code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=7 , __a : int=3 , __a : str=18 , __a : Any=30 , __a : Optional[int]=400 , __a : Tuple=True , __a : Optional[Any]=32 , __a : Union[str, Any]=True , ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : Any = batch_size _UpperCamelCase : int = num_channels _UpperCamelCase : List[str] = image_size _UpperCamelCase : int = min_resolution _UpperCamelCase : Union[str, Any] = max_resolution _UpperCamelCase : Tuple = do_resize _UpperCamelCase : List[Any] = size_divisor _UpperCamelCase : Dict = do_rescale def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = GLPNImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : Optional[int] = GLPNImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size_divisor" ) ) self.assertTrue(hasattr(__a , "resample" ) ) self.assertTrue(hasattr(__a , "do_rescale" ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def __SCREAMING_SNAKE_CASE ( self : str ) -> int: # Initialize image_processing _UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: # Initialize image_processing _UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: # Initialize image_processing _UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
363
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : int = prime_factors(lowercase_ ) if is_square_free(lowercase_ ): return -1 if len(lowercase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() def lowercase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCamelCase : Dict = parser.parse_args() return args.f class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: _UpperCamelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[Any] ) -> Tuple: _UpperCamelCase : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(__a , "argv" , __a ): _UpperCamelCase : str = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__a , 0.6_66 ) @slow @require_torch_non_multi_gpu def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: _UpperCamelCase : int = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(__a ) _UpperCamelCase : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(__a ) _UpperCamelCase : List[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(__a )
364
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = GPTaTokenizer SCREAMING_SNAKE_CASE__ :Tuple = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :int = {"add_prefix_space": True} SCREAMING_SNAKE_CASE__ :Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCamelCase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : str = {"unk_token": "<unk>"} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any , **__a : Optional[int] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> Tuple: _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Dict = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : Optional[Any] = "lower newer" _UpperCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : Any = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : str = tokens + [tokenizer.unk_token] _UpperCamelCase : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: if not self.test_rust_tokenizer: return _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = "lower newer" # Testing tokenization _UpperCamelCase : str = tokenizer.tokenize(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _UpperCamelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _UpperCamelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token _UpperCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _UpperCamelCase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : int , **__a : List[Any] ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input _UpperCamelCase : Optional[int] = "This is a simple input" _UpperCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Dict = ("This is a simple input", "This is a pair") _UpperCamelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCamelCase : Union[str, Any] = "This is a simple input" _UpperCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] _UpperCamelCase : str = ("This is a simple input", "This is a pair") _UpperCamelCase : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCamelCase : Union[str, Any] = tokenizer.pad_token_id _UpperCamelCase : str = tokenizer(__a , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCamelCase : Tuple = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) _UpperCamelCase : str = tokenizer(*__a , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCamelCase : Optional[int] = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: _UpperCamelCase : Any = "$$$" _UpperCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) _UpperCamelCase : int = "This is a simple input" _UpperCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Union[str, Any] = tokenizer.bos_token_id _UpperCamelCase : str = tokenizer(__a ) _UpperCamelCase : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCamelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _UpperCamelCase : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _UpperCamelCase : Optional[Any] = [self.get_tokenizer(do_lower_case=__a , add_bos_token=__a )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "Encode this." _UpperCamelCase : List[str] = "This one too please." _UpperCamelCase : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) encoded_sequence += tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer.encode_plus( __a , __a , add_special_tokens=__a , return_special_tokens_mask=__a , ) _UpperCamelCase : str = encoded_sequence_dict["input_ids"] _UpperCamelCase : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__a ) , len(__a ) ) _UpperCamelCase : Union[str, Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__a ) ] _UpperCamelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__a , __a ) @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> str: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Any = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) _UpperCamelCase : str = AutoTokenizer.from_pretrained("./test_opt" ) _UpperCamelCase : Optional[Any] = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Union[str, Any] = tokenizer.encode( __a , ) # Same as above self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[str] = "bos" _UpperCamelCase : Tuple = tokenizer.get_vocab()["bos"] _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : List[Any] = tokenizer.encode( __a , ) # We changed the bos token self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _UpperCamelCase : Tuple = tokenizer.encode( __a , ) self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] )
310
0
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , _UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = RobertaConfig SCREAMING_SNAKE_CASE__ :Any = "roberta" def __init__( self : int , __a : List[Any] ) -> List[str]: super().__init__(__a ) _UpperCamelCase : Optional[Any] = RobertaEmbeddings(__a ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , _UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = RobertaConfig SCREAMING_SNAKE_CASE__ :Union[str, Any] = "roberta" def __init__( self : Tuple , __a : Optional[int] ) -> Optional[int]: super().__init__(__a ) _UpperCamelCase : Tuple = config.num_labels _UpperCamelCase : Dict = config.num_hidden_layers _UpperCamelCase : Optional[Any] = DeeRobertaModel(__a ) _UpperCamelCase : int = nn.Dropout(config.hidden_dropout_prob ) _UpperCamelCase : Tuple = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int=None , __a : List[str]=None , __a : Optional[Any]=None , __a : int=None , __a : Dict=None , __a : Optional[Any]=None , __a : int=None , __a : Dict=-1 , __a : Union[str, Any]=False , ) -> str: _UpperCamelCase : Tuple = self.num_layers try: _UpperCamelCase : Union[str, Any] = self.roberta( __a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , ) _UpperCamelCase : int = outputs[1] _UpperCamelCase : Any = self.dropout(__a ) _UpperCamelCase : Optional[int] = self.classifier(__a ) _UpperCamelCase : str = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _UpperCamelCase : str = e.message _UpperCamelCase : Tuple = e.exit_layer _UpperCamelCase : Optional[int] = outputs[0] if not self.training: _UpperCamelCase : List[Any] = entropy(__a ) _UpperCamelCase : List[Any] = [] _UpperCamelCase : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression _UpperCamelCase : List[Any] = MSELoss() _UpperCamelCase : List[Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase : Tuple = CrossEntropyLoss() _UpperCamelCase : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _UpperCamelCase : Any = [] for highway_exit in outputs[-1]: _UpperCamelCase : Union[str, Any] = highway_exit[0] if not self.training: highway_logits_all.append(__a ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _UpperCamelCase : Optional[Any] = MSELoss() _UpperCamelCase : Tuple = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _UpperCamelCase : Optional[Any] = CrossEntropyLoss() _UpperCamelCase : Optional[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__a ) if train_highway: _UpperCamelCase : Optional[int] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _UpperCamelCase : Union[str, Any] = (loss,) + outputs if not self.training: _UpperCamelCase : int = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _UpperCamelCase : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
