else:
A : int = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
A : List[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
A : Dict = torch.tensor(snake_case__ )
A : List[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
A, A : Union[str, Any] = rename_base_flax_keys(tuple(key.split('''/''' ) ) , snake_case__ )
A : Any = '''/'''.join(snake_case__ )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
A : List[Any] = os.path.join(
snake_case__ , weights_name.replace('''.bin''' , F'-{len(snake_case__ )+1:05d}-of-???.bin' ) )
rename_and_save_block(snake_case__ , snake_case__ )
sharded_state_dicts.append(current_block.keys() )
del current_block
A : Dict = {}
A : Optional[int] = 0
A : str = raw_weights.to(getattr(snake_case__ , snake_case__ ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
A : Optional[Any] = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'-{len(snake_case__ )+1:05d}-of-???.bin' ) )
rename_and_save_block(snake_case__ , snake_case__ )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(snake_case__ ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
A : int = {}
A : str = {}
for idx, shard in enumerate(snake_case__ ):
A : Optional[int] = weights_name.replace(
'''.bin''' , F'-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin' ) # len(sharded_state_dicts):05d}
A : Optional[Any] = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'-{idx+1:05d}-of-???.bin' ) )
os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
A : Optional[Any] = shard
for key in shard:
A : Optional[int] = shard_file
# Add the metadata
A : Optional[Any] = {'''total_size''': total_size}
A : Dict = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' ) as f:
A : List[str] = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n'''
f.write(snake_case__ )
return metadata, index
if __name__ == "__main__":
lowercase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--switch_t5x_checkpoint_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size')
parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted',
type=str,
required=False,
help='Path to the output pytorch model.',
)
lowercase : List[Any] = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def lowerCAmelCase_ ( ):
'''simple docstring'''
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
A : Dict = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' )
config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' )
A : List[str] = SwitchTransformersForConditionalGeneration.from_pretrained(
'''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' )
A : Optional[int] = TaTokenizer.from_pretrained('''t5-small''' )
A : str = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'''
A : List[Any] = tokenizer(snake_case__ , return_tensors='''pt''' ).input_ids
A : List[Any] = model.generate(snake_case__ , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 311
|
'''simple docstring'''
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
A : List[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , )
A : Optional[Any] = image.to(self.device )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
| 311
| 1
|
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[int] = x
A : str = y
for step in range(snake_case__ ): # noqa: B007
A : str = a * a - b * b + x
A : List[str] = 2 * a * b + y
A : str = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) )
def lowerCAmelCase_ ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ):
'''simple docstring'''
A : List[Any] = Image.new('''RGB''' , (image_width, image_height) )
A : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(snake_case__ ):
for image_y in range(snake_case__ ):
# determine the figure-coordinates based on the image-coordinates
A : Optional[int] = figure_width / image_width * image_height
A : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
A : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height
A : str = get_distance(snake_case__ , snake_case__ , snake_case__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
A : str = get_color_coded_rgb(snake_case__ )
else:
A : List[Any] = get_black_and_white_rgb(snake_case__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowercase : Optional[Any] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 311
|
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str:
"""simple docstring"""
A : Any = parent
A : List[Any] = batch_size
A : Union[str, Any] = seq_length
A : Any = is_training
A : int = use_input_mask
A : Union[str, Any] = vocab_size
A : List[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : Optional[int] = num_attention_heads
A : str = intermediate_size
A : Tuple = hidden_act
A : Union[str, Any] = hidden_dropout_prob
A : Union[str, Any] = attention_probs_dropout_prob
A : int = max_position_embeddings
A : Optional[int] = initializer_range
A : Any = use_labels
A : Optional[int] = scope
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[int] = None
if self.use_input_mask:
A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Dict = self.get_config()
return config, input_ids, input_mask, token_labels
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
),
) : Any = self.prepare_config_and_inputs()
A : Tuple = True
A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
A : int = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = True
A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )
A : List[Any] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = True
A : Tuple = True
A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval()
# first forward pass
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , )
A : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 )
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
A : Any = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
# select random slice
A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A : str = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A, A, A : Optional[int] = self.prepare_config_and_inputs()
A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
__magic_name__ = (BertGenerationDecoder,) if is_torch_available() else ()
__magic_name__ = (
{'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[str] = BertGenerationEncoderTester(self )
A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs()
A : str = '''bert'''
self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
A : Union[str, Any] = None
self.model_tester.create_and_check_model_as_decoder(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Dict = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Dict = torch.tensor(
[[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 50358] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Any = torch.tensor(
[[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
import os
import sys
import unittest
lowercase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
lowercase : int = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Optional[Any] = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : List[str] = {'''BertModelTest''': '''BertModelTester'''}
A : List[Any] = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : Dict = get_model_to_test_mapping(SCREAMING_SNAKE_CASE )
A : Any = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A : Optional[Any] = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : str = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Dict = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE )
A : Optional[Any] = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A : Any = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ )
A : Any = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ )
class A ( __snake_case ):
__magic_name__ = '''sigmoid'''
__magic_name__ = '''softmax'''
__magic_name__ = '''none'''
@add_end_docstrings(
__snake_case , R'''
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return all prediction scores or just the one of the predicted class.
function_to_apply (`str`, *optional*, defaults to `"default"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model
has several labels, will apply the softmax function on the output.
- `"sigmoid"`: Applies the sigmoid function on the output.
- `"softmax"`: Applies the softmax function on the output.
- `"none"`: Does not apply any function on the output.
''' , )
class A ( __snake_case ):
__magic_name__ = False
__magic_name__ = ClassificationFunction.NONE
def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Optional[Any] = tokenizer_kwargs
A : int = {}
if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None:
A : int = self.model.config.return_all_scores
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None:
A : Union[str, Any] = top_k
A : Dict = False
elif return_all_scores is not None:
warnings.warn(
'''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'''
''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , )
if return_all_scores:
A : Optional[int] = None
else:
A : Dict = 1
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : Dict = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
A : int = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
A : Any = '''top_k''' not in kwargs
if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]:
"""simple docstring"""
A : List[Any] = self.framework
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'''
''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' )
return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return self.model(**SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]:
"""simple docstring"""
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
A : Optional[int] = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
A : Any = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None:
A : Optional[int] = self.model.config.function_to_apply
else:
A : Optional[int] = ClassificationFunction.NONE
A : Any = model_outputs['''logits'''][0]
A : List[Any] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
A : int = sigmoid(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.SOFTMAX:
A : Any = softmax(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.NONE:
A : int = outputs
else:
raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
A : int = [
{'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE )
]
if not _legacy:
dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE )
if top_k is not None:
A : Union[str, Any] = dict_scores[:top_k]
return dict_scores
| 311
| 1
|
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowercase : Any = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class A ( __snake_case , unittest.TestCase ):
__magic_name__ = DebertaVaTokenizer
__magic_name__ = DebertaVaTokenizerFast
__magic_name__ = True
__magic_name__ = True
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
A : str = DebertaVaTokenizer(SCREAMING_SNAKE_CASE , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Union[str, Any] = '''this is a test'''
A : Tuple = '''this is a test'''
return input_text, output_text
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Union[str, Any] = '''<pad>'''
A : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 30001 )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 30000 )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : int = ''' \tHeLLo!how \n Are yoU? '''
A : int = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
A : Dict = DebertaVaTokenizer(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE )
A : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[str] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE )
A : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Dict = '''I was born in 92000, and this is falsé.'''
A : Optional[int] = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
A : Dict = DebertaVaTokenizer(SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Union[str, Any] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = '''I was born in 92000, and this is falsé.'''
A : Optional[Any] = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
A : Dict = DebertaVaTokenizer(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Tuple = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : str = '''I was born in 92000, and this is falsé.'''
A : int = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
A : List[Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Any = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Tuple = '''I was born in 92000, and this is falsé.'''
A : str = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
A : Optional[int] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : int = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Union[str, Any] = ''' \tHeLLo!how \n Are yoU? '''
A : Any = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
A : Tuple = DebertaVaTokenizer(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[str] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , split_by_punct=SCREAMING_SNAKE_CASE )
A : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Any = self.get_tokenizer()
A : Tuple = self.get_rust_tokenizer()
A : int = '''I was born in 92000, and this is falsé.'''
A : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
A : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Any = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
A : str = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : int = self.get_rust_tokenizer()
A : Dict = tokenizer.encode(SCREAMING_SNAKE_CASE )
A : str = rust_tokenizer.encode(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = '''This is a test'''
A : Any = [13, 1, 4398, 25, 21, 1289]
A : Union[str, Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
A : Optional[Any] = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
A : Optional[int] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE )
A : Optional[int] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : str = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Tuple = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# fmt: off
A : List[str] = '''I was born in 92000, and this is falsé.'''
A : List[Any] = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
A : Dict = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
A : Tuple = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
A : Any = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Union[str, Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Any = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : int = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : List[Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE )
A : Dict = tokenizer.encode('''sequence builders''' )
A : Tuple = tokenizer.encode('''multi-sequence build''' )
A : Optional[int] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE )
A : str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE , )
@slow
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Any = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 311
|
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def lowerCAmelCase_ ( snake_case__ = "laptop" ):
'''simple docstring'''
A : Tuple = F'https://www.amazon.in/laptop/s?k={product}'
A : Optional[int] = {
'''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''',
'''Accept-Language''': '''en-US, en;q=0.5''',
}
A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text )
# Initialize a Pandas dataframe with the column titles
A : List[str] = DataFrame(
columns=[
'''Product Title''',
'''Product Link''',
'''Current Price of the product''',
'''Product Rating''',
'''MRP of the product''',
'''Discount''',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ):
try:
A : Optional[Any] = item.ha.text
A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href''']
A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text
try:
A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text
except AttributeError:
A : Optional[int] = '''Not available'''
try:
A : str = (
'''₹'''
+ item.find(
'''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1]
)
except AttributeError:
A : List[Any] = ''''''
try:
A : Dict = float(
(
(
float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
- float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) )
)
/ float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
)
* 100 )
except ValueError:
A : str = float('''nan''' )
except AttributeError:
pass
A : Union[str, Any] = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
A : List[str] = ''' '''
A : Optional[Any] = ''' '''
data_frame.index += 1
return data_frame
if __name__ == "__main__":
lowercase : Union[str, Any] = 'headphones'
get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
| 311
| 1
|
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Union[str, Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' )
A : Tuple = parser.add_subparsers(help='''transformers-cli command helpers''' )
# Register commands
ConvertCommand.register_subcommand(snake_case__ )
DownloadCommand.register_subcommand(snake_case__ )
EnvironmentCommand.register_subcommand(snake_case__ )
RunCommand.register_subcommand(snake_case__ )
ServeCommand.register_subcommand(snake_case__ )
UserCommands.register_subcommand(snake_case__ )
AddNewModelCommand.register_subcommand(snake_case__ )
AddNewModelLikeCommand.register_subcommand(snake_case__ )
LfsCommands.register_subcommand(snake_case__ )
PTtoTFCommand.register_subcommand(snake_case__ )
# Let's go
A : List[Any] = parser.parse_args()
if not hasattr(snake_case__ , '''func''' ):
parser.print_help()
exit(1 )
# Run
A : Any = args.func(snake_case__ )
service.run()
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[int] = x
A : str = y
for step in range(snake_case__ ): # noqa: B007
A : str = a * a - b * b + x
A : List[str] = 2 * a * b + y
A : str = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) )
def lowerCAmelCase_ ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ):
'''simple docstring'''
A : List[Any] = Image.new('''RGB''' , (image_width, image_height) )
A : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(snake_case__ ):
for image_y in range(snake_case__ ):
# determine the figure-coordinates based on the image-coordinates
A : Optional[int] = figure_width / image_width * image_height
A : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
A : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height
A : str = get_distance(snake_case__ , snake_case__ , snake_case__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
A : str = get_color_coded_rgb(snake_case__ )
else:
A : List[Any] = get_black_and_white_rgb(snake_case__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowercase : Optional[Any] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 311
| 1
|
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , )
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9},
},
{
'''framework''': '''tensorflow''',
'''script''': '''run_tf.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9},
},
] )
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=SCREAMING_SNAKE_CASE , )
assert hasattr(self , '''env''' )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=1 ) -> Optional[int]:
"""simple docstring"""
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-single' , instance_count=SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
TrainingJobAnalytics(SCREAMING_SNAKE_CASE ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Any = self.create_estimator()
# run training
estimator.fit()
# result dataframe
A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
A : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
A : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
A : Optional[int] = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowercase : Optional[int] = [
'kernels/rwkv/wkv_cuda.cu',
'kernels/rwkv/wkv_op.cpp',
'kernels/deformable_detr/ms_deform_attn.h',
'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh',
'models/graphormer/algos_graphormer.pyx',
]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowercase : str = argparse.ArgumentParser()
parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.')
lowercase : Optional[Any] = parser.parse_args()
if args.check_lib:
lowercase : List[Any] = importlib.import_module('transformers')
lowercase : str = Path(transformers_module.__file__).parent
else:
lowercase : List[Any] = Path.cwd() / 'build/lib/transformers'
if not test_custom_files_are_present(transformers_path):
raise ValueError('The built release does not contain the custom files. Fix this before going further!')
| 311
| 1
|
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Union[str, Any] = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A, A : Dict = emb.weight.shape
A : Tuple = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ )
A : Optional[Any] = emb.weight.data
return lin_layer
def lowerCAmelCase_ ( snake_case__ , snake_case__=None ):
'''simple docstring'''
A : Union[str, Any] = {}
for old_key in state_dict.keys():
A : Optional[Any] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
A : Optional[int] = key.replace('''moe_layer.experts.0''' , F'ffn.experts.expert_{expert_idx}' )
else:
A : Union[str, Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
A : List[str] = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
A : List[str] = key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
A : Union[str, Any] = key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
A : Tuple = key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
A : List[str] = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
A : Optional[int] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
A : Tuple = state_dict[old_key]
return new_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = WEIGHTS_NAME ):
'''simple docstring'''
A : Dict = []
A : Tuple = 0
os.makedirs(snake_case__ , exist_ok=snake_case__ )
for expert in range(snake_case__ ):
A : Union[str, Any] = switch_checkpoint_path + F'-rank-{expert}.pt'
if os.path.isfile(snake_case__ ):
A : Union[str, Any] = torch.load(snake_case__ )['''model''']
remove_ignore_keys_(snake_case__ )
A : List[Any] = rename_fairseq_keys(snake_case__ , snake_case__ )
A : int = os.path.join(
snake_case__ , weights_name.replace('''.bin''' , F'-{len(snake_case__ )+1:05d}-of-???.bin' ) )
torch.save(snake_case__ , snake_case__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(snake_case__ )[0]].dtype )
# Add the last block
A : List[Any] = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'-{len(snake_case__ )+1:05d}-of-???.bin' ) )
A : Optional[Any] = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(snake_case__ )
A : Any = rename_fairseq_keys(snake_case__ , snake_case__ )
A : Union[str, Any] = shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(snake_case__ ) == 1:
A : List[str] = os.path.join(snake_case__ , snake_case__ )
torch.save(snake_case__ , snake_case__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(snake_case__ , snake_case__ )
# Otherwise, let's build the index
A : Union[str, Any] = {}
for idx, shard in enumerate(snake_case__ ):
A : Any = weights_name.replace('''.bin''' , F'-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin' )
A : Tuple = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'-{idx+1:05d}-of-???.bin' ) )
os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) )
for key in shard:
A : Union[str, Any] = shard_file
# Add the metadata
A : List[str] = {'''total_size''': total_size}
A : Union[str, Any] = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' ) as f:
A : Tuple = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n'''
f.write(snake_case__ )
return metadata, index
if __name__ == "__main__":
lowercase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
lowercase : Optional[int] = parser.parse_args()
lowercase , lowercase : Any = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_28,
args.dtype,
)
lowercase : Union[str, Any] = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28
)
config.save_pretrained(args.pytorch_dump_folder_path)
lowercase : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path)
| 311
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]:
"""simple docstring"""
A : List[str] = parent
A : Optional[Any] = batch_size
A : Tuple = image_size
A : int = patch_size
A : Optional[int] = num_channels
A : str = is_training
A : List[Any] = use_labels
A : Any = hidden_size
A : Any = num_hidden_layers
A : Optional[int] = num_attention_heads
A : Any = intermediate_size
A : List[str] = hidden_act
A : str = hidden_dropout_prob
A : Tuple = attention_probs_dropout_prob
A : Any = type_sequence_label_size
A : Optional[int] = initializer_range
A : Dict = scope
A : Tuple = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
A : List[Any] = (image_size // patch_size) ** 2
A : Tuple = num_patches + 2
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Tuple = None
if self.use_labels:
A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Tuple = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE )
A : str = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE )
A : List[Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
A : Optional[int] = 1
A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE )
A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Tuple = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
A : str = self.type_sequence_label_size
A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A : Optional[Any] = 1
A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[int] = self.prepare_config_and_inputs()
A, A, A : Tuple = config_and_inputs
A : Any = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': TFDeiTModel,
'''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = TFDeiTModelTester(self )
A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
pass
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
A : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A, A : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
A : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Union[str, Any] = [*signature.parameters.keys()]
A : List[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
A : Dict = self.default_image_processor
A : List[str] = prepare_img()
A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
A : Optional[int] = model(**SCREAMING_SNAKE_CASE )
# verify the logits
A : List[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split()
A : Dict = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) )
A : Tuple = {
'''unk_token''': '''<unk>''',
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
}
A : List[str] = {
'''feature_size''': 1,
'''padding_value''': 0.0,
'''sampling_rate''': 16000,
'''return_attention_mask''': False,
'''do_normalize''': True,
}
A : Union[str, Any] = tempfile.mkdtemp()
A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
A : Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' )
with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' )
# load decoder from hub
A : Optional[int] = '''hf-internal-testing/ngram-beam-search-decoder'''
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : Dict = self.add_kwargs_tokens_map.copy()
kwargs.update(SCREAMING_SNAKE_CASE )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Any = self.get_tokenizer()
A : Optional[Any] = self.get_feature_extractor()
A : int = self.get_decoder()
A : List[str] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
A : List[Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : int = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
A : Any = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : int = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['''xx'''] )
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , '''include''' ):
WavaVecaProcessorWithLM(
tokenizer=SCREAMING_SNAKE_CASE , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : int = self.get_feature_extractor()
A : int = self.get_tokenizer()
A : Union[str, Any] = self.get_decoder()
A : Any = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
A : int = floats_list((3, 1000) )
A : Any = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors='''np''' )
A : Dict = processor(SCREAMING_SNAKE_CASE , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[Any] = self.get_feature_extractor()
A : Union[str, Any] = self.get_tokenizer()
A : Optional[Any] = self.get_decoder()
A : Tuple = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
A : int = '''This is a test string'''
A : Optional[Any] = processor(text=SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer(SCREAMING_SNAKE_CASE )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=(2, 10, 16) , SCREAMING_SNAKE_CASE=77 ) -> str:
"""simple docstring"""
np.random.seed(SCREAMING_SNAKE_CASE )
return np.random.rand(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Dict = self.get_feature_extractor()
A : Dict = self.get_tokenizer()
A : Optional[int] = self.get_decoder()
A : Dict = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
A : Optional[Any] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
A : Union[str, Any] = processor.decode(SCREAMING_SNAKE_CASE )
A : List[str] = decoder.decode_beams(SCREAMING_SNAKE_CASE )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('''</s> <s> </s>''' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['''fork'''], ['''spawn''']] )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : List[str] = self.get_feature_extractor()
A : Optional[Any] = self.get_tokenizer()
A : List[str] = self.get_decoder()
A : Dict = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
A : Dict = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
A : Tuple = processor.batch_decode(SCREAMING_SNAKE_CASE )
else:
with get_context(SCREAMING_SNAKE_CASE ).Pool() as pool:
A : List[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : int = list(SCREAMING_SNAKE_CASE )
with get_context('''fork''' ).Pool() as p:
A : Tuple = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A, A, A : Tuple = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(SCREAMING_SNAKE_CASE , decoded_processor.text )
self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text )
self.assertListEqual(SCREAMING_SNAKE_CASE , decoded_processor.logit_score )
self.assertListEqual(SCREAMING_SNAKE_CASE , decoded_processor.lm_score )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : List[str] = self.get_feature_extractor()
A : Union[str, Any] = self.get_tokenizer()
A : Any = self.get_decoder()
A : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
A : Optional[int] = self._get_dummy_logits()
A : Optional[Any] = 15
A : str = -20.0
A : Union[str, Any] = -4.0
A : str = processor.batch_decode(
SCREAMING_SNAKE_CASE , beam_width=SCREAMING_SNAKE_CASE , beam_prune_logp=SCREAMING_SNAKE_CASE , token_min_logp=SCREAMING_SNAKE_CASE , )
A : Any = decoded_processor_out.text
A : List[Any] = list(SCREAMING_SNAKE_CASE )
with get_context('''fork''' ).Pool() as pool:
A : Union[str, Any] = decoder.decode_beams_batch(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , beam_width=SCREAMING_SNAKE_CASE , beam_prune_logp=SCREAMING_SNAKE_CASE , token_min_logp=SCREAMING_SNAKE_CASE , )
A : int = [d[0][0] for d in decoded_decoder_out]
A : Dict = [d[0][2] for d in decoded_decoder_out]
A : Union[str, Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , SCREAMING_SNAKE_CASE )
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9_474] , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[int] = self.get_feature_extractor()
A : Optional[Any] = self.get_tokenizer()
A : Any = self.get_decoder()
A : Optional[int] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
A : Dict = self._get_dummy_logits()
A : Tuple = 2.0
A : Union[str, Any] = 5.0
A : Optional[int] = -20.0
A : Optional[int] = True
A : List[str] = processor.batch_decode(
SCREAMING_SNAKE_CASE , alpha=SCREAMING_SNAKE_CASE , beta=SCREAMING_SNAKE_CASE , unk_score_offset=SCREAMING_SNAKE_CASE , lm_score_boundary=SCREAMING_SNAKE_CASE , )
A : Optional[Any] = decoded_processor_out.text
A : int = list(SCREAMING_SNAKE_CASE )
decoder.reset_params(
alpha=SCREAMING_SNAKE_CASE , beta=SCREAMING_SNAKE_CASE , unk_score_offset=SCREAMING_SNAKE_CASE , lm_score_boundary=SCREAMING_SNAKE_CASE , )
with get_context('''fork''' ).Pool() as pool:
A : List[Any] = decoder.decode_beams_batch(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
A : str = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , SCREAMING_SNAKE_CASE )
A : Optional[int] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
A : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key]
A : Optional[Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
A : List[str] = os.listdir(SCREAMING_SNAKE_CASE )