365
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : Union[str, Any] = load_tool("text-question-answering" , remote=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Dict = self.tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.remote_tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Dict = self.tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[Any] = self.remote_tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" )
310
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(lowercase_ ,lowercase_ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(lowercase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
366
"""simple docstring""" lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [False] * len(lowercase_ ) _UpperCamelCase : Dict = [s] _UpperCamelCase : List[str] = True while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase_ ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = [-1] * (len(lowercase_ )) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : int = float("Inf" ) _UpperCamelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : List[Any] = min(lowercase_ ,graph[parent[s]][s] ) _UpperCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _UpperCamelCase : Union[str, Any] = sink while v != source: _UpperCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Dict = parent[v] for i in range(len(lowercase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
310
0
"""simple docstring""" import math import tensorflow as tf from packaging import version def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = tf.convert_to_tensor(lowercase_ ) _UpperCamelCase : List[str] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) ,x.dtype ) )) return x * cdf def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = tf.convert_to_tensor(lowercase_ ) _UpperCamelCase : Optional[Any] = tf.cast(math.pi ,x.dtype ) _UpperCamelCase : Union[str, Any] = tf.cast(0.04_4715 ,x.dtype ) _UpperCamelCase : Optional[Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowercase_ ,3 )) )) return x * cdf def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Dict = tf.convert_to_tensor(lowercase_ ) return x * tf.tanh(tf.math.softplus(lowercase_ ) ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(lowercase_ ) _UpperCamelCase : int = tf.cast(0.04_4715 ,x.dtype ) _UpperCamelCase : Optional[Any] = tf.cast(0.79_7884_5608 ,x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(lowercase_ ) _UpperCamelCase : List[Any] = tf.cast(1.702 ,x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" return tf.clip_by_value(_gelu(lowercase_ ) ,-10 ,10 ) def lowercase__ ( lowercase_ ,lowercase_=-1 ) -> List[str]: """simple docstring""" _UpperCamelCase : Optional[int] = tf.split(lowercase_ ,2 ,axis=lowercase_ ) return a * tf.math.sigmoid(lowercase_ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" return tf.keras.activations.gelu(lowercase_ ,approximate=lowercase_ ) lowerCamelCase__ = tf.keras.activations.gelu lowerCamelCase__ = approximate_gelu_wrap else: lowerCamelCase__ = _gelu lowerCamelCase__ = _gelu_new lowerCamelCase__ = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
367
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : int = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : str = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : int = do_center_crop _UpperCamelCase : int = crop_size _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Dict = do_rescale _UpperCamelCase : Any = rescale_factor _UpperCamelCase : Any = offset _UpperCamelCase : Union[str, Any] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: _UpperCamelCase : str = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: _UpperCamelCase : Any = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> Optional[Any]: _UpperCamelCase : Any = image.astype(np.floataa ) if offset: _UpperCamelCase : Dict = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCamelCase : Optional[Any] = to_numpy_array(__a ) if do_resize: _UpperCamelCase : Any = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: _UpperCamelCase : Dict = self.center_crop(__a , size=__a ) if do_rescale: _UpperCamelCase : Union[str, Any] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: _UpperCamelCase : int = self.normalize(image=__a , mean=__a , std=__a ) _UpperCamelCase : str = to_channel_dimension_format(__a , __a ) return image def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: _UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = offset if offset is not None else self.offset _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(__a , param_name="crop_size" ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Union[str, Any] = make_batched(__a ) _UpperCamelCase : Optional[Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase : List[Any] = {"pixel_values": videos} return BatchFeature(data=__a , tensor_type=__a )
310
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) _UpperCamelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.dummy_uncond_unet _UpperCamelCase : List[Any] = PNDMScheduler() _UpperCamelCase : Any = PNDMPipeline(unet=__a , scheduler=__a ) pndm.to(__a ) pndm.set_progress_bar_config(disable=__a ) _UpperCamelCase : Optional[int] = torch.manual_seed(0 ) _UpperCamelCase : str = pndm(generator=__a , num_inference_steps=20 , output_type="numpy" ).images _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = pndm(generator=__a , num_inference_steps=20 , output_type="numpy" , return_dict=__a )[0] _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict: _UpperCamelCase : Optional[int] = "google/ddpm-cifar10-32" _UpperCamelCase : Optional[int] = UNetaDModel.from_pretrained(__a ) _UpperCamelCase : Optional[Any] = PNDMScheduler() _UpperCamelCase : str = PNDMPipeline(unet=__a , scheduler=__a ) pndm.to(__a ) pndm.set_progress_bar_config(disable=__a ) _UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase : Tuple = pndm(generator=__a , output_type="numpy" ).images _UpperCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : str = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
368
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCamelCase__ = True except ImportError: lowerCamelCase__ = False try: from torch.hub import _get_torch_home lowerCamelCase__ = _get_torch_home() except ImportError: lowerCamelCase__ = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) lowerCamelCase__ = os.path.join(torch_cache_home, "transformers") lowerCamelCase__ = "https://cdn.huggingface.co" lowerCamelCase__ = "https://s3.amazonaws.com/models.huggingface.co/bert" lowerCamelCase__ = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) lowerCamelCase__ = os.path.join(PATH, "config.yaml") lowerCamelCase__ = os.path.join(PATH, "attributes.txt") lowerCamelCase__ = os.path.join(PATH, "objects.txt") lowerCamelCase__ = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) lowerCamelCase__ = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) lowerCamelCase__ = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) lowerCamelCase__ = "pytorch_model.bin" lowerCamelCase__ = "config.yaml" def lowercase__ ( lowercase_=OBJECTS ,lowercase_=ATTRIBUTES ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _UpperCamelCase : Any = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = OrderedDict() with open(lowercase_ ,"rb" ) as f: _UpperCamelCase : List[str] = pkl.load(lowercase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _UpperCamelCase : List[str] = ckp.pop(lowercase_ ) if isinstance(lowercase_ ,np.ndarray ): _UpperCamelCase : List[Any] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ ,torch.tensor ), type(lowercase_ ) _UpperCamelCase : Optional[Any] = v return r class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = {} def __init__( self : str , __a : dict , __a : str = "root" , __a : Any=0 ) -> Any: _UpperCamelCase : Optional[Any] = name _UpperCamelCase : Optional[Any] = level _UpperCamelCase : Union[str, Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _UpperCamelCase : Optional[int] = copy.deepcopy(__a ) _UpperCamelCase : Dict = copy.deepcopy(__a ) if isinstance(__a , __a ): _UpperCamelCase : Union[str, Any] = Config(__a , name=__a , level=level + 1 ) _UpperCamelCase : Optional[Any] = v setattr(self , __a , __a ) _UpperCamelCase : Optional[Any] = d def __repr__( self : List[str] ) -> List[Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : Dict , __a : Union[str, Any] , __a : Optional[int] ) -> int: _UpperCamelCase : Any = val _UpperCamelCase : Optional[Any] = val _UpperCamelCase : Dict = key.split("." ) _UpperCamelCase : int = len(__a ) - 1 _UpperCamelCase : List[str] = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: _UpperCamelCase : str = val else: _UpperCamelCase : List[str] = pointer[l] def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._pointer def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Tuple , __a : List[str] ) -> Dict: with open(F'''{file_name}''' , "w" ) as stream: dump(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : Dict ) -> List[Any]: with open(F'''{file_name}''' , "w" ) as stream: json.dump(__a , __a ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Union[str, Any] ) -> Optional[int]: with open(__a ) as stream: _UpperCamelCase : int = load(__a , Loader=__a ) return data def __str__( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = " " if self._name != "root": _UpperCamelCase : Dict = F'''{t * (self._level-1)}{self._name}:\n''' else: _UpperCamelCase : Any = "" _UpperCamelCase : Any = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n''' _UpperCamelCase : Optional[Any] = level return r[:-1] @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict , __a : str , **__a : str ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : int = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __a : str , **__a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Tuple = kwargs.pop("cache_dir" , __a ) _UpperCamelCase : Optional[int] = kwargs.pop("force_download" , __a ) _UpperCamelCase : str = kwargs.pop("resume_download" , __a ) _UpperCamelCase : Any = kwargs.pop("proxies" , __a ) _UpperCamelCase : List[Any] = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): _UpperCamelCase : Optional[Any] = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): _UpperCamelCase : Optional[int] = pretrained_model_name_or_path else: _UpperCamelCase : int = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached _UpperCamelCase : Optional[int] = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _UpperCamelCase : List[Any] = Config.load_yaml(__a ) except EnvironmentError: _UpperCamelCase : Union[str, Any] = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : str = torch.load("dump.pt" ,map_location=in_tensor.device ) _UpperCamelCase : str = in_tensor.numpy() _UpperCamelCase : Union[str, Any] = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ), ( F'''{sum([1 for x in np.isclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Dict = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=True ) -> str: """simple docstring""" _UpperCamelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _UpperCamelCase : List[str] = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=0 ,lowercase_=None ,) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ ,lowercase_ ): ua += "; " + "; ".join("{}/{}".format(lowercase_ ,lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ ,lowercase_ ): ua += "; " + user_agent _UpperCamelCase : Any = {"user-agent": ua} if resume_size > 0: _UpperCamelCase : str = "bytes=%d-" % (resume_size,) _UpperCamelCase : str = requests.get(lowercase_ ,stream=lowercase_ ,proxies=lowercase_ ,headers=lowercase_ ) if response.status_code == 416: # Range not satisfiable return _UpperCamelCase : List[str] = response.headers.get("Content-Length" ) _UpperCamelCase : Union[str, Any] = resume_size + int(lowercase_ ) if content_length is not None else None _UpperCamelCase : Optional[int] = tqdm( unit="B" ,unit_scale=lowercase_ ,total=lowercase_ ,initial=lowercase_ ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=10 ,lowercase_=False ,lowercase_=None ,lowercase_=False ,) -> Tuple: """simple docstring""" if cache_dir is None: _UpperCamelCase : str = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Dict = str(lowercase_ ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) _UpperCamelCase : Dict = None if not local_files_only: try: _UpperCamelCase : List[Any] = requests.head(lowercase_ ,allow_redirects=lowercase_ ,proxies=lowercase_ ,timeout=lowercase_ ) if response.status_code == 200: _UpperCamelCase : str = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _UpperCamelCase : int = url_to_filename(lowercase_ ,lowercase_ ) # get cache path to put the file _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: _UpperCamelCase : Optional[int] = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _UpperCamelCase : Dict = cache_path + ".lock" with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _UpperCamelCase : List[str] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(lowercase_ ,"a+b" ) as f: yield f _UpperCamelCase : Union[str, Any] = _resumable_file_manager if os.path.exists(lowercase_ ): _UpperCamelCase : str = os.stat(lowercase_ ).st_size else: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Tuple = partial(tempfile.NamedTemporaryFile ,dir=lowercase_ ,delete=lowercase_ ) _UpperCamelCase : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,lowercase_ ,temp_file.name ,) http_get( lowercase_ ,lowercase_ ,proxies=lowercase_ ,resume_size=lowercase_ ,user_agent=lowercase_ ,) os.replace(temp_file.name ,lowercase_ ) _UpperCamelCase : Optional[int] = {"url": url, "etag": etag} _UpperCamelCase : List[str] = cache_path + ".json" with open(lowercase_ ,"w" ) as meta_file: json.dump(lowercase_ ,lowercase_ ) return cache_path def lowercase__ ( lowercase_ ,lowercase_=None ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = url.encode("utf-8" ) _UpperCamelCase : List[str] = shaaaa(lowercase_ ) _UpperCamelCase : List[str] = url_hash.hexdigest() if etag: _UpperCamelCase : Optional[Any] = etag.encode("utf-8" ) _UpperCamelCase : Optional[Any] = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=False ,lowercase_=False ,) -> str: """simple docstring""" if cache_dir is None: _UpperCamelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) _UpperCamelCase : Union[str, Any] = get_from_cache( lowercase_ ,cache_dir=lowercase_ ,force_download=lowercase_ ,proxies=lowercase_ ,resume_download=lowercase_ ,user_agent=lowercase_ ,local_files_only=lowercase_ ,) elif os.path.exists(lowercase_ ): # File, and it exists. _UpperCamelCase : List[str] = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(lowercase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _UpperCamelCase, _UpperCamelCase : Any = os.path.split(lowercase_ ) _UpperCamelCase : Optional[int] = output_file.replace("." ,"-" ) + "-extracted" _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _UpperCamelCase : Optional[int] = output_path + ".lock" with FileLock(lowercase_ ): shutil.rmtree(lowercase_ ,ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ ,"r" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): _UpperCamelCase : int = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(lowercase_ ) ) return output_path_extracted return output_path def lowercase__ ( lowercase_ ,lowercase_="," ) -> Optional[int]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: _UpperCamelCase : Tuple = eval(f.read() ) else: _UpperCamelCase : str = requests.get(lowercase_ ) try: _UpperCamelCase : Optional[int] = requests.json() except Exception: _UpperCamelCase : Union[str, Any] = req.content.decode() assert data is not None, "could not connect" try: _UpperCamelCase : List[Any] = eval(lowercase_ ) except Exception: _UpperCamelCase : int = data.split("\n" ) req.close() return data def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[Any] = requests.get(lowercase_ ) _UpperCamelCase : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ ,"rb" ) as stream: _UpperCamelCase : Union[str, Any] = pkl.load(lowercase_ ) _UpperCamelCase : Union[str, Any] = weights.pop("model" ) _UpperCamelCase : Optional[int] = {} for k, v in model.items(): _UpperCamelCase : str = torch.from_numpy(lowercase_ ) if "running_var" in k: _UpperCamelCase : List[Any] = torch.tensor([0] ) _UpperCamelCase : str = k.replace("running_var" ,"num_batches_tracked" ) _UpperCamelCase : Any = zero return new def lowercase__ ( ) -> Dict: """simple docstring""" print(F'''{os.path.abspath(os.path.join(lowercase_ ,os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( lowercase_ ,lowercase_="RGB" ) -> int: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): _UpperCamelCase : Optional[Any] = cva.imread(lowercase_ ) else: _UpperCamelCase : Optional[int] = get_image_from_url(lowercase_ ) assert img is not None, F'''could not connect to: {im}''' _UpperCamelCase : Optional[int] = cva.cvtColor(lowercase_ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": _UpperCamelCase : List[Any] = img[:, :, ::-1] return img def lowercase__ ( lowercase_ ,lowercase_=1 ) -> List[Any]: """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(lowercase_ ) ,lowercase_ ))
310
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = None SCREAMING_SNAKE_CASE__ :int = BloomTokenizerFast SCREAMING_SNAKE_CASE__ :Tuple = BloomTokenizerFast SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :Dict = False SCREAMING_SNAKE_CASE__ :Optional[int] = "tokenizer_file" SCREAMING_SNAKE_CASE__ :int = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: super().setUp() _UpperCamelCase : int = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : str , **__a : Tuple ) -> List[str]: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: _UpperCamelCase : int = self.get_rust_tokenizer() _UpperCamelCase : List[Any] = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] _UpperCamelCase : int = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] _UpperCamelCase : List[str] = tokenizer.batch_encode_plus(__a )["input_ids"] self.assertListEqual(__a , __a ) _UpperCamelCase : List[Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int]=6 ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _UpperCamelCase : str = "This is a simple input" _UpperCamelCase : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Tuple = ("This is a simple input", "This is a pair") _UpperCamelCase : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(__a , max_length=__a ) tokenizer_r.encode_plus(__a , max_length=__a ) tokenizer_r.batch_encode_plus(__a , max_length=__a ) tokenizer_r.encode(__a , max_length=__a ) tokenizer_r.batch_encode_plus(__a , max_length=__a ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) _UpperCamelCase : Tuple = None # Hotfixing padding = None self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Dict = self.get_rust_tokenizer() _UpperCamelCase : Optional[Any] = load_dataset("xnli" , "all_languages" , split="test" , streaming=__a ) _UpperCamelCase : List[str] = next(iter(__a ) )["premise"] # pick up one data _UpperCamelCase : List[str] = list(sample_data.values() ) _UpperCamelCase : Any = list(map(tokenizer.encode , __a ) ) _UpperCamelCase : List[Any] = [tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) for x in output_tokens] self.assertListEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