A : Tuple = ['''alphabet.json''', '''language_model''']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Union[str, Any] = snapshot_download('''hf-internal-testing/processor_with_lm''' )
A : Optional[int] = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE )
A : int = processor.decoder.model_container[processor.decoder._model_key]
A : Any = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
A : Optional[int] = os.listdir(SCREAMING_SNAKE_CASE )
A : Any = os.listdir(SCREAMING_SNAKE_CASE )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : int = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
A : List[str] = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' )
A : Dict = floats_list((3, 1000) )
A : Dict = processor_wavaveca(SCREAMING_SNAKE_CASE , return_tensors='''np''' )
A : List[str] = processor_auto(SCREAMING_SNAKE_CASE , return_tensors='''np''' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
A : Union[str, Any] = self._get_dummy_logits()
A : Dict = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE )
A : str = processor_auto.batch_decode(SCREAMING_SNAKE_CASE )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = self.get_feature_extractor()
A : Optional[Any] = self.get_tokenizer()
A : int = self.get_decoder()
A : Tuple = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[int] = [d[key] for d in offsets]
return retrieved_list
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
A : Dict = self._get_dummy_logits()[0]
A : List[str] = processor.decode(SCREAMING_SNAKE_CASE , output_word_offsets=SCREAMING_SNAKE_CASE )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
A : List[str] = self._get_dummy_logits()
A : Any = processor.batch_decode(SCREAMING_SNAKE_CASE , output_word_offsets=SCREAMING_SNAKE_CASE )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
self.assertListEqual(
[''' '''.join(self.get_from_offsets(SCREAMING_SNAKE_CASE , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
import torch
A : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=SCREAMING_SNAKE_CASE )
A : int = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) )
A : str = iter(SCREAMING_SNAKE_CASE )
A : Optional[Any] = next(SCREAMING_SNAKE_CASE )
A : int = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
A : Union[str, Any] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
A : Union[str, Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values
with torch.no_grad():
A : List[str] = model(SCREAMING_SNAKE_CASE ).logits.cpu().numpy()
A : Optional[int] = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
A : Dict = [
{
'''start_time''': d['''start_offset'''] * time_offset,
'''end_time''': d['''end_offset'''] * time_offset,
'''word''': d['''word'''],
}
for d in output['''word_offsets''']
]
A : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'''
# output words
self.assertEqual(''' '''.join(self.get_from_offsets(SCREAMING_SNAKE_CASE , '''word''' ) ) , SCREAMING_SNAKE_CASE )
self.assertEqual(''' '''.join(self.get_from_offsets(SCREAMING_SNAKE_CASE , '''word''' ) ) , output.text )
# output times
A : Optional[int] = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE , '''start_time''' ) )
A : int = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE , '''end_time''' ) )
# fmt: off
A : int = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] )
A : List[str] = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=0.01 ) )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=0.01 ) )
| 311
|
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase : List[str] = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
| 1
|
'''simple docstring'''
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
lowercase : Optional[Any] = logging.getLogger()
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Tuple = argparse.ArgumentParser()
parser.add_argument('''-f''' )
A : Union[str, Any] = parser.parse_args()
return args.f
class A ( __snake_case ):
def __lowerCAmelCase ( self ) -> None:
"""simple docstring"""
A : str = logging.StreamHandler(sys.stdout )
logger.addHandler(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , '''run_glue_deebert.py''' )
with patch.object(SCREAMING_SNAKE_CASE , '''argv''' , SCREAMING_SNAKE_CASE ):
A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(SCREAMING_SNAKE_CASE , 0.666 )
@slow
@require_torch_non_multi_gpu
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Optional[Any] = '''
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
'''.split()
self.run_and_check(SCREAMING_SNAKE_CASE )
A : Dict = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(SCREAMING_SNAKE_CASE )
A : Dict = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
from __future__ import annotations
lowercase : Union[str, Any] = list[tuple[int, int]]
lowercase : Optional[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
A : int = pos_x
A : Optional[Any] = pos_y
A : Optional[Any] = (pos_y, pos_x)
A : str = goal_x
A : Optional[int] = goal_y
A : List[Any] = g_cost
A : str = parent
A : str = self.calculate_heuristic()
def __lowerCAmelCase ( self ) -> float:
"""simple docstring"""
A : Optional[int] = abs(self.pos_x - self.goal_x )
A : Optional[Any] = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return self.f_cost < other.f_cost
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE )
A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE )
A : Optional[Any] = [self.start]
A : list[Node] = []
A : Tuple = False
def __lowerCAmelCase ( self ) -> Path | None:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
A : Optional[int] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
A : Optional[int] = True
return self.retrace_path(SCREAMING_SNAKE_CASE )
self.closed_nodes.append(SCREAMING_SNAKE_CASE )
A : Any = self.get_successors(SCREAMING_SNAKE_CASE )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
# retrieve the best current path
A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
if not self.reached:
return [self.start.pos]
return None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]:
"""simple docstring"""
A : List[Any] = []
for action in delta:
A : List[str] = parent.pos_x + action[1]
A : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) )
return successors
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path:
"""simple docstring"""
A : int = node
A : Union[str, Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
A : int = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase : Tuple = (0, 0)
lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print('------')
lowercase : int = GreedyBestFirst(init, goal)
lowercase : Union[str, Any] = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase : Dict = 2
for elem in grid:
print(elem)
| 311
| 1
|
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=36 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]:
"""simple docstring"""
A : Dict = parent
A : Optional[Any] = batch_size
A : Dict = seq_length
A : Optional[Any] = is_training
A : str = use_input_mask
A : List[str] = use_token_type_ids
A : List[Any] = use_labels
A : Union[str, Any] = vocab_size
A : str = hidden_size
A : int = num_hidden_layers
A : Optional[Any] = num_attention_heads
A : int = intermediate_size
A : Optional[int] = hidden_act
A : Union[str, Any] = hidden_dropout_prob
A : Union[str, Any] = attention_probs_dropout_prob
A : List[Any] = max_position_embeddings
A : Tuple = type_vocab_size
A : Any = type_sequence_label_size
A : int = initializer_range
A : Union[str, Any] = num_labels
A : List[Any] = num_choices
A : Union[str, Any] = scope
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[int] = None
if self.use_input_mask:
A : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
A : str = None
if self.use_token_type_ids:
A : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A : Optional[int] = None
A : Tuple = None
A : List[str] = None
if self.use_labels:
A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A : int = ids_tensor([self.batch_size] , self.num_choices )
A : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : int = self.get_config()
A : Tuple = 300
return config
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : Dict = self.prepare_config_and_inputs()
A : Optional[Any] = True
A : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
A : int = MraModel(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE )
A : Optional[int] = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE )
A : Dict = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Dict = True
A : Any = MraModel(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )
A : Any = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
A : List[Any] = MraForMaskedLM(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
A : List[str] = MraForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[int] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : List[str] = self.num_labels
A : Dict = MraForSequenceClassification(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Any = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
A : Any = self.num_labels
A : Tuple = MraForTokenClassification(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : int = self.num_choices
A : Tuple = MraForMultipleChoice(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : Dict = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Dict = self.prepare_config_and_inputs()
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : List[str] = config_and_inputs
A : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class A ( __snake_case , unittest.TestCase ):
__magic_name__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = ()
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[str] = MraModelTester(self )
A : Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A : int = type
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : List[str] = MraModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@unittest.skip(reason='''MRA does not output attentions''' )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
A : int = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A : Any = model(SCREAMING_SNAKE_CASE )[0]
A : Dict = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Tuple = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Any = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
A : Tuple = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A : List[Any] = model(SCREAMING_SNAKE_CASE )[0]
A : Tuple = 50265
A : Tuple = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Optional[int] = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Tuple = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
A : int = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
A : Optional[int] = model(SCREAMING_SNAKE_CASE )[0]
A : Any = 50265
A : List[str] = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : List[str] = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
|
'''simple docstring'''
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
lowercase : Any = 'src/transformers'
lowercase : str = 'docs/source/en/tasks'
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
A : Union[str, Any] = f.readlines()
# Find the start prompt.
A : List[Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
A : List[str] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
lowercase : int = direct_transformers_import(TRANSFORMERS_PATH)
lowercase : str = {
'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
lowercase : Optional[int] = {
'summarization.md': ('nllb',),
'translation.md': ('nllb',),
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : int = TASK_GUIDE_TO_MODELS[task_guide]
A : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() )
A : Union[str, Any] = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n"
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A, A, A : Optional[int] = _find_text_in_file(
filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , )
A : Optional[int] = get_model_list_for_task(snake_case__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'
''' to fix this.''' )
if __name__ == "__main__":
lowercase : Dict = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
lowercase : List[Any] = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 311
| 1
|
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase : str = datasets.utils.logging.get_logger(__name__)
lowercase : Union[str, Any] = ['names', 'prefix']
lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
lowercase : List[Any] = ['encoding_errors', 'on_bad_lines']
lowercase : Any = ['date_format']
@dataclass
class A ( datasets.BuilderConfig ):
__magic_name__ = ","
__magic_name__ = None
__magic_name__ = "infer"
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = "."
__magic_name__ = None
__magic_name__ = '"'
__magic_name__ = 0
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = 0
__magic_name__ = True
__magic_name__ = False
__magic_name__ = None
__magic_name__ = 10000
__magic_name__ = None
__magic_name__ = "strict"
__magic_name__ = "error"
__magic_name__ = None
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
if self.delimiter is not None:
A : Optional[Any] = self.delimiter
if self.column_names is not None:
A : Optional[Any] = self.column_names
@property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : str = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A ( datasets.ArrowBasedBuilder ):
__magic_name__ = CsvConfig
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
A : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ):
A : str = data_files
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = [files]
A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
A : Tuple = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : List[str] = [files]
A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) )
return splits
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
A : Optional[int] = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ):
# cheaper cast
A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return pa_table
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
A : int = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ):
A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ):
A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE )
except ValueError as e:
logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' )
raise
| 311
|
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if len(snake_case__ ) <= 1:
return [tuple(snake_case__ )]
A : Tuple = []
def generate(snake_case__ , snake_case__ ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , snake_case__ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
A, A : Optional[Any] = arr[k - 1], arr[i]
else: # k is odd
A, A : Optional[Any] = arr[k - 1], arr[0]
generate(k - 1 , snake_case__ )
generate(len(snake_case__ ) , snake_case__ )
return res
if __name__ == "__main__":
lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip()
lowercase : int = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
lowercase : Any = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ):
'''simple docstring'''
A : List[Any] = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the reference grid
A : Dict = 1
A : int = [
[0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) )
] # the action grid
A : Tuple = init[0]
A : Tuple = init[1]
A : str = 0
A : int = g + heuristic[x][y] # cost from starting cell to destination cell
A : Optional[Any] = [[f, g, x, y]]
A : Any = False # flag that is set when search is complete
A : Optional[int] = False # flag set if we can't find expand
while not found and not resign:
if len(snake_case__ ) == 0:
raise ValueError('''Algorithm is unable to find solution''' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
A : Optional[int] = cell.pop()
A : Tuple = next_cell[2]
A : Union[str, Any] = next_cell[3]
A : Optional[int] = next_cell[1]
if x == goal[0] and y == goal[1]:
A : Dict = True
else:
for i in range(len(snake_case__ ) ): # to try out different valid actions
A : Union[str, Any] = x + DIRECTIONS[i][0]
A : Tuple = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
A : str = g + cost
A : Any = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
A : Optional[int] = 1
A : Tuple = i
A : Optional[Any] = []
A : Optional[int] = goal[0]
A : Optional[int] = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
A : Tuple = x - DIRECTIONS[action[x][y]][0]
A : List[Any] = y - DIRECTIONS[action[x][y]][1]
A : List[str] = xa
A : str = ya
invpath.append([x, y] )
A : Dict = []
for i in range(len(snake_case__ ) ):
path.append(invpath[len(snake_case__ ) - 1 - i] )
return path, action
if __name__ == "__main__":
lowercase : List[str] = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
lowercase : Union[str, Any] = [0, 0]
# all coordinates are given in format [y,x]
lowercase : Any = [len(grid) - 1, len(grid[0]) - 1]
lowercase : Tuple = 1
# the cost map which pushes the path closer to the goal
lowercase : List[Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
lowercase : List[Any] = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
lowercase : Union[str, Any] = 99
lowercase , lowercase : List[str] = search(grid, init, goal, cost, heuristic)
print('ACTION MAP')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 311
|
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( __snake_case ):
__magic_name__ = (UniPCMultistepScheduler,)
__magic_name__ = (('''num_inference_steps''', 25),)
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : str = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''solver_type''': '''bh2''',
}
config.update(**SCREAMING_SNAKE_CASE )
return config
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : List[Any] = dict(self.forward_default_kwargs )
A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
A : Optional[Any] = self.dummy_sample
A : int = 0.1 * sample
A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE )
A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order]
A, A : Tuple = sample, sample
for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ):
A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = dict(self.forward_default_kwargs )
A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
A : List[Any] = self.dummy_sample
A : int = 0.1 * sample
A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A : Optional[int] = self.get_scheduler_config()
A : Any = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
A : int = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE )
A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if scheduler is None:
A : Dict = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Tuple = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : int = 10
A : Tuple = self.dummy_model()
A : Any = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
return sample
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = dict(self.forward_default_kwargs )
A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
A : Dict = self.get_scheduler_config()
A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Optional[Any] = self.dummy_sample
A : Optional[int] = 0.1 * sample
if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
A : Tuple = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10]
A : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
A : List[Any] = scheduler.timesteps[5]
A : Dict = scheduler.timesteps[6]
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() )
A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE )
A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config )
A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config )
A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config )
A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config )
A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE )
A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , )
A : Dict = self.full_loop(
solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , )
assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers"
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE )
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : int = self.full_loop()
A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.full_loop(prediction_type='''v_prediction''' )
A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.1_014 ) < 1e-3
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = self.scheduler_classes[0]
A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 )
A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Tuple = 10
A : Union[str, Any] = self.dummy_model()
A : Dict = self.dummy_sample_deter.half()
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
assert sample.dtype == torch.floataa
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
for scheduler_class in self.scheduler_classes:
A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 311
| 1
|
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str:
"""simple docstring"""
A : Any = parent
A : List[Any] = batch_size
A : Union[str, Any] = seq_length
A : Any = is_training
A : int = use_input_mask
A : Union[str, Any] = vocab_size
A : List[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : Optional[int] = num_attention_heads
A : str = intermediate_size
A : Tuple = hidden_act
A : Union[str, Any] = hidden_dropout_prob
A : Union[str, Any] = attention_probs_dropout_prob
A : int = max_position_embeddings
A : Optional[int] = initializer_range
A : Any = use_labels
A : Optional[int] = scope
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[int] = None
if self.use_input_mask:
A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Dict = self.get_config()
return config, input_ids, input_mask, token_labels
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
),
) : Any = self.prepare_config_and_inputs()
A : Tuple = True
A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
A : int = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = True
A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )
A : List[Any] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = True
A : Tuple = True
A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval()
# first forward pass
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , )
A : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 )
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
A : Any = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
# select random slice
A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A : str = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A, A, A : Optional[int] = self.prepare_config_and_inputs()
A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
__magic_name__ = (BertGenerationDecoder,) if is_torch_available() else ()
__magic_name__ = (
{'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[str] = BertGenerationEncoderTester(self )
A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs()
A : str = '''bert'''
self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
A : Union[str, Any] = None
self.model_tester.create_and_check_model_as_decoder(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Dict = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Dict = torch.tensor(
[[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 50358] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Any = torch.tensor(
[[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
|
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
super().__init__()
# make sure scheduler can always be converted to DDIM
A : Dict = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ):
A : List[Any] = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
A : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : int = self.scheduler.step(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample
A : Dict = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = parent
A : Optional[Any] = batch_size
A : str = image_size
A : List[Any] = patch_size
A : Any = num_channels
A : Dict = is_training
A : Any = use_labels
A : int = hidden_size
A : List[str] = num_hidden_layers
A : str = num_attention_heads
A : Tuple = intermediate_size
A : List[Any] = hidden_act
A : Any = hidden_dropout_prob
A : Dict = attention_probs_dropout_prob
A : Any = type_sequence_label_size
A : Tuple = initializer_range
A : List[Any] = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A : Optional[Any] = (image_size // patch_size) ** 2
A : Any = num_patches + 1
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Tuple = None
if self.use_labels:
A : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Optional[int] = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
A : List[str] = TFViTModel(config=SCREAMING_SNAKE_CASE )
A : Dict = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
A : Union[str, Any] = self.image_size // 2
A : Any = pixel_values[:, :, :image_size, :image_size]
A : Optional[int] = model(SCREAMING_SNAKE_CASE , interpolate_pos_encoding=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE )
A : Optional[Any] = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : Union[str, Any] = self.type_sequence_label_size
A : Tuple = TFViTForImageClassification(SCREAMING_SNAKE_CASE )
A : List[str] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
A : Optional[Any] = self.image_size // 2
A : Optional[int] = pixel_values[:, :, :image_size, :image_size]
A : Any = model(SCREAMING_SNAKE_CASE , interpolate_pos_encoding=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A : Optional[int] = 1
A : List[str] = TFViTForImageClassification(SCREAMING_SNAKE_CASE )
A : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Union[str, Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : List[Any] = self.prepare_config_and_inputs()
A, A, A : List[Any] = config_and_inputs
A : Dict = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
__magic_name__ = (
{'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : List[str] = TFViTModelTester(self )
A : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
pass
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
pass
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A, A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Optional[Any] = model_class(SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
A : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A, A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : List[str] = model_class(SCREAMING_SNAKE_CASE )
A : List[str] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : List[str] = [*signature.parameters.keys()]
A : Optional[int] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' )
A : Dict = self.default_image_processor
A : Optional[int] = prepare_img()
A : Tuple = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
A : Union[str, Any] = model(**SCREAMING_SNAKE_CASE )
# verify the logits
A : Dict = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
A : List[str] = tf.constant([-0.2_744, 0.8_215, -0.0_836] )
tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 )
| 311
|
'''simple docstring'''
from __future__ import annotations
from random import random
class A :
def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = value
A : Any = random()
A : Node | None = None
A : Node | None = None
def __repr__( self ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return F'\'{self.value}: {self.prior:.5}\''
else:
return pformat(
{F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 )
def __str__( self ) -> str:
"""simple docstring"""
A : Optional[Any] = str(self.value ) + ''' '''
A : Union[str, Any] = str(self.left or '''''' )
A : Any = str(self.right or '''''' )
return value + left + right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
A, A : Any = split(root.left , snake_case__ )
return left, root
else:
A, A : Optional[int] = split(root.right , snake_case__ )
return root, right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
A : List[str] = merge(left.right , snake_case__ )
return left
else:
A : Tuple = merge(snake_case__ , right.left )
return right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[Any] = Node(snake_case__ )
A, A : Tuple = split(snake_case__ , snake_case__ )
return merge(merge(snake_case__ , snake_case__ ) , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A, A : Dict = split(snake_case__ , value - 1 )
A, A : Any = split(snake_case__ , snake_case__ )
return merge(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=''',''' )
inorder(root.right )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
A : int = insert(snake_case__ , int(arg[1:] ) )
elif arg[0] == "-":
A : int = erase(snake_case__ , int(arg[1:] ) )
else:
print('''Unknown command''' )
return root
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Union[str, Any] = None
print(
'''enter numbers to create a tree, + value to add value into treap, '''
'''- value to erase all nodes with value. \'q\' to quit. ''' )
A : Optional[int] = input()
while args != "q":
A : str = interact_treap(snake_case__ , snake_case__ )
print(snake_case__ )
A : Union[str, Any] = input()
print('''good by!''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 311
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase : int = logging.get_logger(__name__)
lowercase : List[str] = {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json',
'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json',
'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json',
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class A ( __snake_case ):
__magic_name__ = '''big_bird'''
def __init__( self , SCREAMING_SNAKE_CASE=50358 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=66 , SCREAMING_SNAKE_CASE="block_sparse" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Dict:
"""simple docstring"""
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , sep_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
A : List[Any] = vocab_size
A : Tuple = max_position_embeddings
A : str = hidden_size
A : List[str] = num_hidden_layers
A : Optional[Any] = num_attention_heads
A : Any = intermediate_size
A : List[str] = hidden_act
A : Optional[int] = hidden_dropout_prob
A : Optional[Any] = attention_probs_dropout_prob
A : Any = initializer_range
A : Optional[Any] = type_vocab_size
A : Tuple = layer_norm_eps
A : Union[str, Any] = use_cache
A : str = rescale_embeddings
A : int = attention_type
A : int = use_bias
A : Tuple = block_size
A : Dict = num_random_blocks
A : List[str] = classifier_dropout
class A ( __snake_case ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
A : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A : Optional[int] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 311
|
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]:
"""simple docstring"""
A : Tuple = '''bilinear'''
A : Optional[int] = max_size
A : Dict = short_edge_length
def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Tuple = []
for img in imgs:
A, A : str = img.shape[:2]
# later: provide list and randomly choose index for resize
A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if h < w:
A, A : Tuple = size, scale * w
else:
A, A : str = scale * h, size
if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size:
A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Tuple = newh * scale
A : int = neww * scale
A : List[str] = int(neww + 0.5 )
A : int = int(newh + 0.5 )
if img.dtype == np.uinta:
A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE )
A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
A : str = np.asarray(SCREAMING_SNAKE_CASE )
else:
A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
A : List[Any] = nn.functional.interpolate(
SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 )
img_augs.append(SCREAMING_SNAKE_CASE )
return img_augs
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
A : str = cfg.INPUT.FORMAT
A : int = cfg.SIZE_DIVISIBILITY
A : Optional[int] = cfg.PAD_VALUE
A : Dict = cfg.INPUT.MAX_SIZE_TEST
A : Optional[Any] = cfg.MODEL.DEVICE
A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) )
A : List[str] = [im.shape[-2:] for im in images]
A : Optional[Any] = [
nn.functional.pad(
SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
"""simple docstring"""
with torch.no_grad():
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : str = [images]
if single_image:
assert len(SCREAMING_SNAKE_CASE ) == 1
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
A : Tuple = torch.tensor([im.shape[:2] for im in images] )
A : Dict = self.aug(SCREAMING_SNAKE_CASE )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images]
# now pad them to do the following operations
A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!"