369
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = "wav2vec2" def __init__( self : str , __a : str=32 , __a : int=768 , __a : str=12 , __a : List[Any]=12 , __a : List[Any]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : Any=0.1 , __a : Optional[int]=0.1 , __a : List[Any]=0.0 , __a : Optional[Any]=0.0 , __a : str=0.1 , __a : List[str]=0.1 , __a : Any=0.02 , __a : Optional[int]=1e-5 , __a : List[str]="group" , __a : str="gelu" , __a : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __a : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __a : Dict=(10, 3, 3, 3, 3, 2, 2) , __a : Optional[int]=False , __a : List[Any]=128 , __a : List[str]=16 , __a : str=False , __a : Optional[Any]=True , __a : Union[str, Any]=0.05 , __a : Dict=10 , __a : Tuple=2 , __a : Any=0.0 , __a : Optional[Any]=10 , __a : Union[str, Any]=0 , __a : List[Any]=320 , __a : Any=2 , __a : List[Any]=0.1 , __a : Dict=100 , __a : Any=256 , __a : Optional[Any]=256 , __a : str=0.1 , __a : Any="sum" , __a : Optional[Any]=False , __a : int=False , __a : int=256 , __a : Dict=(512, 512, 512, 512, 1500) , __a : Optional[Any]=(5, 3, 3, 1, 1) , __a : List[Any]=(1, 2, 3, 1, 1) , __a : List[str]=512 , __a : List[Any]=0 , __a : Tuple=1 , __a : int=2 , __a : List[Any]=False , __a : List[str]=3 , __a : Dict=2 , __a : str=3 , __a : Tuple=None , __a : Tuple=None , **__a : Dict , ) -> List[Any]: super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = feat_extract_norm _UpperCamelCase : Optional[int] = feat_extract_activation _UpperCamelCase : Optional[int] = list(__a ) _UpperCamelCase : str = list(__a ) _UpperCamelCase : List[Any] = list(__a ) _UpperCamelCase : List[Any] = conv_bias _UpperCamelCase : str = num_conv_pos_embeddings _UpperCamelCase : Any = num_conv_pos_embedding_groups _UpperCamelCase : Union[str, Any] = len(self.conv_dim ) _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : Tuple = hidden_dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : Dict = activation_dropout _UpperCamelCase : Any = feat_proj_dropout _UpperCamelCase : List[Any] = final_dropout _UpperCamelCase : Dict = layerdrop _UpperCamelCase : Union[str, Any] = layer_norm_eps _UpperCamelCase : Dict = initializer_range _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : int = do_stable_layer_norm _UpperCamelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase : Optional[int] = apply_spec_augment _UpperCamelCase : List[str] = mask_time_prob _UpperCamelCase : List[Any] = mask_time_length _UpperCamelCase : Dict = mask_time_min_masks _UpperCamelCase : str = mask_feature_prob _UpperCamelCase : Optional[Any] = mask_feature_length _UpperCamelCase : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _UpperCamelCase : Dict = num_codevectors_per_group _UpperCamelCase : List[str] = num_codevector_groups _UpperCamelCase : Union[str, Any] = contrastive_logits_temperature _UpperCamelCase : List[Any] = feat_quantizer_dropout _UpperCamelCase : Dict = num_negatives _UpperCamelCase : Optional[int] = codevector_dim _UpperCamelCase : Union[str, Any] = proj_codevector_dim _UpperCamelCase : Tuple = diversity_loss_weight # ctc loss _UpperCamelCase : Union[str, Any] = ctc_loss_reduction _UpperCamelCase : List[Any] = ctc_zero_infinity # adapter _UpperCamelCase : str = add_adapter _UpperCamelCase : Optional[Any] = adapter_kernel_size _UpperCamelCase : Optional[int] = adapter_stride _UpperCamelCase : int = num_adapter_layers _UpperCamelCase : List[Any] = output_hidden_size or hidden_size _UpperCamelCase : Dict = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase : Union[str, Any] = list(__a ) _UpperCamelCase : Any = list(__a ) _UpperCamelCase : Dict = list(__a ) _UpperCamelCase : Tuple = xvector_output_dim @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
370
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Tuple = abs(lowercase_ ) _UpperCamelCase : Any = 0 while n > 0: res += n % 10 n //= 10 return res def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : int = abs(lowercase_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowercase__ ( lowercase_ ) -> int: """simple docstring""" return sum(int(lowercase_ ) for c in str(abs(lowercase_ ) ) ) def lowercase__ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase_ ,lowercase_ ) -> None: _UpperCamelCase : Union[str, Any] = F'''{func.__name__}({value})''' _UpperCamelCase : Dict = timeit(F'''__main__.{call}''' ,setup="import __main__" ) print(F'''{call:56} = {func(lowercase_ )} -- {timing:.4f} seconds''' ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase_ ,lowercase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
371
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
350
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
310
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = "The Nymphenburg Palace is a beautiful palace in Munich!" def lowercase__ ( lowercase_ ,lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } _UpperCamelCase : Any = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _UpperCamelCase : int = BERTEncoder( attention_cell=predefined_args["attention_cell"] ,num_layers=predefined_args["num_layers"] ,units=predefined_args["units"] ,hidden_size=predefined_args["hidden_size"] ,max_length=predefined_args["max_length"] ,num_heads=predefined_args["num_heads"] ,scaled=predefined_args["scaled"] ,dropout=predefined_args["dropout"] ,output_attention=lowercase_ ,output_all_encodings=lowercase_ ,use_residual=predefined_args["use_residual"] ,activation=predefined_args.get("activation" ,"gelu" ) ,layer_norm_eps=predefined_args.get("layer_norm_eps" ,lowercase_ ) ,) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _UpperCamelCase : int = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab _UpperCamelCase : Union[str, Any] = os.path.join(get_home_dir() ,"models" ) _UpperCamelCase : Optional[Any] = _load_vocab(lowercase_ ,lowercase_ ,lowercase_ ,cls=lowercase_ ) _UpperCamelCase : Any = nlp.model.BERTModel( lowercase_ ,len(lowercase_ ) ,units=predefined_args["units"] ,embed_size=predefined_args["embed_size"] ,embed_dropout=predefined_args["embed_dropout"] ,word_embed=predefined_args["word_embed"] ,use_pooler=lowercase_ ,use_token_type_embed=lowercase_ ,token_type_vocab_size=predefined_args["token_type_vocab_size"] ,use_classifier=lowercase_ ,use_decoder=lowercase_ ,) original_bort.load_parameters(lowercase_ ,cast_dtype=lowercase_ ,ignore_extra=lowercase_ ) _UpperCamelCase : Dict = original_bort._collect_params_with_prefix() # Build our config 🤗 _UpperCamelCase : Optional[Any] = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(lowercase_ ), } _UpperCamelCase : int = BertConfig.from_dict(lowercase_ ) _UpperCamelCase : Dict = BertForMaskedLM(lowercase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowercase_ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowercase_ ,lowercase_ ): _UpperCamelCase : Optional[Any] = hf_param.shape _UpperCamelCase : Dict = to_torch(params[gluon_param] ) _UpperCamelCase : int = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param _UpperCamelCase : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight ,"word_embed.0.weight" ) _UpperCamelCase : str = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight ,"encoder.position_weight" ) _UpperCamelCase : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias ,"encoder.layer_norm.beta" ) _UpperCamelCase : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight ,"encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _UpperCamelCase : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _UpperCamelCase : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention _UpperCamelCase : BertSelfAttention = layer.attention.self _UpperCamelCase : str = check_and_map_params( self_attn.key.bias.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) _UpperCamelCase : List[str] = check_and_map_params( self_attn.key.weight.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) _UpperCamelCase : Union[str, Any] = check_and_map_params( self_attn.query.bias.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) _UpperCamelCase : str = check_and_map_params( self_attn.query.weight.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) _UpperCamelCase : Any = check_and_map_params( self_attn.value.bias.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) _UpperCamelCase : List[str] = check_and_map_params( self_attn.value.weight.