A, A : str = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case__ )
tensor[:, 1].clamp_(min=0 , max=snake_case__ )
tensor[:, 2].clamp_(min=0 , max=snake_case__ )
tensor[:, 3].clamp_(min=0 , max=snake_case__ )
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]:
"""simple docstring"""
A : List[str] = parent
A : Optional[Any] = batch_size
A : Tuple = image_size
A : int = patch_size
A : Optional[int] = num_channels
A : str = is_training
A : List[Any] = use_labels
A : Any = hidden_size
A : Any = num_hidden_layers
A : Optional[int] = num_attention_heads
A : Any = intermediate_size
A : List[str] = hidden_act
A : str = hidden_dropout_prob
A : Tuple = attention_probs_dropout_prob
A : Any = type_sequence_label_size
A : Optional[int] = initializer_range
A : Dict = scope
A : Tuple = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
A : List[Any] = (image_size // patch_size) ** 2
A : Tuple = num_patches + 2
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Tuple = None
if self.use_labels:
A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Tuple = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE )
A : str = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE )
A : List[Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
A : Optional[int] = 1
A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE )
A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Tuple = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
A : str = self.type_sequence_label_size
A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A : Optional[Any] = 1
A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[int] = self.prepare_config_and_inputs()
A, A, A : Tuple = config_and_inputs
A : Any = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': TFDeiTModel,
'''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = TFDeiTModelTester(self )
A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
pass
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
A : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A, A : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
A : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Union[str, Any] = [*signature.parameters.keys()]
A : List[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
A : Dict = self.default_image_processor
A : List[str] = prepare_img()
A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
A : Optional[int] = model(**SCREAMING_SNAKE_CASE )
# verify the logits
A : List[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
|
'''simple docstring'''
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
'--original_config_file',
default=None,
type=str,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--scheduler_type',
default='pndm',
type=str,
help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']',
)
parser.add_argument(
'--pipeline_type',
default=None,
type=str,
help=(
'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\''
'. If `None` pipeline will be automatically inferred.'
),
)
parser.add_argument(
'--image_size',
default=None,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--prediction_type',
default=None,
type=str,
help=(
'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable'
' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
parser.add_argument(
'--stable_unclip',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.',
)
parser.add_argument(
'--stable_unclip_prior',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.',
)
parser.add_argument(
'--clip_stats_path',
type=str,
help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.',
required=False,
)
parser.add_argument(
'--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.'
)
parser.add_argument('--half', action='store_true', help='Save weights in half precision.')
parser.add_argument(
'--vae_path',
type=str,
default=None,
required=False,
help='Set to a path, hub id to an already converted vae to not convert it again.',
)
lowercase : Tuple = parser.parse_args()
lowercase : Union[str, Any] = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , ) -> str:
"""simple docstring"""
A : List[str] = parent
A : Tuple = batch_size
A : List[Any] = image_size
A : int = num_channels
A : Any = embeddings_size
A : List[str] = hidden_sizes
A : List[Any] = depths
A : Any = is_training
A : List[str] = use_labels
A : List[str] = hidden_act
A : Optional[int] = num_labels
A : List[Any] = scope
A : Union[str, Any] = len(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Optional[Any] = None
if self.use_labels:
A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
A : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
A : List[Any] = TFResNetModel(config=SCREAMING_SNAKE_CASE )
A : int = model(SCREAMING_SNAKE_CASE )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : List[str] = self.num_labels
A : int = TFResNetForImageClassification(SCREAMING_SNAKE_CASE )
A : List[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Union[str, Any] = self.prepare_config_and_inputs()
A, A, A : List[Any] = config_and_inputs
A : List[str] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
__magic_name__ = (
{'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : str = TFResNetModelTester(self )
A : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
return
@unittest.skip(reason='''ResNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
pass
@unittest.skip(reason='''ResNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
pass
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A, A : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
A : int = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Optional[Any] = [*signature.parameters.keys()]
A : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = model_class(SCREAMING_SNAKE_CASE )
A : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
A : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A : Dict = self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
A, A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
A : str = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
A : Tuple = layer_type
A : str = True
check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A : List[str] = True
check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : Tuple = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Dict = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
A : str = self.default_image_processor
A : Tuple = prepare_img()
A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
A : List[Any] = model(**SCREAMING_SNAKE_CASE )
# verify the logits
A : Dict = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
A : Union[str, Any] = tf.constant([-11.1_069, -9.7_877, -8.3_777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
|
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase : str = datasets.utils.logging.get_logger(__name__)
lowercase : Union[str, Any] = ['names', 'prefix']
lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
lowercase : List[Any] = ['encoding_errors', 'on_bad_lines']
lowercase : Any = ['date_format']
@dataclass
class A ( datasets.BuilderConfig ):
__magic_name__ = ","
__magic_name__ = None
__magic_name__ = "infer"
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = "."
__magic_name__ = None
__magic_name__ = '"'
__magic_name__ = 0
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = 0
__magic_name__ = True
__magic_name__ = False
__magic_name__ = None
__magic_name__ = 10000
__magic_name__ = None
__magic_name__ = "strict"
__magic_name__ = "error"
__magic_name__ = None
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
if self.delimiter is not None:
A : Optional[Any] = self.delimiter
if self.column_names is not None:
A : Optional[Any] = self.column_names
@property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : str = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A ( datasets.ArrowBasedBuilder ):
__magic_name__ = CsvConfig
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
A : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ):
A : str = data_files
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = [files]
A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
A : Tuple = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : List[str] = [files]
A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) )
return splits
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
A : Optional[int] = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ):
# cheaper cast
A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return pa_table
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
A : int = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ):
A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ):
A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE )
except ValueError as e:
logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' )
raise
| 311
| 1
|
'''simple docstring'''
from math import isclose, sqrt
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[Any] = point_y / 4 / point_x
A : List[str] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
A : Tuple = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
A : List[str] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
A : str = outgoing_gradient**2 + 4
A : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
A : str = (point_y - outgoing_gradient * point_x) ** 2 - 100
A : List[Any] = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
A : int = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
A : Any = x_minus if isclose(snake_case__ , snake_case__ ) else x_plus
A : Dict = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def lowerCAmelCase_ ( snake_case__ = 1.4 , snake_case__ = -9.6 ):
'''simple docstring'''
A : int = 0
A : float = first_x_coord
A : float = first_y_coord
A : float = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
A, A, A : Union[str, Any] = next_point(snake_case__ , snake_case__ , snake_case__ )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(f'''{solution() = }''')
| 311
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : int = logging.get_logger(__name__)
lowercase : int = {
'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class A ( __snake_case ):
__magic_name__ = '''sew'''
def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="group" , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE )
A : Optional[Any] = hidden_size
A : Any = feat_extract_norm
A : Optional[int] = feat_extract_activation
A : Tuple = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : int = conv_bias
A : List[Any] = num_conv_pos_embeddings
A : Tuple = num_conv_pos_embedding_groups
A : int = len(self.conv_dim )
A : Dict = num_hidden_layers
A : Optional[int] = intermediate_size
A : Any = squeeze_factor
A : int = hidden_act
A : str = num_attention_heads
A : Dict = hidden_dropout
A : Optional[Any] = attention_dropout
A : List[str] = activation_dropout
A : Union[str, Any] = feat_proj_dropout
A : Union[str, Any] = final_dropout
A : int = layerdrop
A : Optional[Any] = layer_norm_eps
A : Any = initializer_range
A : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A : Optional[Any] = apply_spec_augment
A : Optional[Any] = mask_time_prob
A : Union[str, Any] = mask_time_length
A : Optional[Any] = mask_time_min_masks
A : str = mask_feature_prob
A : Tuple = mask_feature_length
A : Any = mask_feature_min_masks
# ctc loss
A : List[Any] = ctc_loss_reduction
A : Dict = ctc_zero_infinity
# sequence classification
A : int = use_weighted_layer_sum
A : Optional[int] = classifier_proj_size
@property
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 311
| 1
|
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
lowercase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model')
lowercase : Dict = {'target_lang': 'fi', 'source_lang': 'en'}
lowercase : int = '>>zh<<'
lowercase : Union[str, Any] = 'Helsinki-NLP/'
if is_torch_available():
lowercase : str = 'pt'
elif is_tf_available():
lowercase : Union[str, Any] = 'tf'
else:
lowercase : List[str] = 'jax'
@require_sentencepiece
class A ( __snake_case , unittest.TestCase ):
__magic_name__ = MarianTokenizer
__magic_name__ = False
__magic_name__ = True
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
super().setUp()
A : Union[str, Any] = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
A : Dict = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) )
A : Union[str, Any] = Path(self.tmpdirname )
save_json(SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['''vocab'''] )
save_json(SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['''source_spm'''] )
copyfile(SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['''target_spm'''] )
A : Dict = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> MarianTokenizer:
"""simple docstring"""
return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = '''</s>'''
A : Union[str, Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[int] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''</s>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 9 )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : str = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' )
A : str = en_de_tokenizer(['''I am a small frog'''] , return_tensors=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[Any] = [38, 121, 14, 697, 38848, 0]
self.assertListEqual(SCREAMING_SNAKE_CASE , batch.input_ids[0] )
A : Union[str, Any] = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[Any] = [x.name for x in Path(SCREAMING_SNAKE_CASE ).glob('''*''' )]
self.assertIn('''source.spm''' , SCREAMING_SNAKE_CASE )
MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : List[Any] = self.get_tokenizer()
A : Any = tok(
['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertEqual(batch.input_ids.shape , (2, 512) )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Dict = self.get_tokenizer()
A : List[str] = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[Any] = {'''input_ids''': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : str = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' )
A : Tuple = '''Tämä on testi'''
A : str = '''This is a test'''
A : Tuple = [76, 7, 2047, 2]
A : List[Any] = [69, 12, 11, 940, 2]
A : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE ).input_ids
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Dict = tokenizer(text_target=SCREAMING_SNAKE_CASE ).input_ids
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE )
self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = SwinConfig()
A : List[Any] = swin_name.split('''_''' )
A : Tuple = name_split[1]
A : Union[str, Any] = int(name_split[4] )
A : str = int(name_split[3][-1] )
if model_size == "tiny":
A : Optional[int] = 96
A : Optional[Any] = (2, 2, 6, 2)
A : Any = (3, 6, 12, 24)
elif model_size == "small":
A : Optional[int] = 96
A : str = (2, 2, 18, 2)
A : Tuple = (3, 6, 12, 24)
elif model_size == "base":
A : int = 128
A : Optional[Any] = (2, 2, 18, 2)
A : List[str] = (4, 8, 16, 32)
else:
A : Dict = 192
A : Optional[Any] = (2, 2, 18, 2)
A : Optional[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
A : Dict = 2_1841
else:
A : str = 1000
A : List[str] = '''huggingface/label-files'''
A : Any = '''imagenet-1k-id2label.json'''
A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) )
A : str = {int(snake_case__ ): v for k, v in idalabel.items()}
A : Tuple = idalabel
A : Tuple = {v: k for k, v in idalabel.items()}
A : Tuple = img_size
A : Dict = num_classes
A : Optional[Any] = embed_dim
A : str = depths
A : str = num_heads
A : Optional[int] = window_size
return config
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if "patch_embed.proj" in name:
A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
A : Optional[int] = '''encoder.''' + name
if "attn.proj" in name:
A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
A : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
A : Any = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
A : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
A : str = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "norm.weight":
A : Tuple = '''layernorm.weight'''
if name == "norm.bias":
A : Tuple = '''layernorm.bias'''
if "head" in name:
A : Any = name.replace('''head''' , '''classifier''' )
else:
A : List[Any] = '''swin.''' + name
return name
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
A : Dict = orig_state_dict.pop(snake_case__ )
if "mask" in key:
continue
elif "qkv" in key:
A : Dict = key.split('''.''' )
A : Optional[int] = int(key_split[1] )
A : List[str] = int(key_split[3] )
A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
A : Any = val[:dim, :]
A : Dict = val[
dim : dim * 2, :
]
A : List[str] = val[-dim:, :]
else:
A : Any = val[
:dim
]
A : Optional[int] = val[
dim : dim * 2
]
A : Any = val[
-dim:
]
else:
A : str = val
return orig_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ )
timm_model.eval()
A : Optional[Any] = get_swin_config(snake_case__ )
A : Optional[int] = SwinForImageClassification(snake_case__ )
model.eval()
A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ )
model.load_state_dict(snake_case__ )
A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) )
A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' )
A : Any = timm_model(inputs['''pixel_values'''] )
A : Optional[Any] = model(**snake_case__ ).logits
assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 )
print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swin_name',
default='swin_tiny_patch4_window7_224',
type=str,
help='Name of the Swin timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
lowercase : int = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 311
| 1
|
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A, A : Optional[int] = image.size
A, A : Any = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
A : Union[str, Any] = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
A : Optional[Any] = np.array(snake_case__ ).astype(np.floataa ) / 2_55.0
A : int = image[None].transpose(0 , 3 , 1 , 2 )
A : Optional[Any] = torch.from_numpy(snake_case__ )
return 2.0 * image - 1.0
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__()
self.register_modules(vqvae=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ):
A : Tuple = 1
elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ):
A : Optional[int] = image.shape[0]
else:
raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE )}' )
if isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ):
A : List[str] = preprocess(SCREAMING_SNAKE_CASE )
A, A : Dict = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
A : Dict = (batch_size, self.unet.config.in_channels // 2, height, width)
A : Tuple = next(self.unet.parameters() ).dtype
A : List[Any] = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , device=self.device )
A : Dict = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
A : List[str] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
A : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
A : Dict = {}
if accepts_eta:
A : Union[str, Any] = eta
for t in self.progress_bar(SCREAMING_SNAKE_CASE ):
# concat latents and low resolution image in the channel dimension.
A : Optional[Any] = torch.cat([latents, image] , dim=1 )
A : str = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# predict the noise residual
A : List[Any] = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# compute the previous noisy sample x_t -> x_t-1
A : Tuple = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
# decode the image latents with the VQVAE
A : List[Any] = self.vqvae.decode(SCREAMING_SNAKE_CASE ).sample
A : List[Any] = torch.clamp(SCREAMING_SNAKE_CASE , -1.0 , 1.0 )
A : Tuple = image / 2 + 0.5
A : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : Optional[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Optional[int] = logging.get_logger(__name__)
lowercase : Tuple = {
'google/pix2struct-textcaps-base': (
'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json'
),
}
class A ( __snake_case ):
__magic_name__ = '''pix2struct_text_model'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {
'''hidden_size''': '''hidden_size''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]:
"""simple docstring"""
A : str = vocab_size
A : List[str] = hidden_size
A : List[Any] = d_kv
A : Optional[Any] = d_ff
A : Dict = num_layers
A : Dict = num_heads
A : Optional[int] = relative_attention_num_buckets
A : Optional[Any] = relative_attention_max_distance
A : Dict = dropout_rate
A : Dict = layer_norm_epsilon
A : Tuple = initializer_factor
A : Union[str, Any] = use_cache
A : int = eos_token_id
A : List[str] = decoder_start_token_id
# for backwards compatibility
A : int = dense_act_fn
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Union[str, Any] = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct_vision_model'''
def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : List[str] = hidden_size
A : Optional[Any] = patch_embed_hidden_size
A : Union[str, Any] = d_ff
A : Dict = dropout_rate
A : str = num_hidden_layers
A : Dict = num_attention_heads
A : Tuple = initializer_range
A : List[str] = initializer_factor
A : Union[str, Any] = attention_dropout
A : Tuple = layer_norm_eps
A : int = dense_act_fn
A : Optional[int] = seq_len
A : Tuple = relative_attention_num_buckets
A : str = relative_attention_max_distance
A : Optional[Any] = d_kv
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Optional[Any] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct'''
__magic_name__ = True
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
if text_config is None:
A : Dict = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
A : str = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE )
A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE )
A : Any = self.text_config.decoder_start_token_id
A : Any = self.text_config.pad_token_id
A : Dict = self.text_config.eos_token_id
A : Union[str, Any] = initializer_factor
A : Tuple = initializer_range
A : Optional[Any] = self.initializer_range
A : int = self.initializer_range
A : Tuple = is_vqa
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Tuple = copy.deepcopy(self.__dict__ )
A : Dict = self.text_config.to_dict()
A : int = self.vision_config.to_dict()
A : Any = self.__class__.model_type
return output
| 311
| 1
|
'''simple docstring'''
from collections import defaultdict
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : List[str] = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
A : int = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE ) )
]
A : Optional[int] = defaultdict(SCREAMING_SNAKE_CASE ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
A : Dict = (1 << len(SCREAMING_SNAKE_CASE )) - 1
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
A : Any = self.count_ways_until(SCREAMING_SNAKE_CASE , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
A : Optional[Any] = total_ways_util
return self.dp[mask][task_no]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
for i in range(len(SCREAMING_SNAKE_CASE ) ):
for j in task_performed[i]:
self.task[j].append(SCREAMING_SNAKE_CASE )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
lowercase : Optional[Any] = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
lowercase : Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 311
|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = 2
A : Dict = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(snake_case__ )
if n > 1:
factors.append(snake_case__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import csv
import tweepy
# Twitter API credentials
lowercase : str = ''
lowercase : Dict = ''
lowercase : Tuple = ''
lowercase : Dict = ''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[Any] = tweepy.OAuthHandler(snake_case__ , snake_case__ )
auth.set_access_token(snake_case__ , snake_case__ )
A : List[str] = tweepy.API(snake_case__ )
# initialize a list to hold all the tweepy Tweets
A : Any = []
# make initial request for most recent tweets (200 is the maximum allowed count)
A : int = api.user_timeline(screen_name=snake_case__ , count=200 )
# save most recent tweets
alltweets.extend(snake_case__ )
# save the id of the oldest tweet less one
A : Dict = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(snake_case__ ) > 0:
print(F'getting tweets before {oldest}' )
# all subsequent requests use the max_id param to prevent duplicates
A : Optional[Any] = api.user_timeline(
screen_name=snake_case__ , count=200 , max_id=snake_case__ )
# save most recent tweets
alltweets.extend(snake_case__ )
# update the id of the oldest tweet less one
A : Union[str, Any] = alltweets[-1].id - 1
print(F'...{len(snake_case__ )} tweets downloaded so far' )
# transform the tweepy tweets into a 2D array that will populate the csv
A : Tuple = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(F'new_{screen_name}_tweets.csv' , '''w''' ) as f:
A : Union[str, Any] = csv.writer(snake_case__ )
writer.writerow(['''id''', '''created_at''', '''text'''] )
writer.writerows(snake_case__ )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets('FirePing32')
| 311
|
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(0 , snake_case__ ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(''' ''' , end='''''' )
for _ in range(0 , i + 1 ): # printing stars
print('''* ''' , end='''''' )
print()
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(snake_case__ , 0 , -1 ):
for _ in range(snake_case__ , 0 , -1 ): # printing stars
print('''* ''' , end='''''' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(''' ''' , end='''''' )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if n <= 0:
print(''' ... .... nothing printing :(''' )
return
floyd(snake_case__ ) # upper half
reverse_floyd(snake_case__ ) # lower half
if __name__ == "__main__":
print(R'| /\ | |- | |- |--| |\ /| |-')
print(R'|/ \| |- |_ |_ |__| | \/ | |_')
lowercase : List[str] = 1
while K:
lowercase : List[Any] = int(input('enter the number and , and see the magic : '))
print()
pretty_print(user_number)
lowercase : Any = int(input('press 0 to exit... and 1 to continue...'))
print('Good Bye...')
| 311
| 1
|
'''simple docstring'''
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
lowercase : Dict = {
'bart': (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
'bert': (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'bert-base-cased-finetuned-mrpc': (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'dpr': (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
'gpt2': (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'xlnet': (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'xlm': (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'xlm-roberta': (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'transfo-xl': (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'openai-gpt': (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'roberta': (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'layoutlm': (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
'roberta-large-mnli': (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'camembert': (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'flaubert': (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'distilbert': (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'distilbert-base-distilled-squad': (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'lxmert': (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'lxmert-visual-feature-encoder': (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'ctrl': (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'albert': (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
't5': (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'electra': (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
'wav2vec2': (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__=True ):
'''simple docstring'''
if model_type not in MODEL_CLASSES:
raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' )
A, A, A, A : List[Any] = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
A : Dict = cached_file(snake_case__ , snake_case__ , force_download=not use_cached_models )
A : Optional[Any] = config_class.from_json_file(snake_case__ )
A : int = True
A : Dict = True
print(F'Building TensorFlow model from configuration: {config}' )
A : Tuple = model_class(snake_case__ )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
A : Union[str, Any] = cached_file(
snake_case__ , snake_case__ , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
A : List[Any] = load_pytorch_checkpoint_in_tfa_model(snake_case__ , snake_case__ )
if compare_with_pt_model:
A : int = tf_model(tf_model.dummy_inputs , training=snake_case__ ) # build the network
A : List[Any] = torch.load(snake_case__ , map_location='''cpu''' )
A : Dict = pt_model_class.from_pretrained(
pretrained_model_name_or_path=snake_case__ , config=snake_case__ , state_dict=snake_case__ )
with torch.no_grad():
A : Dict = pt_model(**pt_model.dummy_inputs )
A : Dict = pto[0].numpy()
A : List[str] = tfo[0].numpy()
A : Tuple = np.amax(np.abs(np_pt - np_tf ) )
print(F'Max absolute difference between models outputs {diff}' )
assert diff <= 2E-2, F'Error, model absolute difference is >2e-2: {diff}'
# Save pytorch-model
print(F'Save TensorFlow model to {tf_dump_path}' )
tf_model.save_weights(snake_case__ , save_format='''h5''' )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=False , ):
'''simple docstring'''
if args_model_type is None:
A : Dict = list(MODEL_CLASSES.keys() )
else:
A : Optional[Any] = [args_model_type]
for j, model_type in enumerate(snake_case__ , start=1 ):
print('''=''' * 100 )
print(F' Converting model type {j}/{len(snake_case__ )}: {model_type}' )
print('''=''' * 100 )
if model_type not in MODEL_CLASSES:
raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' )
A, A, A, A, A : Tuple = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
A : Tuple = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
A : Tuple = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(snake_case__ , snake_case__ ) , start=1 ):
print('''-''' * 100 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(F' Skipping finetuned checkpoint {model_shortcut_name}' )
continue
A : str = model_shortcut_name
elif only_convert_finetuned_models:
print(F' Skipping not finetuned checkpoint {model_shortcut_name}' )
continue
print(
F' Converting checkpoint {i}/{len(snake_case__ )}: {model_shortcut_name} - model_type {model_type}' )
print('''-''' * 100 )
if config_shortcut_name in aws_config_map:
A : int = cached_file(snake_case__ , snake_case__ , force_download=not use_cached_models )
else:
A : List[str] = config_shortcut_name
if model_shortcut_name in aws_model_maps:
A : Optional[Any] = cached_file(snake_case__ , snake_case__ , force_download=not use_cached_models )
else:
A : Any = model_shortcut_name
if os.path.isfile(snake_case__ ):
A : Optional[Any] = '''converted_model'''
convert_pt_checkpoint_to_tf(
model_type=snake_case__ , pytorch_checkpoint_path=snake_case__ , config_file=snake_case__ , tf_dump_path=os.path.join(snake_case__ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=snake_case__ , )
if remove_cached_files:
os.remove(snake_case__ )
os.remove(snake_case__ )
if __name__ == "__main__":
lowercase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.'
)
parser.add_argument(
'--model_type',
default=None,
type=str,
help=(
f'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
'convert all the models from AWS.'
),
)
parser.add_argument(
'--pytorch_checkpoint_path',
default=None,
type=str,
help=(
'Path to the PyTorch checkpoint path or shortcut name to download from AWS. '
'If not given, will download and convert all the checkpoints from AWS.'
),
)
parser.add_argument(
'--config_file',
default=None,
type=str,
help=(
'The config json file corresponding to the pre-trained model. \n'
'This specifies the model architecture. If not given and '
'--pytorch_checkpoint_path is not given or is a shortcut name '
'use the configuration associated to the shortcut name on the AWS'
),
)
parser.add_argument(
'--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.'
)
parser.add_argument(
'--use_cached_models',
action='store_true',
help='Use cached models if possible instead of updating to latest checkpoint versions.',
)
parser.add_argument(
'--remove_cached_files',
action='store_true',
help='Remove pytorch models after conversion (save memory when converting in batches).',
)
parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.')
lowercase : Tuple = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 311
|
'''simple docstring'''
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
A : List[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , )
A : Optional[Any] = image.to(self.device )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = str(snake_case__ )
return n == n[::-1]
def lowerCAmelCase_ ( snake_case__ = 100_0000 ):
'''simple docstring'''
A : str = 0
for i in range(1 , snake_case__ ):
if is_palindrome(snake_case__ ) and is_palindrome(bin(snake_case__ ).split('''b''' )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 311
|
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str:
"""simple docstring"""
A : Any = parent
A : List[Any] = batch_size
A : Union[str, Any] = seq_length
A : Any = is_training
A : int = use_input_mask
A : Union[str, Any] = vocab_size
A : List[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : Optional[int] = num_attention_heads
A : str = intermediate_size
A : Tuple = hidden_act
A : Union[str, Any] = hidden_dropout_prob
A : Union[str, Any] = attention_probs_dropout_prob
A : int = max_position_embeddings
A : Optional[int] = initializer_range
A : Any = use_labels
A : Optional[int] = scope
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[int] = None
if self.use_input_mask:
A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Dict = self.get_config()
return config, input_ids, input_mask, token_labels
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
),
) : Any = self.prepare_config_and_inputs()
A : Tuple = True
A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
A : int = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = True
A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )
A : List[Any] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = True
A : Tuple = True
A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval()
# first forward pass
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , )
A : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 )
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
A : Any = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
# select random slice
A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A : str = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A, A, A : Optional[int] = self.prepare_config_and_inputs()
A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
__magic_name__ = (BertGenerationDecoder,) if is_torch_available() else ()
__magic_name__ = (
{'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[str] = BertGenerationEncoderTester(self )
A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs()
A : str = '''bert'''
self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
A : Union[str, Any] = None
self.model_tester.create_and_check_model_as_decoder(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Dict = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Dict = torch.tensor(
[[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 50358] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Any = torch.tensor(
[[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowercase : Dict = {
'configuration_encodec': [
'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EncodecConfig',
],
'feature_extraction_encodec': ['EncodecFeatureExtractor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : str = [
'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST',
'EncodecModel',
'EncodecPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ )
A : Any = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ )
class A ( __snake_case ):
__magic_name__ = '''sigmoid'''
__magic_name__ = '''softmax'''
__magic_name__ = '''none'''
@add_end_docstrings(
__snake_case , R'''
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return all prediction scores or just the one of the predicted class.
function_to_apply (`str`, *optional*, defaults to `"default"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model
has several labels, will apply the softmax function on the output.
- `"sigmoid"`: Applies the sigmoid function on the output.
- `"softmax"`: Applies the softmax function on the output.
- `"none"`: Does not apply any function on the output.
''' , )
class A ( __snake_case ):
__magic_name__ = False
__magic_name__ = ClassificationFunction.NONE
def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Optional[Any] = tokenizer_kwargs
A : int = {}
if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None:
A : int = self.model.config.return_all_scores
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None:
A : Union[str, Any] = top_k
A : Dict = False
elif return_all_scores is not None:
warnings.warn(
'''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'''
''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , )
if return_all_scores:
A : Optional[int] = None
else:
A : Dict = 1
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : Dict = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
A : int = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
A : Any = '''top_k''' not in kwargs
if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]:
"""simple docstring"""
A : List[Any] = self.framework
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'''
''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' )
return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return self.model(**SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]:
"""simple docstring"""
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
A : Optional[int] = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
A : Any = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None:
A : Optional[int] = self.model.config.function_to_apply
else:
A : Optional[int] = ClassificationFunction.NONE
A : Any = model_outputs['''logits'''][0]
A : List[Any] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
A : int = sigmoid(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.SOFTMAX:
A : Any = softmax(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.NONE:
A : int = outputs
else:
raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
A : int = [
{'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE )
]
if not _legacy:
dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE )
if top_k is not None:
A : Union[str, Any] = dict_scores[:top_k]
return dict_scores
| 311
| 1
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Optional[int] = logging.get_logger(__name__)
lowercase : Tuple = {
'google/pix2struct-textcaps-base': (
'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json'
),
}
class A ( __snake_case ):
__magic_name__ = '''pix2struct_text_model'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {
'''hidden_size''': '''hidden_size''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]:
"""simple docstring"""
A : str = vocab_size
A : List[str] = hidden_size
A : List[Any] = d_kv
A : Optional[Any] = d_ff
A : Dict = num_layers
A : Dict = num_heads
A : Optional[int] = relative_attention_num_buckets
A : Optional[Any] = relative_attention_max_distance
A : Dict = dropout_rate
A : Dict = layer_norm_epsilon
A : Tuple = initializer_factor
A : Union[str, Any] = use_cache
A : int = eos_token_id
A : List[str] = decoder_start_token_id
# for backwards compatibility
A : int = dense_act_fn
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Union[str, Any] = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct_vision_model'''
def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : List[str] = hidden_size
A : Optional[Any] = patch_embed_hidden_size
A : Union[str, Any] = d_ff
A : Dict = dropout_rate
A : str = num_hidden_layers
A : Dict = num_attention_heads
A : Tuple = initializer_range
A : List[str] = initializer_factor
A : Union[str, Any] = attention_dropout
A : Tuple = layer_norm_eps
A : int = dense_act_fn
A : Optional[int] = seq_len
A : Tuple = relative_attention_num_buckets
A : str = relative_attention_max_distance
A : Optional[Any] = d_kv
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Optional[Any] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct'''
__magic_name__ = True
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
if text_config is None:
A : Dict = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
A : str = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE )
A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE )
A : Any = self.text_config.decoder_start_token_id
A : Any = self.text_config.pad_token_id
A : Dict = self.text_config.eos_token_id
A : Union[str, Any] = initializer_factor
A : Tuple = initializer_range
A : Optional[Any] = self.initializer_range
A : int = self.initializer_range
A : Tuple = is_vqa
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Tuple = copy.deepcopy(self.__dict__ )
A : Dict = self.text_config.to_dict()
A : int = self.vision_config.to_dict()
A : Any = self.__class__.model_type
return output
| 311
|
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def lowerCAmelCase_ ( snake_case__ = "laptop" ):
'''simple docstring'''
A : Tuple = F'https://www.amazon.in/laptop/s?k={product}'
A : Optional[int] = {
'''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''',
'''Accept-Language''': '''en-US, en;q=0.5''',
}
A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text )
# Initialize a Pandas dataframe with the column titles
A : List[str] = DataFrame(
columns=[
'''Product Title''',
'''Product Link''',
'''Current Price of the product''',
'''Product Rating''',
'''MRP of the product''',
'''Discount''',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ):
try:
A : Optional[Any] = item.ha.text
A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href''']
A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text
try:
A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text
except AttributeError:
A : Optional[int] = '''Not available'''
try:
A : str = (
'''₹'''
+ item.find(
'''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1]
)
except AttributeError:
A : List[Any] = ''''''
try:
A : Dict = float(
(
(
float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
- float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) )
)
/ float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
)
* 100 )
except ValueError:
A : str = float('''nan''' )
except AttributeError:
pass
A : Union[str, Any] = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
A : List[str] = ''' '''
A : Optional[Any] = ''' '''
data_frame.index += 1
return data_frame
if __name__ == "__main__":
lowercase : Union[str, Any] = 'headphones'
get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
| 311
| 1
|
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=os.environ.get('LOGLEVEL', 'INFO').upper(),
stream=sys.stdout,
)
lowercase : List[str] = logging.getLogger(__name__)
lowercase : List[Any] = {'facebook/bart-base': BartForConditionalGeneration}
lowercase : int = {'facebook/bart-base': BartTokenizer}
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Optional[Any] = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' )
parser.add_argument(
'''--validation_file''' , type=snake_case__ , default=snake_case__ , help='''A csv or a json file containing the validation data.''' )
parser.add_argument(
'''--max_length''' , type=snake_case__ , default=5 , help='''The maximum total input sequence length after tokenization.''' , )
parser.add_argument(
'''--num_beams''' , type=snake_case__ , default=snake_case__ , help=(
'''Number of beams to use for evaluation. This argument will be '''
'''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.'''
) , )
parser.add_argument(
'''--model_name_or_path''' , type=snake_case__ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case__ , )
parser.add_argument(
'''--config_name''' , type=snake_case__ , default=snake_case__ , help='''Pretrained config name or path if not the same as model_name''' , )
parser.add_argument(
'''--device''' , type=snake_case__ , default='''cpu''' , help='''Device where the model will be run''' , )
parser.add_argument('''--output_file_path''' , type=snake_case__ , default=snake_case__ , help='''Where to store the final ONNX file.''' )
A : str = parser.parse_args()
return args
def lowerCAmelCase_ ( snake_case__ , snake_case__="cpu" ):
'''simple docstring'''
A : int = model_dict[model_name].from_pretrained(snake_case__ ).to(snake_case__ )
A : Union[str, Any] = tokenizer_dict[model_name].from_pretrained(snake_case__ )
if model_name in ["facebook/bart-base"]:
A : Dict = 0
A : Any = None
A : Optional[Any] = 0
return huggingface_model, tokenizer
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
model.eval()
A : List[str] = None
A : List[str] = torch.jit.script(BARTBeamSearchGenerator(snake_case__ ) )
with torch.no_grad():
A : Any = '''My friends are cool but they eat too many carbs.'''