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output _UpperCamelCase : BertSelfOutput = layer.attention.output _UpperCamelCase : Optional[Any] = check_and_map_params( self_output.dense.bias ,F'''encoder.transformer_cells.{i}.proj.bias''' ) _UpperCamelCase : Union[str, Any] = check_and_map_params( self_output.dense.weight ,F'''encoder.transformer_cells.{i}.proj.weight''' ) _UpperCamelCase : int = check_and_map_params( self_output.LayerNorm.bias ,F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) _UpperCamelCase : Dict = check_and_map_params( self_output.LayerNorm.weight ,F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate _UpperCamelCase : BertIntermediate = layer.intermediate _UpperCamelCase : int = check_and_map_params( intermediate.dense.bias ,F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) _UpperCamelCase : List[str] = check_and_map_params( intermediate.dense.weight ,F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output _UpperCamelCase : BertOutput = layer.output _UpperCamelCase : Union[str, Any] = check_and_map_params( bert_output.dense.bias ,F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) _UpperCamelCase : Optional[Any] = check_and_map_params( bert_output.dense.weight ,F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) _UpperCamelCase : Tuple = check_and_map_params( bert_output.LayerNorm.bias ,F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) _UpperCamelCase : str = check_and_map_params( bert_output.LayerNorm.weight ,F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _UpperCamelCase : Dict = RobertaTokenizer.from_pretrained("roberta-base" ) _UpperCamelCase : str = tokenizer.encode_plus(lowercase_ )["input_ids"] # Get gluon output _UpperCamelCase : Optional[Any] = mx.nd.array([input_ids] ) _UpperCamelCase : Optional[int] = original_bort(inputs=lowercase_ ,token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = BertModel.from_pretrained(lowercase_ ) hf_bort_model.eval() _UpperCamelCase : Optional[Any] = tokenizer.encode_plus(lowercase_ ,return_tensors="pt" ) _UpperCamelCase : Optional[int] = hf_bort_model(**lowercase_ )[0] _UpperCamelCase : int = output_gluon[0].asnumpy() _UpperCamelCase : int = output_hf[0].detach().numpy() _UpperCamelCase : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() _UpperCamelCase : List[str] = np.allclose(lowercase_ ,lowercase_ ,atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" ,lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
351
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowercase__ ( lowercase_ ) -> list[list[float]]: """simple docstring""" _UpperCamelCase : int = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _UpperCamelCase : Tuple = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements _UpperCamelCase : Union[str, Any] = [[0.0, 0.0], [0.0, 0.0]] _UpperCamelCase : Optional[int] = matrix[1][1], matrix[0][0] _UpperCamelCase : Any = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _UpperCamelCase : Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix _UpperCamelCase : Union[str, Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _UpperCamelCase : str = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _UpperCamelCase : Any = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _UpperCamelCase : Tuple = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _UpperCamelCase : int = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _UpperCamelCase : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _UpperCamelCase : str = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _UpperCamelCase : Dict = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _UpperCamelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _UpperCamelCase : str = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _UpperCamelCase : str = array(lowercase_ ) for i in range(3 ): for j in range(3 ): _UpperCamelCase : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _UpperCamelCase : Tuple = array(lowercase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase_ ) # Calculate the inverse of the matrix return [[float(d(lowercase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
352
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , __a : VQModel , __a : UNetaDModel , __a : DDIMScheduler ) -> int: super().__init__() self.register_modules(vqvae=__a , unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : Optional[int] , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : float = 0.0 , __a : int = 50 , __a : Optional[str] = "pil" , __a : bool = True , **__a : int , ) -> Union[Tuple, ImagePipelineOutput]: _UpperCamelCase : Dict = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__a , ) _UpperCamelCase : List[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCamelCase : Union[str, Any] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__a ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _UpperCamelCase : List[str] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCamelCase : Optional[Any] = {} if accepts_eta: _UpperCamelCase : List[str] = eta for t in self.progress_bar(self.scheduler.timesteps ): _UpperCamelCase : str = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual _UpperCamelCase : Union[str, Any] = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase : Optional[int] = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # decode the image latents with the VAE _UpperCamelCase : Dict = self.vqvae.decode(__a ).sample _UpperCamelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase : List[Any] = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
353
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a ) }
310
0
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( _UpperCamelCase ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
354
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" import warnings from .generation import TFGenerationMixin class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , _UpperCamelCase , )
355
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
310
0
"""simple docstring""" from __future__ import annotations import requests lowerCamelCase__ = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def lowercase__ ( lowercase_ ,lowercase_ = 1 ,lowercase_ = "new" ,lowercase_ = None ) -> dict: """simple docstring""" _UpperCamelCase : str = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowercase_ ) - valid_terms ) ): _UpperCamelCase : List[Any] = F'''Invalid search term: {invalid_search_terms}''' raise ValueError(lowercase_ ) _UpperCamelCase : List[Any] = requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' ,headers={"User-agent": "A random string"} ,) if response.status_code == 429: raise requests.HTTPError _UpperCamelCase : Optional[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowercase_ )} _UpperCamelCase : List[str] = {} for id_ in range(lowercase_ ): _UpperCamelCase : Dict = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=__a , ) assert hasattr(self , "env" ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[str] ) -> Any: _UpperCamelCase : Tuple = F'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings _UpperCamelCase : List[str] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__a , instance_count=__a , instance_type=self.instance_type , debugger_hook_config=__a , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__a , py_version="py36" , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Dict: TrainingJobAnalytics(__a ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : str ) -> Union[str, Any]: # create estimator _UpperCamelCase : Optional[Any] = self.create_estimator(__a ) # run training estimator.fit() # result dataframe _UpperCamelCase : int = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _UpperCamelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) _UpperCamelCase : List[str] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCamelCase : Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __a )
357
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowerCamelCase__ = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowerCamelCase__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowerCamelCase__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
310
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "funnel" SCREAMING_SNAKE_CASE__ :int = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : Any , __a : Dict=3_0522 , __a : List[Any]=[4, 4, 4] , __a : str=None , __a : int=2 , __a : Union[str, Any]=768 , __a : Dict=12 , __a : Optional[int]=64 , __a : Optional[Any]=3072 , __a : Tuple="gelu_new" , __a : List[str]=0.1 , __a : List[str]=0.1 , __a : Optional[Any]=0.0 , __a : Optional[int]=0.1 , __a : Any=None , __a : str=1e-9 , __a : Union[str, Any]="mean" , __a : Optional[int]="relative_shift" , __a : Any=True , __a : str=True , __a : Union[str, Any]=True , **__a : Optional[int] , ) -> List[Any]: _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : Union[str, Any] = block_sizes _UpperCamelCase : Tuple = [1] * len(__a ) if block_repeats is None else block_repeats assert len(__a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _UpperCamelCase : List[Any] = num_decoder_layers _UpperCamelCase : Optional[Any] = d_model _UpperCamelCase : Dict = n_head _UpperCamelCase : str = d_head _UpperCamelCase : str = d_inner _UpperCamelCase : str = hidden_act _UpperCamelCase : int = hidden_dropout _UpperCamelCase : Any = attention_dropout _UpperCamelCase : Tuple = activation_dropout _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : str = initializer_std _UpperCamelCase : Any = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' _UpperCamelCase : Dict = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' _UpperCamelCase : Tuple = attention_type _UpperCamelCase : Any = separate_cls _UpperCamelCase : str = truncate_seq _UpperCamelCase : Any = pool_q_only super().__init__(**__a ) @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: return sum(self.block_sizes ) @num_hidden_layers.setter def __SCREAMING_SNAKE_CASE ( self : int , __a : Union[str, Any] ) -> Union[str, Any]: raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: return len(self.block_sizes ) @num_blocks.setter def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict ) -> int: raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