A : List[str] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device )
A : int = model.generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=snake_case__ , max_length=snake_case__ , early_stopping=snake_case__ , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
snake_case__ , (
inputs['''input_ids'''],
inputs['''attention_mask'''],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , snake_case__ , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={
'''input_ids''': {0: '''batch''', 1: '''seq'''},
'''output_ids''': {0: '''batch''', 1: '''seq_out'''},
} , example_outputs=snake_case__ , )
logger.info('''Model exported to {}'''.format(snake_case__ ) )
A : Any = remove_dup_initializers(os.path.abspath(snake_case__ ) )
logger.info('''Deduplicated and optimized model written to {}'''.format(snake_case__ ) )
A : Optional[int] = onnxruntime.InferenceSession(snake_case__ )
A : Optional[int] = ort_sess.run(
snake_case__ , {
'''input_ids''': inputs['''input_ids'''].cpu().numpy(),
'''attention_mask''': inputs['''attention_mask'''].cpu().numpy(),
'''num_beams''': np.array(snake_case__ ),
'''max_length''': np.array(snake_case__ ),
'''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info('''Model outputs from torch and ONNX Runtime are similar.''' )
logger.info('''Success.''' )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Optional[int] = parse_args()
A : Optional[int] = 5
A : List[str] = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
A : Dict = torch.device(args.device )
A, A : Any = load_model_tokenizer(args.model_name_or_path , snake_case__ )
if model.config.decoder_start_token_id is None:
raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' )
model.to(snake_case__ )
if args.max_length:
A : Dict = args.max_length
if args.num_beams:
A : Dict = args.num_beams
if args.output_file_path:
A : Optional[int] = args.output_file_path
else:
A : Union[str, Any] = '''BART.onnx'''
logger.info('''Exporting model to ONNX''' )
export_and_validate_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[int] = x
A : str = y
for step in range(snake_case__ ): # noqa: B007
A : str = a * a - b * b + x
A : List[str] = 2 * a * b + y
A : str = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) )
def lowerCAmelCase_ ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ):
'''simple docstring'''
A : List[Any] = Image.new('''RGB''' , (image_width, image_height) )
A : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(snake_case__ ):
for image_y in range(snake_case__ ):
# determine the figure-coordinates based on the image-coordinates
A : Optional[int] = figure_width / image_width * image_height
A : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
A : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height
A : str = get_distance(snake_case__ , snake_case__ , snake_case__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
A : str = get_color_coded_rgb(snake_case__ )
else:
A : List[Any] = get_black_and_white_rgb(snake_case__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowercase : Optional[Any] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 311
| 1
|
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for param in module.parameters():
A : Optional[Any] = False
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu'''
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
A : Optional[Any] = '''mps'''
if device == "mps":
print(
'''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'''
''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'''
''' with generations.''' )
return device
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = plt.imshow(snake_case__ )
fig.axes.get_xaxis().set_visible(snake_case__ )
fig.axes.get_yaxis().set_visible(snake_case__ )
plt.show()
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : List[str] = datetime.now()
A : List[Any] = current_time.strftime('''%H:%M:%S''' )
return timestamp
| 311
|
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowercase : Optional[int] = [
'kernels/rwkv/wkv_cuda.cu',
'kernels/rwkv/wkv_op.cpp',
'kernels/deformable_detr/ms_deform_attn.h',
'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh',
'models/graphormer/algos_graphormer.pyx',
]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowercase : str = argparse.ArgumentParser()
parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.')
lowercase : Optional[Any] = parser.parse_args()
if args.check_lib:
lowercase : List[Any] = importlib.import_module('transformers')
lowercase : str = Path(transformers_module.__file__).parent
else:
lowercase : List[Any] = Path.cwd() / 'build/lib/transformers'
if not test_custom_files_are_present(transformers_path):
raise ValueError('The built release does not contain the custom files. Fix this before going further!')
| 311
| 1
|
'''simple docstring'''
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowercase : Union[str, Any] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''pixel_values''']
def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 8 , **SCREAMING_SNAKE_CASE , ) -> None:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : Union[str, Any] = do_rescale
A : List[Any] = rescale_factor
A : int = do_pad
A : List[str] = pad_size
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> np.ndarray:
"""simple docstring"""
return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> int:
"""simple docstring"""
A, A : Dict = get_image_size(SCREAMING_SNAKE_CASE )
A : List[Any] = (old_height // size + 1) * size - old_height
A : int = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
A : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
A : Tuple = do_pad if do_pad is not None else self.do_pad
A : Any = pad_size if pad_size is not None else self.pad_size
A : Optional[int] = make_list_of_images(SCREAMING_SNAKE_CASE )
if not valid_images(SCREAMING_SNAKE_CASE ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
A : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
A : int = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images]
if do_pad:
A : Dict = [self.pad(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images]
A : Union[str, Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images]
A : Optional[int] = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]:
"""simple docstring"""
A : List[str] = parent
A : Optional[Any] = batch_size
A : Tuple = image_size
A : int = patch_size
A : Optional[int] = num_channels
A : str = is_training
A : List[Any] = use_labels
A : Any = hidden_size
A : Any = num_hidden_layers
A : Optional[int] = num_attention_heads
A : Any = intermediate_size
A : List[str] = hidden_act
A : str = hidden_dropout_prob
A : Tuple = attention_probs_dropout_prob
A : Any = type_sequence_label_size
A : Optional[int] = initializer_range
A : Dict = scope
A : Tuple = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
A : List[Any] = (image_size // patch_size) ** 2
A : Tuple = num_patches + 2
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Tuple = None
if self.use_labels:
A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Tuple = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE )
A : str = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE )
A : List[Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
A : Optional[int] = 1
A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE )
A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Tuple = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
A : str = self.type_sequence_label_size
A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A : Optional[Any] = 1
A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[int] = self.prepare_config_and_inputs()
A, A, A : Tuple = config_and_inputs
A : Any = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': TFDeiTModel,
'''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = TFDeiTModelTester(self )
A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
pass
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
A : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A, A : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
A : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Union[str, Any] = [*signature.parameters.keys()]
A : List[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
A : Dict = self.default_image_processor
A : List[str] = prepare_img()
A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
A : Optional[int] = model(**SCREAMING_SNAKE_CASE )
# verify the logits
A : List[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
assert isinstance(snake_case__ , snake_case__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : int = tmp_path / '''cache'''
A : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : List[str] = SqlDatasetReader(
'''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_sql_dataset(snake_case__ , snake_case__ )
@require_sqlalchemy
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = tmp_path / '''cache'''
A : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
A : Optional[Any] = features.copy() if features else default_expected_features
A : List[str] = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_sql_dataset(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
with contextlib.closing(sqlitea.connect(snake_case__ ) ) as con:
A : Tuple = con.cursor()
cur.execute('''SELECT * FROM dataset''' )
for row in cur:
yield row
@require_sqlalchemy
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[str] = tmp_path / '''cache'''
A : str = os.path.join(snake_case__ , '''tmp.sql''' )
A : Tuple = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case__ ).read()
SqlDatasetWriter(snake_case__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write()
A : int = iter_sql_file(snake_case__ )
A : List[str] = iter_sql_file(snake_case__ )
for rowa, rowa in zip(snake_case__ , snake_case__ ):
assert rowa == rowa
@require_sqlalchemy
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : str = tmp_path / '''cache'''
A : Dict = os.path.join(snake_case__ , '''tmp.sql''' )
A : Optional[int] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case__ ).read()
SqlDatasetWriter(snake_case__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write()
A : str = iter_sql_file(snake_case__ )
A : Dict = iter_sql_file(snake_case__ )
for rowa, rowa in zip(snake_case__ , snake_case__ ):
assert rowa == rowa
@require_sqlalchemy
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Dict = tmp_path / '''cache'''
A : Optional[int] = os.path.join(snake_case__ , '''tmp.sql''' )
A : int = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=snake_case__ ).read()
with pytest.raises(snake_case__ ):
SqlDatasetWriter(snake_case__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
| 311
|
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase : List[str] = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
| 1
|
'''simple docstring'''
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def __lowerCAmelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class A ( unittest.TestCase ):
@require_torch
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , )
A : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
A : str = image_classifier(SCREAMING_SNAKE_CASE , candidate_labels=['''a''', '''b''', '''c'''] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(SCREAMING_SNAKE_CASE ) , [
[{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}],
[{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}],
] , )
A : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE ) , [
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
] , )
@require_tf
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Tuple = pipeline(
model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' )
A : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
A : Any = image_classifier(SCREAMING_SNAKE_CASE , candidate_labels=['''a''', '''b''', '''c'''] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , )
A : Dict = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE ) , [
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
[
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
{'''score''': 0.333, '''label''': ANY(SCREAMING_SNAKE_CASE )},
],
] , )
@slow
@require_torch
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : List[str] = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , )
# This is an image of 2 cats with remotes and no planes
A : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
A : Optional[Any] = image_classifier(SCREAMING_SNAKE_CASE , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE ) , [
{'''score''': 0.511, '''label''': '''remote'''},
{'''score''': 0.485, '''label''': '''cat'''},
{'''score''': 0.004, '''label''': '''plane'''},
] , )
A : List[str] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE ) , [
[
{'''score''': 0.511, '''label''': '''remote'''},
{'''score''': 0.485, '''label''': '''cat'''},
{'''score''': 0.004, '''label''': '''plane'''},
],
]
* 5 , )
@slow
@require_tf
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : List[Any] = pipeline(
task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' )
# This is an image of 2 cats with remotes and no planes
A : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
A : Optional[int] = image_classifier(SCREAMING_SNAKE_CASE , candidate_labels=['''cat''', '''plane''', '''remote'''] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE ) , [
{'''score''': 0.511, '''label''': '''remote'''},
{'''score''': 0.485, '''label''': '''cat'''},
{'''score''': 0.004, '''label''': '''plane'''},
] , )
A : Dict = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE ) , [
[
{'''score''': 0.511, '''label''': '''remote'''},
{'''score''': 0.485, '''label''': '''cat'''},
{'''score''': 0.004, '''label''': '''plane'''},
],
]
* 5 , )
| 311
|
'''simple docstring'''
from __future__ import annotations
lowercase : Union[str, Any] = list[tuple[int, int]]
lowercase : Optional[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
A : int = pos_x
A : Optional[Any] = pos_y
A : Optional[Any] = (pos_y, pos_x)
A : str = goal_x
A : Optional[int] = goal_y
A : List[Any] = g_cost
A : str = parent
A : str = self.calculate_heuristic()
def __lowerCAmelCase ( self ) -> float:
"""simple docstring"""
A : Optional[int] = abs(self.pos_x - self.goal_x )
A : Optional[Any] = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return self.f_cost < other.f_cost
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE )
A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE )
A : Optional[Any] = [self.start]
A : list[Node] = []
A : Tuple = False
def __lowerCAmelCase ( self ) -> Path | None:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
A : Optional[int] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
A : Optional[int] = True
return self.retrace_path(SCREAMING_SNAKE_CASE )
self.closed_nodes.append(SCREAMING_SNAKE_CASE )
A : Any = self.get_successors(SCREAMING_SNAKE_CASE )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
# retrieve the best current path
A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
if not self.reached:
return [self.start.pos]
return None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]:
"""simple docstring"""
A : List[Any] = []
for action in delta:
A : List[str] = parent.pos_x + action[1]
A : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) )
return successors
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path:
"""simple docstring"""
A : int = node
A : Union[str, Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
A : int = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase : Tuple = (0, 0)
lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print('------')
lowercase : int = GreedyBestFirst(init, goal)
lowercase : Union[str, Any] = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase : Dict = 2
for elem in grid:
print(elem)
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
from random import random
class A :
def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = value
A : Any = random()
A : Node | None = None
A : Node | None = None
def __repr__( self ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return F'\'{self.value}: {self.prior:.5}\''
else:
return pformat(
{F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 )
def __str__( self ) -> str:
"""simple docstring"""
A : Optional[Any] = str(self.value ) + ''' '''
A : Union[str, Any] = str(self.left or '''''' )
A : Any = str(self.right or '''''' )
return value + left + right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
A, A : Any = split(root.left , snake_case__ )
return left, root
else:
A, A : Optional[int] = split(root.right , snake_case__ )
return root, right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
A : List[str] = merge(left.right , snake_case__ )
return left
else:
A : Tuple = merge(snake_case__ , right.left )
return right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[Any] = Node(snake_case__ )
A, A : Tuple = split(snake_case__ , snake_case__ )
return merge(merge(snake_case__ , snake_case__ ) , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A, A : Dict = split(snake_case__ , value - 1 )
A, A : Any = split(snake_case__ , snake_case__ )
return merge(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=''',''' )
inorder(root.right )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
A : int = insert(snake_case__ , int(arg[1:] ) )
elif arg[0] == "-":
A : int = erase(snake_case__ , int(arg[1:] ) )
else:
print('''Unknown command''' )
return root
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Union[str, Any] = None
print(
'''enter numbers to create a tree, + value to add value into treap, '''
'''- value to erase all nodes with value. \'q\' to quit. ''' )
A : Optional[int] = input()
while args != "q":
A : str = interact_treap(snake_case__ , snake_case__ )
print(snake_case__ )
A : Union[str, Any] = input()
print('''good by!''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 311
|
'''simple docstring'''
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
lowercase : Any = 'src/transformers'
lowercase : str = 'docs/source/en/tasks'
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
A : Union[str, Any] = f.readlines()
# Find the start prompt.
A : List[Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
A : List[str] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
lowercase : int = direct_transformers_import(TRANSFORMERS_PATH)
lowercase : str = {
'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
lowercase : Optional[int] = {
'summarization.md': ('nllb',),
'translation.md': ('nllb',),
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : int = TASK_GUIDE_TO_MODELS[task_guide]
A : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() )
A : Union[str, Any] = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n"
def lowerCAmelCase_ ( snake_case__ , snake_case__=False ):
'''simple docstring'''
A, A, A, A : Optional[int] = _find_text_in_file(
filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , )
A : Optional[int] = get_model_list_for_task(snake_case__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'
''' to fix this.''' )
if __name__ == "__main__":
lowercase : Dict = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
lowercase : List[Any] = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 311
| 1
|
'''simple docstring'''
import time
import warnings
from abc import ABC
from copy import deepcopy
from typing import Optional
import torch
from ..utils import add_start_docstrings, logging
lowercase : List[Any] = logging.get_logger(__name__)
lowercase : Dict = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n'
class A ( __snake_case ):
@add_start_docstrings(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
raise NotImplementedError('''StoppingCriteria needs to be subclassed''' )
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Dict:
"""simple docstring"""
A : Union[str, Any] = max_length
A : List[Any] = max_position_embeddings
@add_start_docstrings(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
A : Any = input_ids.shape[-1]
A : List[Any] = cur_len >= self.max_length
if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings:
logger.warning_once(
'''This is a friendly reminder - the current text generation call will exceed the model\'s predefined '''
F'maximum length ({self.max_position_embeddings}). Depending on the model, you may observe '
'''exceptions, performance degradation, or nothing at all.''' )
return is_done
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
warnings.warn(
'''The class `MaxNewTokensCriteria` is deprecated. '''
F'Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` '
'''with `max_length = start_length + max_new_tokens` instead.''' , SCREAMING_SNAKE_CASE , )
A : Optional[Any] = start_length
A : Optional[int] = max_new_tokens
A : Optional[Any] = start_length + max_new_tokens
@add_start_docstrings(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return input_ids.shape[-1] >= self.max_length
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[Any]:
"""simple docstring"""
A : List[str] = max_time
A : Optional[int] = time.time() if initial_timestamp is None else initial_timestamp
@add_start_docstrings(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return time.time() - self.initial_timestamp > self.max_time
class A ( __snake_case ):
@add_start_docstrings(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return any(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for criteria in self )
@property
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
for stopping_criterium in self:
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return stopping_criterium.max_length
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return stopping_criterium.max_length
return None
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Any = stopping_criteria.max_length
A : Dict = deepcopy(snake_case__ )
if stopping_max_length is not None and stopping_max_length != max_length:
warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , snake_case__ )
elif stopping_max_length is None:
new_stopping_criteria.append(MaxLengthCriteria(max_length=snake_case__ ) )
return new_stopping_criteria
| 311
|
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if len(snake_case__ ) <= 1:
return [tuple(snake_case__ )]
A : Tuple = []
def generate(snake_case__ , snake_case__ ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , snake_case__ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
A, A : Optional[Any] = arr[k - 1], arr[i]
else: # k is odd
A, A : Optional[Any] = arr[k - 1], arr[0]
generate(k - 1 , snake_case__ )
generate(len(snake_case__ ) , snake_case__ )
return res
if __name__ == "__main__":
lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip()
lowercase : int = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 311
| 1
|
'''simple docstring'''
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class A ( __snake_case , unittest.TestCase ):
__magic_name__ = BertTokenizer
__magic_name__ = BertTokenizerFast
__magic_name__ = True
__magic_name__ = True
__magic_name__ = filter_non_english
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
super().setUp()
A : int = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
A : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = '''UNwant\u00E9d,running'''
A : Optional[Any] = '''unwanted, running'''
return input_text, output_text
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Any = self.tokenizer_class(self.vocab_file )
A : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [9, 6, 7, 12, 10, 11] )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
A : List[str] = self.get_tokenizer()
A : str = self.get_rust_tokenizer()
A : List[str] = '''UNwant\u00E9d,running'''
A : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
A : Any = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[Any] = self.get_rust_tokenizer()
A : str = tokenizer.encode(SCREAMING_SNAKE_CASE )
A : List[str] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# With lower casing
A : List[str] = self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE )
A : Dict = self.get_rust_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = '''UNwant\u00E9d,running'''
A : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE )
A : Optional[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
A : Optional[int] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Dict = self.get_rust_tokenizer()
A : Optional[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE )
A : str = rust_tokenizer.encode(SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[Any] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Union[str, Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : List[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Union[str, Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[int] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Optional[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[str] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Union[str, Any] = BasicTokenizer()
A : Optional[Any] = '''a\n\'ll !!to?\'d of, can\'t.'''
A : Dict = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.''']
self.assertListEqual(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
A : List[str] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE ):
A : int = i
A : Any = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : int = self.get_tokenizer()
A : Any = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Union[str, Any] = self.tokenizer_class.from_pretrained('''bert-base-uncased''' )
A : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE )
A : List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Dict = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
A : Optional[int] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , )
A : Optional[Any] = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE , '''do_lower_case''' ) else False
A : Dict = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Union[str, Any] = ['''的''', '''人''', '''有''']
A : str = ''''''.join(SCREAMING_SNAKE_CASE )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] = True
A : List[str] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Dict = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Optional[int] = tokenizer_p.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
A : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
A : Optional[int] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Any = False
A : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Any = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
A : int = tokenizer_p.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE )
A : int = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE )
A : Tuple = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE )
# it is expected that only the first Chinese character is not preceded by "##".
A : List[str] = [
F'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE )
]
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A ( __snake_case ):
__magic_name__ = (UniPCMultistepScheduler,)
__magic_name__ = (('''num_inference_steps''', 25),)
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : str = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''solver_type''': '''bh2''',
}
config.update(**SCREAMING_SNAKE_CASE )
return config
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : List[Any] = dict(self.forward_default_kwargs )
A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
A : Optional[Any] = self.dummy_sample
A : int = 0.1 * sample
A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE )
A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order]
A, A : Tuple = sample, sample
for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ):
A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = dict(self.forward_default_kwargs )
A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
A : List[Any] = self.dummy_sample
A : int = 0.1 * sample
A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
A : Optional[int] = self.get_scheduler_config()
A : Any = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
A : int = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(SCREAMING_SNAKE_CASE )
A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if scheduler is None:
A : Dict = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Tuple = self.scheduler_classes[0]
A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : int = 10
A : Tuple = self.dummy_model()
A : Any = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
return sample
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Tuple = dict(self.forward_default_kwargs )
A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
A : Dict = self.get_scheduler_config()
A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Optional[Any] = self.dummy_sample
A : Optional[int] = 0.1 * sample
if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
A : Tuple = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10]
A : List[str] = dummy_past_residuals[: scheduler.config.solver_order]
A : List[Any] = scheduler.timesteps[5]
A : Dict = scheduler.timesteps[6]
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() )
A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE )
A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config )
A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config )
A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config )
A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config )
A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE )
A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , )
A : Dict = self.full_loop(
solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , )
assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers"
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE )
self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : int = self.full_loop()
A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_464 ) < 1e-3
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : List[Any] = self.full_loop(prediction_type='''v_prediction''' )
A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.1_014 ) < 1e-3
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Dict = self.scheduler_classes[0]
A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 )
A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE )
A : Tuple = 10
A : Union[str, Any] = self.dummy_model()
A : Dict = self.dummy_sample_deter.half()
scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
assert sample.dtype == torch.floataa
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
for scheduler_class in self.scheduler_classes:
A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE )
A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 311
| 1
|
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
lowercase : str = logging.get_logger(__name__)
lowercase : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
lowercase : Tuple = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
lowercase : List[str] = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
lowercase : List[Any] = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class A ( __snake_case ):
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_INIT_CONFIGURATION
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = SqueezeBertTokenizer
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="[UNK]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="[PAD]" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , tokenize_chinese_chars=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
A : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars
):
A : Tuple = getattr(SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) )
A : Optional[Any] = do_lower_case
A : Any = strip_accents
A : Tuple = tokenize_chinese_chars
A : Dict = normalizer_class(**SCREAMING_SNAKE_CASE )
A : Optional[Any] = do_lower_case
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Tuple:
"""simple docstring"""
A : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
A : int = [self.sep_token_id]
A : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
A : Union[str, Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE )
return tuple(SCREAMING_SNAKE_CASE )
| 311
|
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
super().__init__()
# make sure scheduler can always be converted to DDIM
A : Dict = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ):
A : List[Any] = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
A : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : int = self.scheduler.step(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample
A : Dict = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
| 311
| 1
|
'''simple docstring'''
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from fastapi import Body, FastAPI, HTTPException
from fastapi.routing import APIRoute
from pydantic import BaseModel
from starlette.responses import JSONResponse
from uvicorn import run
lowercase : List[str] = True
except (ImportError, AttributeError):
lowercase : Any = object
def lowerCAmelCase_ ( *snake_case__ , **snake_case__ ):
'''simple docstring'''
pass
lowercase : List[str] = False
lowercase : Optional[int] = logging.get_logger('transformers-cli/serving')
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
return ServeCommand(snake_case__ , args.host , args.port , args.workers )
class A ( __snake_case ):
__magic_name__ = 42
class A ( __snake_case ):
__magic_name__ = 42
__magic_name__ = 42
class A ( __snake_case ):
__magic_name__ = 42
class A ( __snake_case ):
__magic_name__ = 42
class A ( __snake_case ):
@staticmethod
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
A : Optional[int] = parser.add_parser(
'''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' )
serve_parser.add_argument(
'''--task''' , type=SCREAMING_SNAKE_CASE , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , )
serve_parser.add_argument('''--host''' , type=SCREAMING_SNAKE_CASE , default='''localhost''' , help='''Interface the server will listen on.''' )
serve_parser.add_argument('''--port''' , type=SCREAMING_SNAKE_CASE , default=8888 , help='''Port the serving will listen to.''' )
serve_parser.add_argument('''--workers''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''Number of http workers''' )
serve_parser.add_argument('''--model''' , type=SCREAMING_SNAKE_CASE , help='''Model\'s name or path to stored model.''' )
serve_parser.add_argument('''--config''' , type=SCREAMING_SNAKE_CASE , help='''Model\'s config name or path to stored model.''' )
serve_parser.add_argument('''--tokenizer''' , type=SCREAMING_SNAKE_CASE , help='''Tokenizer name to use.''' )
serve_parser.add_argument(
'''--device''' , type=SCREAMING_SNAKE_CASE , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , )
serve_parser.set_defaults(func=SCREAMING_SNAKE_CASE )
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = pipeline
A : Any = host
A : List[Any] = port
A : str = workers
if not _serve_dependencies_installed:
raise RuntimeError(
'''Using serve command requires FastAPI and uvicorn. '''
'''Please install transformers with [serving]: pip install "transformers[serving]".'''
'''Or install FastAPI and uvicorn separately.''' )
else:
logger.info(F'Serving model over {host}:{port}' )
A : Union[str, Any] = FastAPI(
routes=[
APIRoute(
'''/''' , self.model_info , response_model=SCREAMING_SNAKE_CASE , response_class=SCREAMING_SNAKE_CASE , methods=['''GET'''] , ),
APIRoute(
'''/tokenize''' , self.tokenize , response_model=SCREAMING_SNAKE_CASE , response_class=SCREAMING_SNAKE_CASE , methods=['''POST'''] , ),
APIRoute(
'''/detokenize''' , self.detokenize , response_model=SCREAMING_SNAKE_CASE , response_class=SCREAMING_SNAKE_CASE , methods=['''POST'''] , ),
APIRoute(
'''/forward''' , self.forward , response_model=SCREAMING_SNAKE_CASE , response_class=SCREAMING_SNAKE_CASE , methods=['''POST'''] , ),
] , timeout=600 , )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
run(self._app , host=self.host , port=self.port , workers=self.workers )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = Body(SCREAMING_SNAKE_CASE , embed=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE = Body(SCREAMING_SNAKE_CASE , embed=SCREAMING_SNAKE_CASE ) ) -> List[Any]:
"""simple docstring"""
try:
A : int = self._pipeline.tokenizer.tokenize(SCREAMING_SNAKE_CASE )
if return_ids:
A : int = self._pipeline.tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE )
return ServeTokenizeResult(tokens=SCREAMING_SNAKE_CASE , tokens_ids=SCREAMING_SNAKE_CASE )
else:
return ServeTokenizeResult(tokens=SCREAMING_SNAKE_CASE )
except Exception as e:
raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(SCREAMING_SNAKE_CASE )} )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = Body(SCREAMING_SNAKE_CASE , embed=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE = Body(SCREAMING_SNAKE_CASE , embed=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE = Body(SCREAMING_SNAKE_CASE , embed=SCREAMING_SNAKE_CASE ) , ) -> Dict:
"""simple docstring"""
try:
A : Optional[int] = self._pipeline.tokenizer.decode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return ServeDeTokenizeResult(model='''''' , text=SCREAMING_SNAKE_CASE )
except Exception as e:
raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(SCREAMING_SNAKE_CASE )} )
async def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=Body(SCREAMING_SNAKE_CASE , embed=SCREAMING_SNAKE_CASE ) ) -> List[str]:
"""simple docstring"""
if len(SCREAMING_SNAKE_CASE ) == 0:
return ServeForwardResult(output=[] , attention=[] )
try:
# Forward through the model
A : Tuple = self._pipeline(SCREAMING_SNAKE_CASE )
return ServeForwardResult(output=SCREAMING_SNAKE_CASE )
except Exception as e:
raise HTTPException(500 , {'''error''': str(SCREAMING_SNAKE_CASE )} )
| 311
|
'''simple docstring'''
from __future__ import annotations
from random import random
class A :
def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple:
"""simple docstring"""
A : Optional[Any] = value
A : Any = random()
A : Node | None = None
A : Node | None = None
def __repr__( self ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return F'\'{self.value}: {self.prior:.5}\''
else:
return pformat(
{F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 )
def __str__( self ) -> str:
"""simple docstring"""
A : Optional[Any] = str(self.value ) + ''' '''
A : Union[str, Any] = str(self.left or '''''' )
A : Any = str(self.right or '''''' )
return value + left + right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
A, A : Any = split(root.left , snake_case__ )
return left, root
else:
A, A : Optional[int] = split(root.right , snake_case__ )
return root, right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
A : List[str] = merge(left.right , snake_case__ )
return left
else:
A : Tuple = merge(snake_case__ , right.left )
return right
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[Any] = Node(snake_case__ )
A, A : Tuple = split(snake_case__ , snake_case__ )
return merge(merge(snake_case__ , snake_case__ ) , snake_case__ )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A, A : Dict = split(snake_case__ , value - 1 )
A, A : Any = split(snake_case__ , snake_case__ )
return merge(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=''',''' )
inorder(root.right )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for arg in args.split():
if arg[0] == "+":
A : int = insert(snake_case__ , int(arg[1:] ) )
elif arg[0] == "-":
A : int = erase(snake_case__ , int(arg[1:] ) )
else:
print('''Unknown command''' )
return root
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Union[str, Any] = None
print(
'''enter numbers to create a tree, + value to add value into treap, '''
'''- value to erase all nodes with value. \'q\' to quit. ''' )
A : Optional[int] = input()
while args != "q":
A : str = interact_treap(snake_case__ , snake_case__ )
print(snake_case__ )
A : Union[str, Any] = input()
print('''good by!''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 311
| 1
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Union[str, Any] = np.array([[1, item, train_mtch[i]] for i, item in enumerate(snake_case__ )] )
A : Dict = np.array(snake_case__ )
A : Dict = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , snake_case__ ) ) , x.transpose() ) , snake_case__ )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[Any] = (1, 2, 1)
A : Tuple = (1, 1, 0, 7)
A : Optional[int] = SARIMAX(
snake_case__ , exog=snake_case__ , order=snake_case__ , seasonal_order=snake_case__ )
A : Any = model.fit(disp=snake_case__ , maxiter=600 , method='''nm''' )
A : int = model_fit.predict(1 , len(snake_case__ ) , exog=[test_match] )
return result[0]
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(snake_case__ , snake_case__ )
A : Any = regressor.predict(snake_case__ )
return y_pred[0]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
train_user.sort()
A : Optional[Any] = np.percentile(snake_case__ , 25 )
A : int = np.percentile(snake_case__ , 75 )
A : Union[str, Any] = qa - qa
A : Optional[Any] = qa - (iqr * 0.1)
return low_lim
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : str = 0
A : str = 0
for i in list_vote:
if i > actual_result:
A : int = not_safe + 1
else:
if abs(abs(snake_case__ ) - abs(snake_case__ ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
lowercase : Tuple = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]]
lowercase : List[Any] = pd.DataFrame(
data_input, columns=['total_user', 'total_even', 'days']
)
lowercase : Optional[Any] = Normalizer().fit_transform(data_input_df.values)
# split data
lowercase : Tuple = normalize_df[:, 2].tolist()
lowercase : List[Any] = normalize_df[:, 0].tolist()
lowercase : Dict = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
lowercase : Optional[int] = normalize_df[:, [1, 2]].tolist()
lowercase : Dict = x[: len(x) - 1]
lowercase : Union[str, Any] = x[len(x) - 1 :]
# for linear regression & sarimax
lowercase : Optional[Any] = total_date[: len(total_date) - 1]
lowercase : Dict = total_user[: len(total_user) - 1]
lowercase : int = total_match[: len(total_match) - 1]
lowercase : Union[str, Any] = total_date[len(total_date) - 1 :]
lowercase : Optional[Any] = total_user[len(total_user) - 1 :]
lowercase : Optional[int] = total_match[len(total_match) - 1 :]
# voting system with forecasting
lowercase : Tuple = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
lowercase : Optional[Any] = '' if data_safety_checker(res_vote, tst_user) else 'not '
print('Today\'s data is {not_str}safe.')
| 311
|
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]:
"""simple docstring"""
A : Tuple = '''bilinear'''
A : Optional[int] = max_size
A : Dict = short_edge_length
def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Tuple = []
for img in imgs:
A, A : str = img.shape[:2]
# later: provide list and randomly choose index for resize
A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if h < w:
A, A : Tuple = size, scale * w
else:
A, A : str = scale * h, size
if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size:
A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Tuple = newh * scale
A : int = neww * scale
A : List[str] = int(neww + 0.5 )
A : int = int(newh + 0.5 )
if img.dtype == np.uinta:
A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE )
A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
A : str = np.asarray(SCREAMING_SNAKE_CASE )
else:
A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
A : List[Any] = nn.functional.interpolate(
SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 )
img_augs.append(SCREAMING_SNAKE_CASE )
return img_augs
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
A : str = cfg.INPUT.FORMAT
A : int = cfg.SIZE_DIVISIBILITY
A : Optional[int] = cfg.PAD_VALUE
A : Dict = cfg.INPUT.MAX_SIZE_TEST
A : Optional[Any] = cfg.MODEL.DEVICE
A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) )
A : List[str] = [im.shape[-2:] for im in images]
A : Optional[Any] = [
nn.functional.pad(
SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
"""simple docstring"""
with torch.no_grad():
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : str = [images]
if single_image:
assert len(SCREAMING_SNAKE_CASE ) == 1
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
A : Tuple = torch.tensor([im.shape[:2] for im in images] )
A : Dict = self.aug(SCREAMING_SNAKE_CASE )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images]
# now pad them to do the following operations
A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!"
A, A : str = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case__ )
tensor[:, 1].clamp_(min=0 , max=snake_case__ )
tensor[:, 2].clamp_(min=0 , max=snake_case__ )
tensor[:, 3].clamp_(min=0 , max=snake_case__ )
| 311
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase : Union[str, Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Union[str, Any] = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
|
'''simple docstring'''
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
'--original_config_file',
default=None,
type=str,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--scheduler_type',
default='pndm',
type=str,
help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']',
)
parser.add_argument(
'--pipeline_type',
default=None,
type=str,
help=(
'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\''
'. If `None` pipeline will be automatically inferred.'
),
)
parser.add_argument(
'--image_size',
default=None,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--prediction_type',
default=None,
type=str,
help=(
'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable'
' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
parser.add_argument(
'--stable_unclip',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.',
)
parser.add_argument(
'--stable_unclip_prior',
type=str,
default=None,
required=False,
help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.',
)
parser.add_argument(
'--clip_stats_path',
type=str,
help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.',
required=False,
)
parser.add_argument(
'--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.'
)
parser.add_argument('--half', action='store_true', help='Save weights in half precision.')
parser.add_argument(
'--vae_path',
type=str,
default=None,
required=False,
help='Set to a path, hub id to an already converted vae to not convert it again.',
)
lowercase : Tuple = parser.parse_args()
lowercase : Union[str, Any] = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 311
| 1
|
'''simple docstring'''
from torch import nn
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F'Unsupported activation function: {act_fn}' )
| 311
|
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase : str = datasets.utils.logging.get_logger(__name__)
lowercase : Union[str, Any] = ['names', 'prefix']
lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
lowercase : List[Any] = ['encoding_errors', 'on_bad_lines']
lowercase : Any = ['date_format']
@dataclass
class A ( datasets.BuilderConfig ):
__magic_name__ = ","
__magic_name__ = None
__magic_name__ = "infer"
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = "."
__magic_name__ = None
__magic_name__ = '"'
__magic_name__ = 0
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
__magic_name__ = True
__magic_name__ = True
__magic_name__ = 0
__magic_name__ = True
__magic_name__ = False
__magic_name__ = None
__magic_name__ = 10000
__magic_name__ = None
__magic_name__ = "strict"
__magic_name__ = "error"
__magic_name__ = None
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
if self.delimiter is not None:
A : Optional[Any] = self.delimiter
if self.column_names is not None:
A : Optional[Any] = self.column_names
@property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : str = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A ( datasets.ArrowBasedBuilder ):
__magic_name__ = CsvConfig
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
A : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ):
A : str = data_files
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : int = [files]
A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
A : Tuple = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : List[str] = [files]
A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) )
return splits
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
A : Optional[int] = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ):
# cheaper cast
A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return pa_table
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
A : int = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ):
A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ):
A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE )
except ValueError as e:
logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' )
raise
| 311
| 1
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowercase : str = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
A : int = 192
A : Dict = 768
A : Optional[int] = 12
A : Any = 3
A : Optional[Any] = [800, 1333]
A : List[str] = False
elif yolos_name == "yolos_s_dWr":
A : Union[str, Any] = 330
A : Tuple = 14
A : Tuple = 6
A : Optional[int] = 1320
elif "yolos_s" in yolos_name:
A : Optional[int] = 384
A : Any = 1536
A : Dict = 12
A : Tuple = 6
elif "yolos_b" in yolos_name:
A : Optional[int] = [800, 1344]
A : Dict = 91
A : Union[str, Any] = '''huggingface/label-files'''
A : Optional[Any] = '''coco-detection-id2label.json'''
A : Optional[int] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) )
A : List[str] = {int(snake_case__ ): v for k, v in idalabel.items()}
A : Optional[int] = idalabel
A : Tuple = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ = False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A : str = state_dict.pop(F'blocks.{i}.attn.qkv.weight' )
A : Any = state_dict.pop(F'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A : Union[str, Any] = in_proj_weight[: config.hidden_size, :]
A : str = in_proj_bias[: config.hidden_size]
A : int = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A : Optional[Any] = in_proj_weight[-config.hidden_size :, :]
A : List[str] = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if "backbone" in name:
A : List[str] = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
A : str = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
A : Any = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
A : List[str] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
A : Tuple = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
A : str = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
A : List[str] = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
A : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
A : Optional[int] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
A : int = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
A : Any = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
A : Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
A : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
A : Dict = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
A : Optional[Any] = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
A : str = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
A : Dict = orig_state_dict.pop(snake_case__ )
if "qkv" in key:
A : Union[str, Any] = key.split('''.''' )
A : Union[str, Any] = int(key_split[2] )
A : str = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
A : Any = val[:dim, :]
A : Tuple = val[
dim : dim * 2, :
]
A : Optional[Any] = val[-dim:, :]
else:
A : int = val[:dim]
A : List[Any] = val[dim : dim * 2]
A : Optional[Any] = val[-dim:]
else:
A : Tuple = val
return orig_state_dict
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A : str = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False ):
'''simple docstring'''
A : Optional[int] = get_yolos_config(snake_case__ )
# load original state_dict
A : Dict = torch.load(snake_case__ , map_location='''cpu''' )['''model''']
# load 🤗 model
A : List[str] = YolosForObjectDetection(snake_case__ )
model.eval()
A : Optional[Any] = convert_state_dict(snake_case__ , snake_case__ )
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by YolosImageProcessor
A : Optional[Any] = 800 if yolos_name != '''yolos_ti''' else 512
A : Any = YolosImageProcessor(format='''coco_detection''' , size=snake_case__ )
A : str = image_processor(images=prepare_img() , return_tensors='''pt''' )
A : Optional[int] = model(**snake_case__ )
A, A : Tuple = outputs.logits, outputs.pred_boxes
A, A : str = None, None
if yolos_name == "yolos_ti":
A : Tuple = torch.tensor(
[[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] )
A : Any = torch.tensor(
[[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] )
elif yolos_name == "yolos_s_200_pre":
A : Any = torch.tensor(
[[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] )
A : List[Any] = torch.tensor(
[[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] )
elif yolos_name == "yolos_s_300_pre":
A : int = torch.tensor(
[[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] )
A : str = torch.tensor(
[[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] )
elif yolos_name == "yolos_s_dWr":
A : Any = torch.tensor(
[[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] )
A : Any = torch.tensor(
[[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] )
elif yolos_name == "yolos_base":
A : Tuple = torch.tensor(
[[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] )
A : Dict = torch.tensor(
[[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] )
else:
raise ValueError(F'Unknown yolos_name: {yolos_name}' )
assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , snake_case__ , atol=1E-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
A : Dict = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
A : List[str] = model_mapping[yolos_name]
image_processor.push_to_hub(snake_case__ , organization='''hustvl''' )
model.push_to_hub(snake_case__ , organization='''hustvl''' )
if __name__ == "__main__":
lowercase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
lowercase : str = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 311
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : int = logging.get_logger(__name__)
lowercase : int = {
'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class A ( __snake_case ):
__magic_name__ = '''sew'''
def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="group" , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE )
A : Optional[Any] = hidden_size
A : Any = feat_extract_norm
A : Optional[int] = feat_extract_activation
A : Tuple = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : List[str] = list(SCREAMING_SNAKE_CASE )
A : int = conv_bias
A : List[Any] = num_conv_pos_embeddings
A : Tuple = num_conv_pos_embedding_groups
A : int = len(self.conv_dim )
A : Dict = num_hidden_layers
A : Optional[int] = intermediate_size
A : Any = squeeze_factor
A : int = hidden_act
A : str = num_attention_heads
A : Dict = hidden_dropout
A : Optional[Any] = attention_dropout
A : List[str] = activation_dropout
A : Union[str, Any] = feat_proj_dropout
A : Union[str, Any] = final_dropout
A : int = layerdrop
A : Optional[Any] = layer_norm_eps
A : Any = initializer_range
A : Tuple = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A : Optional[Any] = apply_spec_augment
A : Optional[Any] = mask_time_prob
A : Union[str, Any] = mask_time_length
A : Optional[Any] = mask_time_min_masks
A : str = mask_feature_prob
A : Tuple = mask_feature_length
A : Any = mask_feature_min_masks
# ctc loss
A : List[Any] = ctc_loss_reduction
A : Dict = ctc_zero_infinity
# sequence classification
A : int = use_weighted_layer_sum
A : Optional[int] = classifier_proj_size
@property
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 311
| 1
|
'''simple docstring'''
import math
import tensorflow as tf
from packaging import version
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[Any] = tf.convert_to_tensor(snake_case__ )
A : List[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Any = tf.convert_to_tensor(snake_case__ )
A : Dict = tf.cast(math.pi , x.dtype )
A : Optional[Any] = tf.cast(0.04_47_15 , x.dtype )
A : List[str] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(snake_case__ , 3 )) ))
return x * cdf
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[int] = tf.convert_to_tensor(snake_case__ )
return x * tf.tanh(tf.math.softplus(snake_case__ ) )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Union[str, Any] = tf.convert_to_tensor(snake_case__ )
A : List[Any] = tf.cast(0.04_47_15 , x.dtype )
A : int = tf.cast(0.79_78_84_56_08 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Any = tf.convert_to_tensor(snake_case__ )
A : List[Any] = tf.cast(1.7_02 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return tf.clip_by_value(_gelu(snake_case__ ) , -10 , 10 )
def lowerCAmelCase_ ( snake_case__ , snake_case__=-1 ):
'''simple docstring'''
A, A : Optional[Any] = tf.split(snake_case__ , 2 , axis=snake_case__ )
return a * tf.math.sigmoid(snake_case__ )
if version.parse(tf.version.VERSION) >= version.parse('2.4'):
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return tf.keras.activations.gelu(snake_case__ , approximate=snake_case__ )
lowercase : Union[str, Any] = tf.keras.activations.gelu
lowercase : str = approximate_gelu_wrap
else:
lowercase : Tuple = _gelu
lowercase : Optional[int] = _gelu_new
lowercase : str = {
'gelu': gelu,
'gelu_10': gelu_aa,
'gelu_fast': gelu_fast,
'gelu_new': gelu_new,
'glu': glu,
'mish': mish,
'quick_gelu': quick_gelu,
'relu': tf.keras.activations.relu,
'sigmoid': tf.keras.activations.sigmoid,
'silu': tf.keras.activations.swish,
'swish': tf.keras.activations.swish,
'tanh': tf.keras.activations.tanh,
}
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
| 311
|
'''simple docstring'''
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Dict = SwinConfig()
A : List[Any] = swin_name.split('''_''' )
A : Tuple = name_split[1]
A : Union[str, Any] = int(name_split[4] )
A : str = int(name_split[3][-1] )
if model_size == "tiny":
A : Optional[int] = 96
A : Optional[Any] = (2, 2, 6, 2)
A : Any = (3, 6, 12, 24)
elif model_size == "small":
A : Optional[int] = 96
A : str = (2, 2, 18, 2)
A : Tuple = (3, 6, 12, 24)
elif model_size == "base":
A : int = 128
A : Optional[Any] = (2, 2, 18, 2)
A : List[str] = (4, 8, 16, 32)
else:
A : Dict = 192
A : Optional[Any] = (2, 2, 18, 2)
A : Optional[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
A : Dict = 2_1841
else:
A : str = 1000
A : List[str] = '''huggingface/label-files'''
A : Any = '''imagenet-1k-id2label.json'''
A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) )
A : str = {int(snake_case__ ): v for k, v in idalabel.items()}
A : Tuple = idalabel
A : Tuple = {v: k for k, v in idalabel.items()}
A : Tuple = img_size
A : Dict = num_classes
A : Optional[Any] = embed_dim
A : str = depths
A : str = num_heads
A : Optional[int] = window_size
return config
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if "patch_embed.proj" in name:
A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
A : Optional[int] = '''encoder.''' + name
if "attn.proj" in name:
A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
A : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
A : Any = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
A : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
A : str = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "norm.weight":
A : Tuple = '''layernorm.weight'''
if name == "norm.bias":
A : Tuple = '''layernorm.bias'''
if "head" in name:
A : Any = name.replace('''head''' , '''classifier''' )
else:
A : List[Any] = '''swin.''' + name
return name
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
A : Dict = orig_state_dict.pop(snake_case__ )
if "mask" in key:
continue
elif "qkv" in key:
A : Dict = key.split('''.''' )
A : Optional[int] = int(key_split[1] )
A : List[str] = int(key_split[3] )
A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
A : Any = val[:dim, :]
A : Dict = val[
dim : dim * 2, :
]
A : List[str] = val[-dim:, :]
else:
A : Any = val[
:dim
]
A : Optional[int] = val[
dim : dim * 2
]
A : Any = val[
-dim:
]
else:
A : str = val
return orig_state_dict
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ )
timm_model.eval()
A : Optional[Any] = get_swin_config(snake_case__ )
A : Optional[int] = SwinForImageClassification(snake_case__ )
model.eval()
A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ )
model.load_state_dict(snake_case__ )
A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) )
A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' )
A : Any = timm_model(inputs['''pixel_values'''] )
A : Optional[Any] = model(**snake_case__ ).logits
assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 )
print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swin_name',
default='swin_tiny_patch4_window7_224',
type=str,
help='Name of the Swin timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
lowercase : int = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
A : Any = data
A : Node | None = None
A : Node | None = None
def lowerCAmelCase_ ( snake_case__ ): # In Order traversal of the tree
'''simple docstring'''
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def lowerCAmelCase_ ( ): # Main function for testing.