358
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl" def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Union[str, Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
310
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , **__a : int ) -> List[Any]: super().__init__(**__a ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : List[Any] , __a : Union[np.ndarray, bytes, str] , **__a : Tuple ) -> Any: return super().__call__(__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__a : Union[str, Any] ) -> Dict: _UpperCamelCase : Tuple = {} if "candidate_labels" in kwargs: _UpperCamelCase : Optional[int] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: _UpperCamelCase : Optional[int] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Any , __a : str=None , __a : Dict="This is a sound of {}." ) -> Tuple: if isinstance(__a , __a ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _UpperCamelCase : Optional[Any] = requests.get(__a ).content else: with open(__a , "rb" ) as f: _UpperCamelCase : Tuple = f.read() if isinstance(__a , __a ): _UpperCamelCase : Union[str, Any] = ffmpeg_read(__a , self.feature_extractor.sampling_rate ) if not isinstance(__a , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) _UpperCamelCase : Union[str, Any] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) _UpperCamelCase : Tuple = candidate_labels _UpperCamelCase : int = [hypothesis_template.format(__a ) for x in candidate_labels] _UpperCamelCase : Optional[Any] = self.tokenizer(__a , return_tensors=self.framework , padding=__a ) _UpperCamelCase : Optional[int] = [text_inputs] return inputs def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : int ) -> List[Any]: _UpperCamelCase : Optional[int] = model_inputs.pop("candidate_labels" ) _UpperCamelCase : str = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __a ): _UpperCamelCase : List[Any] = text_inputs[0] else: # Batching case. _UpperCamelCase : int = text_inputs[0][0] _UpperCamelCase : Union[str, Any] = self.model(**__a , **__a ) _UpperCamelCase : Dict = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = model_outputs.pop("candidate_labels" ) _UpperCamelCase : int = model_outputs["logits"][0] if self.framework == "pt": _UpperCamelCase : Optional[Any] = logits.softmax(dim=0 ) _UpperCamelCase : Dict = probs.tolist() else: raise ValueError("`tf` framework not supported." ) _UpperCamelCase : Tuple = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__a , __a ) , key=lambda __a : -x[0] ) ] return result
359
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( *__a : int , **__a : int ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> Optional[Any]: _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Union[str, Any] ) -> int: _UpperCamelCase : Any = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets _UpperCamelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _UpperCamelCase : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase : List[Any] = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[str] = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = "facebook/detr-resnet-50" _UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Dict = "facebook/detr-resnet-50" _UpperCamelCase : Optional[Any] = pipeline("object-detection" , model=__a ) _UpperCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase : Tuple = 0.99_85 _UpperCamelCase : List[Any] = "facebook/detr-resnet-50" _UpperCamelCase : List[str] = pipeline("object-detection" , model=__a ) _UpperCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase : int = 0.99_93 _UpperCamelCase : str = pipeline("object-detection" , model=__a , threshold=__a ) _UpperCamelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
310
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MgpstrTokenizer SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Any = {} SCREAMING_SNAKE_CASE__ :Tuple = False def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: super().setUp() # fmt: off _UpperCamelCase : Optional[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _UpperCamelCase : Any = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__a : Optional[int] ) -> Any: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Tuple ) -> int: _UpperCamelCase : List[str] = "tester" _UpperCamelCase : int = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: _UpperCamelCase : int = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Dict = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _UpperCamelCase : int = tokenizer.encode([special_token] , add_special_tokens=__a ) self.assertEqual(len(__a ) , 1 ) _UpperCamelCase : Union[str, Any] = tokenizer.decode(__a , skip_special_tokens=__a ) self.assertTrue(special_token not in decoded ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: _UpperCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Dict = self.get_input_output_texts(__a ) _UpperCamelCase : List[str] = tokenizer.tokenize(__a ) _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : List[str] = tokenizer.convert_ids_to_tokens(__a ) self.assertNotEqual(len(__a ) , 0 ) _UpperCamelCase : Union[str, Any] = tokenizer.decode(__a ) self.assertIsInstance(__a , __a ) self.assertEqual(text_a.replace(" " , "" ) , __a ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: pass
360
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {"UserAgent": UserAgent().random} def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : str = script.contents[0] _UpperCamelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : str ) -> Tuple: _UpperCamelCase : List[str] = F'''https://www.instagram.com/{username}/''' _UpperCamelCase : Optional[Any] = self.get_json() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> dict: _UpperCamelCase : int = requests.get(self.url , headers=__a ).text _UpperCamelCase : Union[str, Any] = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return self.user_data["username"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["full_name"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["biography"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["external_url"] @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: return self.user_data["is_verified"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def lowercase__ ( lowercase_ = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCamelCase : Union[str, Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
310
0
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowerCamelCase__ = 637_8137.0 lowerCamelCase__ = 635_6752.31_4245 lowerCamelCase__ = 637_8137 def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> float: """simple docstring""" _UpperCamelCase : Union[str, Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCamelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowercase_ ) ) ) _UpperCamelCase : Any = atan((1 - flattening) * tan(radians(lowercase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCamelCase : Optional[Any] = haversine_distance(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCamelCase : int = (b_lata + b_lata) / 2 _UpperCamelCase : Union[str, Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCamelCase : Union[str, Any] = (sin(lowercase_ ) ** 2) * (cos(lowercase_ ) ** 2) _UpperCamelCase : Optional[Any] = cos(sigma / 2 ) ** 2 _UpperCamelCase : Any = (sigma - sin(lowercase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCamelCase : Union[str, Any] = (cos(lowercase_ ) ** 2) * (sin(lowercase_ ) ** 2) _UpperCamelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCamelCase : List[str] = (sigma + sin(lowercase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
310
0
"""simple docstring""" import baseaa def lowercase__ ( lowercase_ ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode("utf-8" ) ) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" return baseaa.baadecode(lowercase_ ).decode("utf-8" ) if __name__ == "__main__": lowerCamelCase__ = "Hello World!" lowerCamelCase__ = baseaa_encode(test) print(encoded) lowerCamelCase__ = baseaa_decode(encoded) print(decoded)
362
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ) if weight_type is not None: _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ).shape else: _UpperCamelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": _UpperCamelCase : int = value elif weight_type == "weight_v": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias": _UpperCamelCase : int = value else: _UpperCamelCase : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = fairseq_model.state_dict() _UpperCamelCase : Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,hf_model.config.feat_extract_norm == "group" ,) _UpperCamelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : Dict = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase : Any = mapped_key.replace("*" ,lowercase_ ) if "weight_g" in name: _UpperCamelCase : str = "weight_g" elif "weight_v" in name: _UpperCamelCase : Any = "weight_v" elif "weight" in name: _UpperCamelCase : List[str] = "weight" elif "bias" in name: _UpperCamelCase : List[Any] = "bias" else: _UpperCamelCase : str = None set_recursively(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Any = full_name.split("conv_layers." )[-1] _UpperCamelCase : Optional[Any] = name.split("." ) _UpperCamelCase : Union[str, Any] = int(items[0] ) _UpperCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = SEWConfig() if is_finetuned: _UpperCamelCase : Dict = model.wav_encoder.wav_model.cfg else: _UpperCamelCase : List[Any] = model.cfg _UpperCamelCase : Any = fs_config.conv_bias _UpperCamelCase : str = eval(fs_config.conv_feature_layers ) _UpperCamelCase : Any = [x[0] for x in conv_layers] _UpperCamelCase : List[Any] = [x[1] for x in conv_layers] _UpperCamelCase : Union[str, Any] = [x[2] for x in conv_layers] _UpperCamelCase : str = "gelu" _UpperCamelCase : List[str] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" _UpperCamelCase : Optional[int] = 0.0 _UpperCamelCase : Dict = fs_config.activation_fn.name _UpperCamelCase : Any = fs_config.encoder_embed_dim _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = fs_config.encoder_ffn_embed_dim _UpperCamelCase : int = 1e-5 _UpperCamelCase : Optional[int] = fs_config.encoder_layerdrop _UpperCamelCase : str = fs_config.encoder_attention_heads _UpperCamelCase : Tuple = fs_config.conv_pos_groups _UpperCamelCase : List[str] = fs_config.conv_pos _UpperCamelCase : Optional[int] = len(lowercase_ ) _UpperCamelCase : Union[str, Any] = fs_config.encoder_layers _UpperCamelCase : Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase : List[str] = model.cfg _UpperCamelCase : List[str] = fs_config.final_dropout _UpperCamelCase : Optional[Any] = fs_config.layerdrop _UpperCamelCase : int = fs_config.activation_dropout _UpperCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase : int = fs_config.attention_dropout _UpperCamelCase : int = fs_config.dropout_input _UpperCamelCase : List[Any] = fs_config.dropout _UpperCamelCase : List[Any] = fs_config.mask_channel_length _UpperCamelCase : List[str] = fs_config.mask_channel_prob _UpperCamelCase : Optional[Any] = fs_config.mask_length _UpperCamelCase : Optional[int] = fs_config.mask_prob _UpperCamelCase : List[str] = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=True ) -> str: """simple docstring""" if is_finetuned: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase : str = SEWConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = convert_config(model[0] ,lowercase_ ) _UpperCamelCase : List[str] = model[0].eval() _UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=lowercase_ ,return_attention_mask=lowercase_ ,) if is_finetuned: if dict_path: _UpperCamelCase : Union[str, Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : List[str] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Any = target_dict.pad_index _UpperCamelCase : List[Any] = target_dict.bos_index _UpperCamelCase : List[str] = target_dict.eos_index _UpperCamelCase : Optional[Any] = len(target_dict.symbols ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ ,exist_ok=lowercase_ ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,lowercase_ ) _UpperCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase_ ,) _UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = SEWForCTC(lowercase_ ) else: _UpperCamelCase : int = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ ,lowercase_ ,lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
310
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = "vit_msn" def __init__( self : List[Any] , __a : Union[str, Any]=768 , __a : Union[str, Any]=12 , __a : Any=12 , __a : int=3072 , __a : Optional[Any]="gelu" , __a : Union[str, Any]=0.0 , __a : int=0.0 , __a : Optional[Any]=0.02 , __a : Dict=1e-0_6 , __a : List[Any]=224 , __a : Optional[int]=16 , __a : int=3 , __a : str=True , **__a : Optional[Any] , ) -> Optional[Any]: super().__init__(**__a ) _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : Optional[int] = hidden_act _UpperCamelCase : Optional[int] = hidden_dropout_prob _UpperCamelCase : List[Any] = attention_probs_dropout_prob _UpperCamelCase : Any = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = image_size _UpperCamelCase : str = patch_size _UpperCamelCase : Any = num_channels _UpperCamelCase : Any = qkv_bias
363
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : int = prime_factors(lowercase_ ) if is_square_free(lowercase_ ): return -1 if len(lowercase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
364
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = GPTaTokenizer SCREAMING_SNAKE_CASE__ :Tuple = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :int = {"add_prefix_space": True} SCREAMING_SNAKE_CASE__ :Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCamelCase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : str = {"unk_token": "<unk>"} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any , **__a : Optional[int] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> Tuple: _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Dict = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : Optional[Any] = "lower newer" _UpperCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : Any = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : str = tokens + [tokenizer.unk_token] _UpperCamelCase : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: if not self.test_rust_tokenizer: return _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = "lower newer" # Testing tokenization _UpperCamelCase : str = tokenizer.tokenize(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _UpperCamelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _UpperCamelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token _UpperCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _UpperCamelCase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : int , **__a : List[Any] ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input _UpperCamelCase : Optional[int] = "This is a simple input" _UpperCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Dict = ("This is a simple input", "This is a pair") _UpperCamelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCamelCase : Union[str, Any] = "This is a simple input" _UpperCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] _UpperCamelCase : str = ("This is a simple input", "This is a pair") _UpperCamelCase : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCamelCase : Union[str, Any] = tokenizer.pad_token_id _UpperCamelCase : str = tokenizer(__a , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCamelCase : Tuple = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) _UpperCamelCase : str = tokenizer(*__a , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCamelCase : Optional[int] = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: _UpperCamelCase : Any = "$$$" _UpperCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) _UpperCamelCase : int = "This is a simple input" _UpperCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Union[str, Any] = tokenizer.bos_token_id _UpperCamelCase : str = tokenizer(__a ) _UpperCamelCase : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCamelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _UpperCamelCase : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _UpperCamelCase : Optional[Any] = [self.get_tokenizer(do_lower_case=__a , add_bos_token=__a )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "Encode this." _UpperCamelCase : List[str] = "This one too please." _UpperCamelCase : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) encoded_sequence += tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer.encode_plus( __a , __a , add_special_tokens=__a , return_special_tokens_mask=__a , ) _UpperCamelCase : str = encoded_sequence_dict["input_ids"] _UpperCamelCase : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__a ) , len(__a ) ) _UpperCamelCase : Union[str, Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__a ) ] _UpperCamelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__a , __a ) @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> str: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Any = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) _UpperCamelCase : str = AutoTokenizer.from_pretrained("./test_opt" ) _UpperCamelCase : Optional[Any] = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Union[str, Any] = tokenizer.encode( __a , ) # Same as above self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[str] = "bos" _UpperCamelCase : Tuple = tokenizer.get_vocab()["bos"] _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : List[Any] = tokenizer.encode( __a , ) # We changed the bos token self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _UpperCamelCase : Tuple = tokenizer.encode( __a , ) self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] )