'''simple docstring'''
A : Tuple = Node(1 )
A : int = Node(2 )
A : Optional[Any] = Node(3 )
A : List[Any] = Node(4 )
A : Tuple = Node(5 )
A : Union[str, Any] = Node(6 )
A : Tuple = Node(7 )
A : Any = Node(8 )
A : int = Node(9 )
print(is_full_binary_tree(snake_case__ ) )
print(depth_of_tree(snake_case__ ) )
print('''Tree is: ''' )
display(snake_case__ )
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Optional[int] = logging.get_logger(__name__)
lowercase : Tuple = {
'google/pix2struct-textcaps-base': (
'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json'
),
}
class A ( __snake_case ):
__magic_name__ = '''pix2struct_text_model'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {
'''hidden_size''': '''hidden_size''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]:
"""simple docstring"""
A : str = vocab_size
A : List[str] = hidden_size
A : List[Any] = d_kv
A : Optional[Any] = d_ff
A : Dict = num_layers
A : Dict = num_heads
A : Optional[int] = relative_attention_num_buckets
A : Optional[Any] = relative_attention_max_distance
A : Dict = dropout_rate
A : Dict = layer_norm_epsilon
A : Tuple = initializer_factor
A : Union[str, Any] = use_cache
A : int = eos_token_id
A : List[str] = decoder_start_token_id
# for backwards compatibility
A : int = dense_act_fn
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Union[str, Any] = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct_vision_model'''
def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : List[str] = hidden_size
A : Optional[Any] = patch_embed_hidden_size
A : Union[str, Any] = d_ff
A : Dict = dropout_rate
A : str = num_hidden_layers
A : Dict = num_attention_heads
A : Tuple = initializer_range
A : List[str] = initializer_factor
A : Union[str, Any] = attention_dropout
A : Tuple = layer_norm_eps
A : int = dense_act_fn
A : Optional[int] = seq_len
A : Tuple = relative_attention_num_buckets
A : str = relative_attention_max_distance
A : Optional[Any] = d_kv
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE )
A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
A : Optional[Any] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
class A ( __snake_case ):
__magic_name__ = '''pix2struct'''
__magic_name__ = True
def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
if text_config is None:
A : Dict = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
A : str = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE )
A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE )
A : Any = self.text_config.decoder_start_token_id
A : Any = self.text_config.pad_token_id
A : Dict = self.text_config.eos_token_id
A : Union[str, Any] = initializer_factor
A : Tuple = initializer_range
A : Optional[Any] = self.initializer_range
A : int = self.initializer_range
A : Tuple = is_vqa
@classmethod
def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Tuple = copy.deepcopy(self.__dict__ )
A : Dict = self.text_config.to_dict()
A : int = self.vision_config.to_dict()
A : Any = self.__class__.model_type
return output
| 311
| 1
|
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
lowercase : Union[str, Any] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt')
lowercase : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
lowercase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
with open(snake_case__ , '''rb''' ) as f:
A : Any = Image.open(snake_case__ )
return im.convert('''RGB''' )
@dataclass
class A :
__magic_name__ = field(
default=__snake_case , metadata={
'''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).'''
} , )
__magic_name__ = field(
default=__snake_case , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
__magic_name__ = field(default=__snake_case , metadata={'''help''': '''A folder containing the training data.'''} )
__magic_name__ = field(default=__snake_case , metadata={'''help''': '''A folder containing the validation data.'''} )
__magic_name__ = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
__magic_name__ = field(
default=__snake_case , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
__magic_name__ = field(
default=__snake_case , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
'''You must specify either a dataset name from the hub or a train and/or validation directory.''' )
@dataclass
class A :
__magic_name__ = field(
default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , )
__magic_name__ = field(
default=__snake_case , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__snake_case )} , )
__magic_name__ = field(
default=__snake_case , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
__magic_name__ = field(
default=__snake_case , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} )
__magic_name__ = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
__magic_name__ = field(default=__snake_case , metadata={'''help''': '''Name or path of preprocessor config.'''} )
__magic_name__ = field(
default=__snake_case , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
__magic_name__ = field(
default=__snake_case , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : int = torch.stack([example['''pixel_values'''] for example in examples] )
A : str = torch.tensor([example['''labels'''] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A, A, A : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A, A, A : Any = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_image_classification''' , snake_case__ , snake_case__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
A : Tuple = training_args.get_process_log_level()
logger.setLevel(snake_case__ )
transformers.utils.logging.set_verbosity(snake_case__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
A : Optional[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A : int = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
A : str = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , )
else:
A : int = {}
if data_args.train_dir is not None:
A : int = os.path.join(data_args.train_dir , '''**''' )
if data_args.validation_dir is not None:
A : Optional[int] = os.path.join(data_args.validation_dir , '''**''' )
A : int = load_dataset(
'''imagefolder''' , data_files=snake_case__ , cache_dir=model_args.cache_dir , task='''image-classification''' , )
# If we don't have a validation split, split off a percentage of train as validation.
A : str = None if '''validation''' in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , snake_case__ ) and data_args.train_val_split > 0.0:
A : Dict = dataset['''train'''].train_test_split(data_args.train_val_split )
A : List[str] = split['''train''']
A : str = split['''test''']
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
A : int = dataset['''train'''].features['''labels'''].names
A, A : List[Any] = {}, {}
for i, label in enumerate(snake_case__ ):
A : List[str] = str(snake_case__ )
A : Tuple = label
# Load the accuracy metric from the datasets package
A : Dict = evaluate.load('''accuracy''' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(snake_case__ ):
return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids )
A : int = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(snake_case__ ) , labelaid=snake_case__ , idalabel=snake_case__ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
A : Dict = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
A : Any = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
A : Optional[Any] = image_processor.size['''shortest_edge''']
else:
A : Optional[Any] = (image_processor.size['''height'''], image_processor.size['''width'''])
A : Optional[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std )
A : List[str] = Compose(
[
RandomResizedCrop(snake_case__ ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
A : Tuple = Compose(
[
Resize(snake_case__ ),
CenterCrop(snake_case__ ),
ToTensor(),
normalize,
] )
def train_transforms(snake_case__ ):
A : List[Any] = [
_train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']
]
return example_batch
def val_transforms(snake_case__ ):
A : Optional[int] = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError('''--do_train requires a train dataset''' )
if data_args.max_train_samples is not None:
A : Optional[Any] = (
dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(snake_case__ )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError('''--do_eval requires a validation dataset''' )
if data_args.max_eval_samples is not None:
A : Tuple = (
dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(snake_case__ )
# Initalize our trainer
A : Dict = Trainer(
model=snake_case__ , args=snake_case__ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=snake_case__ , tokenizer=snake_case__ , data_collator=snake_case__ , )
# Training
if training_args.do_train:
A : Optional[int] = None
if training_args.resume_from_checkpoint is not None:
A : List[str] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
A : List[str] = last_checkpoint
A : Tuple = trainer.train(resume_from_checkpoint=snake_case__ )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
A : str = trainer.evaluate()
trainer.log_metrics('''eval''' , snake_case__ )
trainer.save_metrics('''eval''' , snake_case__ )
# Write model card and (optionally) push to hub
A : Any = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''image-classification''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''image-classification''', '''vision'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**snake_case__ )
else:
trainer.create_model_card(**snake_case__ )
if __name__ == "__main__":
main()
| 311
|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = 2
A : Dict = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(snake_case__ )
if n > 1:
factors.append(snake_case__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
| 1
|
'''simple docstring'''
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return np.dot(snake_case__ , snake_case__ )
class A :
def __init__( self , *,
SCREAMING_SNAKE_CASE = np.inf , SCREAMING_SNAKE_CASE = "linear" , SCREAMING_SNAKE_CASE = 0.0 , ) -> None:
"""simple docstring"""
A : int = regularization
A : Any = gamma
if kernel == "linear":
A : Any = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
A : Union[str, Any] = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
A : Optional[Any] = F'Unknown kernel: {kernel}'
raise ValueError(SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
return np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
A : List[Any] = observations
A : Optional[int] = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((A), ) : Union[str, Any] = np.shape(SCREAMING_SNAKE_CASE )
def to_minimize(SCREAMING_SNAKE_CASE ) -> float:
A : str = 0
((A), ) : Dict = np.shape(SCREAMING_SNAKE_CASE )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(SCREAMING_SNAKE_CASE )
A : Optional[Any] = LinearConstraint(SCREAMING_SNAKE_CASE , 0 , 0 )
A : str = Bounds(0 , self.regularization )
A : List[str] = minimize(
SCREAMING_SNAKE_CASE , np.ones(SCREAMING_SNAKE_CASE ) , bounds=SCREAMING_SNAKE_CASE , constraints=[ly_contraint] ).x
A : Any = l_star
# calculating mean offset of separation plane to points
A : Dict = 0
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
A : Tuple = s / n
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Optional[Any] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , SCREAMING_SNAKE_CASE )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(0 , snake_case__ ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(''' ''' , end='''''' )
for _ in range(0 , i + 1 ): # printing stars
print('''* ''' , end='''''' )
print()
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(snake_case__ , 0 , -1 ):
for _ in range(snake_case__ , 0 , -1 ): # printing stars
print('''* ''' , end='''''' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(''' ''' , end='''''' )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if n <= 0:
print(''' ... .... nothing printing :(''' )
return
floyd(snake_case__ ) # upper half
reverse_floyd(snake_case__ ) # lower half
if __name__ == "__main__":
print(R'| /\ | |- | |- |--| |\ /| |-')
print(R'|/ \| |- |_ |_ |__| | \/ | |_')
lowercase : List[str] = 1
while K:
lowercase : List[Any] = int(input('enter the number and , and see the magic : '))
print()
pretty_print(user_number)
lowercase : Any = int(input('press 0 to exit... and 1 to continue...'))
print('Good Bye...')
| 311
| 1
|
'''simple docstring'''
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[Any] = [
'''decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A, A : Any = emb.weight.shape
A : str = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ )
A : Dict = emb.weight.data
return lin_layer
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[Any] = torch.load(snake_case__ , map_location='''cpu''' )
A : int = Namespace(**checkpoint['''cfg''']['''model'''] )
A : Union[str, Any] = checkpoint['''model''']
remove_ignore_keys_(snake_case__ )
A : Dict = state_dict['''decoder.embed_tokens.weight'''].shape[0]
A : List[str] = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()}
A : List[Any] = XGLMConfig(
vocab_size=snake_case__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , )
A : Optional[Any] = XGLMForCausalLM(snake_case__ )
A : List[Any] = model.load_state_dict(snake_case__ , strict=snake_case__ )
print(snake_case__ )
A : List[str] = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
lowercase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
lowercase : List[Any] = parser.parse_args()
lowercase : Tuple = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 311
|
'''simple docstring'''
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
A : List[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , )
A : Optional[Any] = image.to(self.device )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample
A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
| 311
| 1
|
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Dict = [randint(-1000 , 1000 ) for i in range(10 )]
A : Dict = randint(-5000 , 5000 )
return (arr, r)
lowercase : Any = make_dataset()
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
for triplet in permutations(snake_case__ , 3 ):
if sum(snake_case__ ) == target:
return tuple(sorted(snake_case__ ) )
return (0, 0, 0)
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
arr.sort()
A : Tuple = len(snake_case__ )
for i in range(n - 1 ):
A, A : Optional[Any] = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Optional[Any] = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
A : str = '''
triplet_sum1(*dataset)
'''
A : List[Any] = '''
triplet_sum2(*dataset)
'''
A : Any = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=1_0000 )
A : Dict = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=1_0000 )
return (min(snake_case__ ), min(snake_case__ ))
if __name__ == "__main__":
from doctest import testmod
testmod()
lowercase : List[str] = solution_times()
print(f'''The time for naive implementation is {times[0]}.''')
print(f'''The time for optimized implementation is {times[1]}.''')
| 311
|
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str:
"""simple docstring"""
A : Any = parent
A : List[Any] = batch_size
A : Union[str, Any] = seq_length
A : Any = is_training
A : int = use_input_mask
A : Union[str, Any] = vocab_size
A : List[Any] = hidden_size
A : List[Any] = num_hidden_layers
A : Optional[int] = num_attention_heads
A : str = intermediate_size
A : Tuple = hidden_act
A : Union[str, Any] = hidden_dropout_prob
A : Union[str, Any] = attention_probs_dropout_prob
A : int = max_position_embeddings
A : Optional[int] = initializer_range
A : Any = use_labels
A : Optional[int] = scope
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[int] = None
if self.use_input_mask:
A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Dict = self.get_config()
return config, input_ids, input_mask, token_labels
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
),
) : Any = self.prepare_config_and_inputs()
A : Tuple = True
A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
A : int = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]:
"""simple docstring"""
A : List[str] = True
A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )
A : List[Any] = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
A : Optional[Any] = True
A : Tuple = True
A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval()
# first forward pass
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , )
A : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 )
A : str = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
A : Any = model(
SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0]
# select random slice
A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A : str = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE )
model.to(SCREAMING_SNAKE_CASE )
model.eval()
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A, A, A : Optional[int] = self.prepare_config_and_inputs()
A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
__magic_name__ = (BertGenerationDecoder,) if is_torch_available() else ()
__magic_name__ = (
{'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[str] = BertGenerationEncoderTester(self )
A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs()
A : str = '''bert'''
self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder()
A : Union[str, Any] = None
self.model_tester.create_and_check_model_as_decoder(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Dict = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Dict = torch.tensor(
[[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0]
A : Optional[Any] = torch.Size([1, 8, 50358] )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Any = torch.tensor(
[[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
# Function to print upper half of diamond (pyramid)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(0 , snake_case__ ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(''' ''' , end='''''' )
for _ in range(0 , i + 1 ): # printing stars
print('''* ''' , end='''''' )
print()
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for i in range(snake_case__ , 0 , -1 ):
for _ in range(snake_case__ , 0 , -1 ): # printing stars
print('''* ''' , end='''''' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(''' ''' , end='''''' )
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if n <= 0:
print(''' ... .... nothing printing :(''' )
return
floyd(snake_case__ ) # upper half
reverse_floyd(snake_case__ ) # lower half
if __name__ == "__main__":
print(R'| /\ | |- | |- |--| |\ /| |-')
print(R'|/ \| |- |_ |_ |__| | \/ | |_')
lowercase : List[str] = 1
while K:
lowercase : List[Any] = int(input('enter the number and , and see the magic : '))
print()
pretty_print(user_number)
lowercase : Any = int(input('press 0 to exit... and 1 to continue...'))
print('Good Bye...')
| 311
|
'''simple docstring'''
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ )
A : Any = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ )
class A ( __snake_case ):
__magic_name__ = '''sigmoid'''
__magic_name__ = '''softmax'''
__magic_name__ = '''none'''
@add_end_docstrings(
__snake_case , R'''
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return all prediction scores or just the one of the predicted class.
function_to_apply (`str`, *optional*, defaults to `"default"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model
has several labels, will apply the softmax function on the output.
- `"sigmoid"`: Applies the sigmoid function on the output.
- `"softmax"`: Applies the softmax function on the output.
- `"none"`: Does not apply any function on the output.
''' , )
class A ( __snake_case ):
__magic_name__ = False
__magic_name__ = ClassificationFunction.NONE
def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Optional[Any] = tokenizer_kwargs
A : int = {}
if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None:
A : int = self.model.config.return_all_scores
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None:
A : Union[str, Any] = top_k
A : Dict = False
elif return_all_scores is not None:
warnings.warn(
'''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'''
''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , )
if return_all_scores:
A : Optional[int] = None
else:
A : Dict = 1
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : Dict = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
A : int = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
A : Any = '''top_k''' not in kwargs
if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]:
"""simple docstring"""
A : List[Any] = self.framework
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'''
''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' )
return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return self.model(**SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]:
"""simple docstring"""
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
A : Optional[int] = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
A : Any = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None:
A : Optional[int] = self.model.config.function_to_apply
else:
A : Optional[int] = ClassificationFunction.NONE
A : Any = model_outputs['''logits'''][0]
A : List[Any] = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
A : int = sigmoid(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.SOFTMAX:
A : Any = softmax(SCREAMING_SNAKE_CASE )
elif function_to_apply == ClassificationFunction.NONE:
A : int = outputs
else:
raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
A : int = [
{'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE )
]
if not _legacy:
dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE )
if top_k is not None:
A : Union[str, Any] = dict_scores[:top_k]
return dict_scores
| 311
| 1
|
'''simple docstring'''
import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
lowercase : Any = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False)
parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not')
parser.add_argument('--steps', default=None, type=int, help='Num inference steps')
lowercase : List[Any] = parser.parse_args()
lowercase : Union[str, Any] = 'cpu'
lowercase : int = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings'
lowercase : str = 'path-to-your-trained-model'
lowercase : Optional[Any] = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
lowercase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
lowercase : Dict = pipe.to(device)
# to channels last
lowercase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last)
lowercase : Dict = pipe.vae.to(memory_format=torch.channels_last)
lowercase : List[str] = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
lowercase : Any = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
lowercase : Optional[int] = torch.randn(2, 4, 64, 64)
lowercase : Optional[int] = torch.rand(1) * 9_99
lowercase : Dict = torch.randn(2, 77, 7_68)
lowercase : str = (sample, timestep, encoder_hidden_status)
try:
lowercase : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
lowercase : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
lowercase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
lowercase : Optional[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
lowercase : int = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
lowercase : Tuple = 6_66
lowercase : int = torch.Generator(device).manual_seed(seed)
lowercase : Tuple = {'generator': generator}
if args.steps is not None:
lowercase : List[Any] = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
lowercase : Union[str, Any] = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save('generated.png')
| 311
|
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def lowerCAmelCase_ ( snake_case__ = "laptop" ):
'''simple docstring'''
A : Tuple = F'https://www.amazon.in/laptop/s?k={product}'
A : Optional[int] = {
'''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''',
'''Accept-Language''': '''en-US, en;q=0.5''',
}
A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text )
# Initialize a Pandas dataframe with the column titles
A : List[str] = DataFrame(
columns=[
'''Product Title''',
'''Product Link''',
'''Current Price of the product''',
'''Product Rating''',
'''MRP of the product''',
'''Discount''',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ):
try:
A : Optional[Any] = item.ha.text
A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href''']
A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text
try:
A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text
except AttributeError:
A : Optional[int] = '''Not available'''
try:
A : str = (
'''₹'''
+ item.find(
'''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1]
)
except AttributeError:
A : List[Any] = ''''''
try:
A : Dict = float(
(
(
float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
- float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) )
)
/ float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
)
* 100 )
except ValueError:
A : str = float('''nan''' )
except AttributeError:
pass
A : Union[str, Any] = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
A : List[str] = ''' '''
A : Optional[Any] = ''' '''
data_frame.index += 1
return data_frame
if __name__ == "__main__":
lowercase : Union[str, Any] = 'headphones'
get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
| 311
| 1
|
'''simple docstring'''
from collections.abc import Generator
from math import sin
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if len(snake_case__ ) != 32:
raise ValueError('''Input must be of length 32''' )
A : Dict = B''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
A : Dict = format(snake_case__ , '''08x''' )[-8:]
A : Tuple = B''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' )
return little_endian_hex
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : int = B''''''
for char in message:
bit_string += format(snake_case__ , '''08b''' ).encode('''utf-8''' )
A : Union[str, Any] = format(len(snake_case__ ) , '''064b''' ).encode('''utf-8''' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(snake_case__ ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if len(snake_case__ ) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''' )
for pos in range(0 , len(snake_case__ ) , 512 ):
A : str = bit_string[pos : pos + 512]
A : List[str] = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
A : str = format(snake_case__ , '''032b''' )
A : List[str] = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(snake_case__ , 2 )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
return (a + b) % 2**32
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
if shift < 0:
raise ValueError('''Shift must be non-negative''' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : Any = preprocess(snake_case__ )
A : Tuple = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
A : str = 0X67452301
A : Dict = 0XEFCDAB89
A : Optional[Any] = 0X98BADCFE
A : str = 0X10325476
A : List[Any] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(snake_case__ ):
A : List[str] = aa
A : Any = ba
A : Optional[Any] = ca
A : Tuple = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
A : Union[str, Any] = d ^ (b & (c ^ d))
A : Tuple = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
A : str = c ^ (d & (b ^ c))
A : Union[str, Any] = (5 * i + 1) % 16
elif i <= 47:
A : str = b ^ c ^ d
A : int = (3 * i + 5) % 16
else:
A : Optional[Any] = c ^ (b | not_aa(snake_case__ ))
A : Optional[Any] = (7 * i) % 16
A : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
A : Tuple = d
A : List[str] = c
A : Any = b
A : Optional[int] = sum_aa(snake_case__ , left_rotate_aa(snake_case__ , shift_amounts[i] ) )
# Add hashed chunk to running total
A : Tuple = sum_aa(snake_case__ , snake_case__ )
A : Tuple = sum_aa(snake_case__ , snake_case__ )
A : Optional[Any] = sum_aa(snake_case__ , snake_case__ )
A : str = sum_aa(snake_case__ , snake_case__ )
A : Any = reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ ) + reformat_hex(snake_case__ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[int] = x
A : str = y
for step in range(snake_case__ ): # noqa: B007
A : str = a * a - b * b + x
A : List[str] = 2 * a * b + y
A : str = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) )
def lowerCAmelCase_ ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ):
'''simple docstring'''
A : List[Any] = Image.new('''RGB''' , (image_width, image_height) )
A : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(snake_case__ ):
for image_y in range(snake_case__ ):
# determine the figure-coordinates based on the image-coordinates
A : Optional[int] = figure_width / image_width * image_height
A : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
A : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height
A : str = get_distance(snake_case__ , snake_case__ , snake_case__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
A : str = get_color_coded_rgb(snake_case__ )
else:
A : List[Any] = get_black_and_white_rgb(snake_case__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowercase : Optional[Any] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 311
| 1
|
'''simple docstring'''
from math import ceil
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Optional[Any] = list(range(0 , snake_case__ ) )
A : List[str] = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
A : Tuple = []
for i in device_map_blocks:
if device_map_blocks.count(snake_case__ ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(snake_case__ )
# Missing blocks
A : int = [i for i in blocks if i not in device_map_blocks]
A : List[str] = [i for i in device_map_blocks if i not in blocks]
if len(snake_case__ ) != 0:
raise ValueError(
'''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.'''
''' These attention blocks were specified more than once: ''' + str(snake_case__ ) )
if len(snake_case__ ) != 0:
raise ValueError(
'''There are attention blocks for this model that are not specified in the device_map. Add these attention '''
'''blocks to a device on the device_map: ''' + str(snake_case__ ) )
if len(snake_case__ ) != 0:
raise ValueError(
'''The device_map contains more attention blocks than this model has. Remove these from the device_map:'''
+ str(snake_case__ ) )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : List[Any] = list(range(snake_case__ ) )
A : Union[str, Any] = int(ceil(n_layers / len(snake_case__ ) ) )
A : str = [layers[i : i + n_blocks] for i in range(0 , snake_case__ , snake_case__ )]
return dict(zip(snake_case__ , snake_case__ ) )
| 311
|
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowercase : Optional[int] = [
'kernels/rwkv/wkv_cuda.cu',
'kernels/rwkv/wkv_op.cpp',
'kernels/deformable_detr/ms_deform_attn.h',
'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh',
'models/graphormer/algos_graphormer.pyx',
]
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowercase : str = argparse.ArgumentParser()
parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.')
lowercase : Optional[Any] = parser.parse_args()
if args.check_lib:
lowercase : List[Any] = importlib.import_module('transformers')
lowercase : str = Path(transformers_module.__file__).parent
else:
lowercase : List[Any] = Path.cwd() / 'build/lib/transformers'
if not test_custom_files_are_present(transformers_path):
raise ValueError('The built release does not contain the custom files. Fix this before going further!')
| 311
| 1
|
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowercase : Optional[int] = logging.get_logger(__name__)
class A ( __snake_case ):
__magic_name__ = ['''audio_values''', '''audio_mask''']
def __init__( self , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=[16, 16] , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=44100 , SCREAMING_SNAKE_CASE=86 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=0.0 , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
feature_size=SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , padding_value=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
A : List[Any] = spectrogram_length
A : str = num_channels
A : Optional[Any] = patch_size
A : int = feature_size // self.patch_size[1]
A : int = n_fft
A : Optional[int] = sampling_rate // hop_length_to_sampling_rate
A : int = sampling_rate
A : Optional[int] = padding_value
A : List[Any] = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ).T
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> np.ndarray:
"""simple docstring"""
A : Union[str, Any] = spectrogram(
SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , )
A : Tuple = log_spec[:, :-1]
A : Any = log_spec - 20.0
A : Dict = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , **SCREAMING_SNAKE_CASE , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'
F' with {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
A : Any = isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
A : Optional[Any] = is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
A : Dict = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ):
A : List[str] = np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
A : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
A : int = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
A : str = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , SCREAMING_SNAKE_CASE ):
A : Any = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
A : List[Any] = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
A : str = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
A : List[Any] = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa )
# convert into correct format for padding
A : Optional[Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
A : str = np.ones([len(SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
A : str = padded_audio_features * self.padding_value
for i in range(len(SCREAMING_SNAKE_CASE ) ):
A : List[Any] = audio_features[i]
A : Tuple = feature
# return as BatchFeature
if return_attention_mask:
A : Optional[int] = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
A : Union[str, Any] = {'''audio_values''': padded_audio_features}
A : int = BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
return encoded_inputs
| 311
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]:
"""simple docstring"""
A : List[str] = parent
A : Optional[Any] = batch_size
A : Tuple = image_size
A : int = patch_size
A : Optional[int] = num_channels
A : str = is_training
A : List[Any] = use_labels
A : Any = hidden_size
A : Any = num_hidden_layers
A : Optional[int] = num_attention_heads
A : Any = intermediate_size
A : List[str] = hidden_act
A : str = hidden_dropout_prob
A : Tuple = attention_probs_dropout_prob
A : Any = type_sequence_label_size
A : Optional[int] = initializer_range
A : Dict = scope
A : Tuple = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
A : List[Any] = (image_size // patch_size) ** 2
A : Tuple = num_patches + 2
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : Tuple = None
if self.use_labels:
A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Tuple = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE )
A : str = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE )
A : List[Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
A : Optional[int] = 1
A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE )
A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Tuple = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
A : str = self.type_sequence_label_size
A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A : Optional[Any] = 1
A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE )
A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[int] = self.prepare_config_and_inputs()
A, A, A : Tuple = config_and_inputs
A : Any = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': TFDeiTModel,
'''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = TFDeiTModelTester(self )
A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
pass
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A, A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
A : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A, A : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : Any = model_class(SCREAMING_SNAKE_CASE )
A : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : Union[str, Any] = [*signature.parameters.keys()]
A : List[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
A : Dict = self.default_image_processor
A : List[str] = prepare_img()
A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' )
# forward pass
A : Optional[int] = model(**SCREAMING_SNAKE_CASE )
# verify the logits
A : List[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE )
A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 311
| 1
|
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class A ( __snake_case , unittest.TestCase ):
__magic_name__ = AudioLDMPipeline
__magic_name__ = TEXT_TO_AUDIO_PARAMS
__magic_name__ = TEXT_TO_AUDIO_BATCH_PARAMS
__magic_name__ = frozenset(
[
'''num_inference_steps''',
'''num_waveforms_per_prompt''',
'''generator''',
'''latents''',
'''output_type''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
A : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE , )
A : str = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , )
torch.manual_seed(0 )
A : Tuple = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
A : List[Any] = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
A : List[str] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE )
A : int = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 )
A : int = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE , )
A : List[str] = SpeechTaHifiGan(SCREAMING_SNAKE_CASE )
A : List[str] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''vocoder''': vocoder,
}
return components
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ) -> List[Any]:
"""simple docstring"""
if str(SCREAMING_SNAKE_CASE ).startswith('''mps''' ):
A : Any = torch.manual_seed(SCREAMING_SNAKE_CASE )
else:
A : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE )
A : Dict = {
'''prompt''': '''A hammer hitting a wooden surface''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
}
return inputs
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A : Union[str, Any] = self.get_dummy_components()
A : str = AudioLDMPipeline(**SCREAMING_SNAKE_CASE )
A : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
A : Any = self.get_dummy_inputs(SCREAMING_SNAKE_CASE )
A : int = audioldm_pipe(**SCREAMING_SNAKE_CASE )
A : Any = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE ) == 256
A : Optional[Any] = audio[:10]
A : int = np.array(
[-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Union[str, Any] = self.get_dummy_components()
A : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE )
A : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
A : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
A : Any = self.get_dummy_inputs(SCREAMING_SNAKE_CASE )
A : Optional[int] = 3 * [inputs['''prompt''']]
# forward
A : Dict = audioldm_pipe(**SCREAMING_SNAKE_CASE )
A : List[str] = output.audios[0]
A : Dict = self.get_dummy_inputs(SCREAMING_SNAKE_CASE )
A : Optional[Any] = 3 * [inputs.pop('''prompt''' )]
A : Any = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , )
A : List[Any] = text_inputs['''input_ids'''].to(SCREAMING_SNAKE_CASE )
A : str = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE , )
A : Any = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
A : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE , dim=-1 )
A : Optional[int] = prompt_embeds
# forward
A : Tuple = audioldm_pipe(**SCREAMING_SNAKE_CASE )
A : Tuple = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : List[Any] = self.get_dummy_components()
A : Optional[int] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE )
A : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
A : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
A : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE )
A : Dict = 3 * ['''this is a negative prompt''']
A : Dict = negative_prompt
A : str = 3 * [inputs['''prompt''']]
# forward
A : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE )
A : str = output.audios[0]
A : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE )
A : List[Any] = 3 * [inputs.pop('''prompt''' )]
A : str = []
for p in [prompt, negative_prompt]:
A : Union[str, Any] = audioldm_pipe.tokenizer(
SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , )
A : Any = text_inputs['''input_ids'''].to(SCREAMING_SNAKE_CASE )
A : Any = audioldm_pipe.text_encoder(
SCREAMING_SNAKE_CASE , )
A : Any = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
A : Any = F.normalize(SCREAMING_SNAKE_CASE , dim=-1 )
embeds.append(SCREAMING_SNAKE_CASE )
A, A : Tuple = embeds
# forward
A : Optional[int] = audioldm_pipe(**SCREAMING_SNAKE_CASE )
A : List[str] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A : Union[str, Any] = self.get_dummy_components()
A : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE )
A : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE )
A : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
A : Any = self.get_dummy_inputs(SCREAMING_SNAKE_CASE )
A : Optional[int] = '''egg cracking'''
A : Any = audioldm_pipe(**SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE )
A : str = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE ) == 256
A : Dict = audio[:10]
A : Dict = np.array(
[-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A : Optional[int] = self.get_dummy_components()
A : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE )
A : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE )
A : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
A : Optional[Any] = '''A hammer hitting a wooden surface'''
# test num_waveforms_per_prompt=1 (default)
A : Any = audioldm_pipe(SCREAMING_SNAKE_CASE , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
A : Dict = 2
A : Any = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
A : int = 2
A : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
A : Optional[int] = 2
A : int = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A : List[str] = self.get_dummy_components()
A : str = AudioLDMPipeline(**SCREAMING_SNAKE_CASE )
A : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
A : Any = audioldm_pipe.vocoder.config.sampling_rate
A : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE )
A : Optional[Any] = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE )
A : Tuple = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE ) / vocoder_sampling_rate == 0.016
A : List[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE )
A : int = output.audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE ) / vocoder_sampling_rate == 0.032
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Tuple = self.get_dummy_components()
A : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE )
A : Optional[int] = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
A : Optional[Any] = ['''hey''']
A : str = audioldm_pipe(SCREAMING_SNAKE_CASE , num_inference_steps=1 )
A : List[Any] = output.audios.shape
assert audio_shape == (1, 256)
A : Dict = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
A : Union[str, Any] = SpeechTaHifiGan(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
A : str = audioldm_pipe(SCREAMING_SNAKE_CASE , num_inference_steps=1 )
A : int = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE )
@slow
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" , SCREAMING_SNAKE_CASE=torch.floataa , SCREAMING_SNAKE_CASE=0 ) -> Tuple:
"""simple docstring"""
A : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE )
A : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE ).standard_normal((1, 8, 128, 16) )
A : Optional[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )
A : Dict = {
'''prompt''': '''A hammer hitting a wooden surface''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 2.5,
}
return inputs
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Optional[int] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' )
A : int = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = self.get_inputs(SCREAMING_SNAKE_CASE )
A : Any = 25
A : int = audioldm_pipe(**SCREAMING_SNAKE_CASE ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE ) == 81920
A : int = audio[77230:77240]
A : str = np.array(
[-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] )
A : List[str] = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : str = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' )
A : List[str] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
A : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE )
audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE )
A : List[str] = self.get_inputs(SCREAMING_SNAKE_CASE )
A : Dict = audioldm_pipe(**SCREAMING_SNAKE_CASE ).audios[0]
assert audio.ndim == 1
assert len(SCREAMING_SNAKE_CASE ) == 81920
A : Optional[int] = audio[27780:27790]
A : Tuple = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] )
A : Union[str, Any] = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 311
|
'''simple docstring'''
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase : List[str] = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 311
| 1
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
lowercase : Optional[Any] = ['gpt2']
lowercase : Optional[int] = 'gpt2'
if is_tf_available():
class A ( tf.Module ):
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__()
A : List[Any] = tokenizer
A : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
A : int = TFGPTaLMHeadModel.from_config(SCREAMING_SNAKE_CASE )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : Tuple = self.tokenizer(SCREAMING_SNAKE_CASE )
A : Optional[int] = tokenized['''input_ids'''].to_tensor()
A : Tuple = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
A : Dict = self.model(input_ids=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )['''logits''']
return outputs
@require_tf
@require_keras_nlp
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
super().setUp()
A : Dict = [GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
A : List[str] = [TFGPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
A : str = [
'''This is a straightforward English test sentence.''',
'''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''',
'''Now we\'re going to add some Chinese: 一 二 三 一二三''',
'''And some much more rare Chinese: 齉 堃 齉堃''',
'''Je vais aussi écrire en français pour tester les accents''',
'''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''',
]
A : Optional[int] = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
A : Tuple = tokenizer([test_inputs] , return_tensors='''tf''' )
A : List[str] = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
A : Any = python_outputs[key].numpy()
A : List[str] = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(SCREAMING_SNAKE_CASE , tf.intaa ) == tf_outputs_values ) )
@slow
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
A : int = tf.function(SCREAMING_SNAKE_CASE )
for test_inputs in self.test_sentences:
A : List[Any] = tf.constant(SCREAMING_SNAKE_CASE )
A : Optional[int] = compiled_tokenizer(SCREAMING_SNAKE_CASE )
A : str = tf_tokenizer(SCREAMING_SNAKE_CASE )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
A : Optional[int] = ModelToSave(tokenizer=SCREAMING_SNAKE_CASE )
A : int = tf.convert_to_tensor([self.test_sentences[0]] )
A : Union[str, Any] = model.serving(SCREAMING_SNAKE_CASE ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
A : List[Any] = Path(SCREAMING_SNAKE_CASE ) / '''saved.model'''
tf.saved_model.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , signatures={'''serving_default''': model.serving} )
A : Union[str, Any] = tf.saved_model.load(SCREAMING_SNAKE_CASE )
A : Optional[Any] = loaded_model.signatures['''serving_default'''](SCREAMING_SNAKE_CASE )['''output_0''']
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
A : str = tf.convert_to_tensor([self.test_sentences[0]] )
A : Dict = tf_tokenizer(SCREAMING_SNAKE_CASE ) # Build model with some sample inputs
A : List[Any] = tf_tokenizer.get_config()
A : List[str] = TFGPTaTokenizer.from_config(SCREAMING_SNAKE_CASE )
A : List[str] = model_from_config(SCREAMING_SNAKE_CASE )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
A : Tuple = 123123
for max_length in [3, 5, 1024]:
A : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] )
A : int = tf_tokenizer(SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE )
A : str = out['''input_ids'''].numpy().shape[1]
assert out_length == max_length
| 311
|
'''simple docstring'''
from __future__ import annotations
lowercase : Union[str, Any] = list[tuple[int, int]]
lowercase : Optional[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
A : int = pos_x
A : Optional[Any] = pos_y
A : Optional[Any] = (pos_y, pos_x)
A : str = goal_x
A : Optional[int] = goal_y
A : List[Any] = g_cost
A : str = parent
A : str = self.calculate_heuristic()
def __lowerCAmelCase ( self ) -> float:
"""simple docstring"""
A : Optional[int] = abs(self.pos_x - self.goal_x )
A : Optional[Any] = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return self.f_cost < other.f_cost
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE )
A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE )
A : Optional[Any] = [self.start]
A : list[Node] = []
A : Tuple = False
def __lowerCAmelCase ( self ) -> Path | None:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
A : Optional[int] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
A : Optional[int] = True
return self.retrace_path(SCREAMING_SNAKE_CASE )
self.closed_nodes.append(SCREAMING_SNAKE_CASE )
A : Any = self.get_successors(SCREAMING_SNAKE_CASE )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
# retrieve the best current path
A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
else:
self.open_nodes.append(SCREAMING_SNAKE_CASE )
if not self.reached:
return [self.start.pos]
return None
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]:
"""simple docstring"""
A : List[Any] = []
for action in delta:
A : List[str] = parent.pos_x + action[1]
A : Dict = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) )
return successors
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path:
"""simple docstring"""
A : int = node
A : Union[str, Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
A : int = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase : Tuple = (0, 0)
lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print('------')
lowercase : int = GreedyBestFirst(init, goal)
lowercase : Union[str, Any] = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase : Dict = 2
for elem in grid:
print(elem)
| 311
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.