310
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , __a : Any , __a : Optional[Any]=13 , __a : List[Any]=7 , __a : List[str]=True , __a : Tuple=True , __a : Optional[Any]=True , __a : Optional[Any]=True , __a : int=99 , __a : int=32 , __a : Dict=5 , __a : List[Any]=4 , __a : Tuple=37 , __a : List[str]="gelu" , __a : int=0.1 , __a : Optional[int]=0.1 , __a : str=512 , __a : Dict=16 , __a : Optional[int]=2 , __a : str=0.02 , __a : Any=4 , ) -> List[Any]: _UpperCamelCase : Tuple = parent _UpperCamelCase : int = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : Dict = is_training _UpperCamelCase : Optional[Any] = use_attention_mask _UpperCamelCase : Optional[int] = use_token_type_ids _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : Tuple = num_attention_heads _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : str = hidden_act _UpperCamelCase : Any = hidden_dropout_prob _UpperCamelCase : Optional[Any] = attention_probs_dropout_prob _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : List[Any] = type_vocab_size _UpperCamelCase : Optional[Any] = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Tuple = num_choices def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : int = None if self.use_attention_mask: _UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase : Tuple = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: _UpperCamelCase : Dict = self.prepare_config_and_inputs() _UpperCamelCase : Optional[int] = config_and_inputs _UpperCamelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase : Optional[int] = config_and_inputs _UpperCamelCase : List[str] = True _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Any = FlaxRobertaModelTester(self ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> str: for model_class_name in self.all_model_classes: _UpperCamelCase : Dict = model_class_name.from_pretrained("roberta-base" , from_pt=__a ) _UpperCamelCase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
365
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : Union[str, Any] = load_tool("text-question-answering" , remote=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Dict = self.tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.remote_tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Dict = self.tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[Any] = self.remote_tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" )
310
0
"""simple docstring""" from typing import Any class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : Any ) -> Optional[Any]: _UpperCamelCase : int = data _UpperCamelCase : Union[str, Any] = None def __repr__( self : List[Any] ) -> str: return F'''Node({self.data})''' class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int ) -> List[Any]: _UpperCamelCase : Tuple = None def __iter__( self : Union[str, Any] ) -> Any: _UpperCamelCase : List[str] = self.head while node: yield node.data _UpperCamelCase : Union[str, Any] = node.next def __len__( self : Any ) -> int: return sum(1 for _ in self ) def __repr__( self : List[str] ) -> str: return "->".join([str(__a ) for item in self] ) def __getitem__( self : Optional[Any] , __a : int ) -> Any: if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Dict , __a : int , __a : Any ) -> None: if not 0 <= index < len(self ): raise ValueError("list index out of range." ) _UpperCamelCase : List[str] = self.head for _ in range(__a ): _UpperCamelCase : str = current.next _UpperCamelCase : Any = data def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> None: self.insert_nth(len(self ) , __a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any ) -> None: self.insert_nth(0 , __a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : int , __a : Any ) -> None: if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) _UpperCamelCase : Any = Node(__a ) if self.head is None: _UpperCamelCase : int = new_node elif index == 0: _UpperCamelCase : List[str] = self.head # link new_node to head _UpperCamelCase : List[Any] = new_node else: _UpperCamelCase : List[str] = self.head for _ in range(index - 1 ): _UpperCamelCase : List[Any] = temp.next _UpperCamelCase : Any = temp.next _UpperCamelCase : List[Any] = new_node def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: # print every node data print(self ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: return self.delete_nth(0 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) _UpperCamelCase : str = self.head # default first node if index == 0: _UpperCamelCase : Dict = self.head.next else: _UpperCamelCase : Tuple = self.head for _ in range(index - 1 ): _UpperCamelCase : Tuple = temp.next _UpperCamelCase : Any = temp.next _UpperCamelCase : Optional[Any] = temp.next.next return delete_node.data def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> bool: return self.head is None def __SCREAMING_SNAKE_CASE ( self : Dict ) -> None: _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Dict = self.head while current: # Store the current node's next node. _UpperCamelCase : List[Any] = current.next # Make the current node's next point backwards _UpperCamelCase : Tuple = prev # Make the previous node be the current node _UpperCamelCase : Dict = current # Make the current node the next node (to progress iteration) _UpperCamelCase : Optional[int] = next_node # Return prev in order to put the head at the end _UpperCamelCase : int = prev def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(lowercase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowercase_ ) == i linked_list.insert_nth(lowercase_ ,i + 1 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowercase_ ) == 9 assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): _UpperCamelCase : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(-8 ,1 ) ) def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [ -9, 100, Node(77_345_112 ), "dlrow olleH", 7, 5_555, 0, -192.5_5555, "Hello, world!", 77.9, Node(10 ), None, None, 12.20, ] _UpperCamelCase : Union[str, Any] = LinkedList() for i in test_input: linked_list.insert_tail(lowercase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowercase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _UpperCamelCase : Optional[int] = linked_list.delete_head() assert result == -9 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _UpperCamelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _UpperCamelCase : int = linked_list.delete_nth(10 ) assert result is None assert ( str(lowercase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowercase_ ) assert ( str(lowercase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowercase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__ ( ) -> Tuple: """simple docstring""" from doctest import testmod testmod() _UpperCamelCase : Union[str, Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(lowercase_ ) print("\nReading/changing Node data using indexing:" ) print(F'''Element at Position 1: {linked_list[1]}''' ) _UpperCamelCase : Union[str, Any] = input("Enter New Value: " ).strip() print("New list:" ) print(lowercase_ ) print(F'''length of linked_list is : {len(lowercase_ )}''' ) if __name__ == "__main__": main()
366
"""simple docstring""" lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [False] * len(lowercase_ ) _UpperCamelCase : Dict = [s] _UpperCamelCase : List[str] = True while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase_ ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = [-1] * (len(lowercase_ )) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : int = float("Inf" ) _UpperCamelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : List[Any] = min(lowercase_ ,graph[parent[s]][s] ) _UpperCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _UpperCamelCase : Union[str, Any] = sink while v != source: _UpperCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Dict = parent[v] for i in range(len(lowercase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
310
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = "xlnet" SCREAMING_SNAKE_CASE__ :List[Any] = ["mems"] SCREAMING_SNAKE_CASE__ :Any = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __a : Union[str, Any]=3_2000 , __a : Optional[int]=1024 , __a : List[str]=24 , __a : Optional[int]=16 , __a : Tuple=4096 , __a : Optional[Any]="gelu" , __a : Tuple=True , __a : str="bi" , __a : str=0.02 , __a : Dict=1e-1_2 , __a : Optional[int]=0.1 , __a : List[Any]=512 , __a : Any=None , __a : List[str]=True , __a : str=False , __a : int=False , __a : Any=-1 , __a : int=False , __a : Dict="last" , __a : Tuple=True , __a : Any="tanh" , __a : Optional[int]=0.1 , __a : str=5 , __a : Tuple=5 , __a : Dict=5 , __a : Optional[Any]=1 , __a : List[str]=2 , **__a : str , ) -> Dict: _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Optional[int] = d_model _UpperCamelCase : int = n_layer _UpperCamelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _UpperCamelCase : str = d_model // n_head _UpperCamelCase : List[Any] = ff_activation _UpperCamelCase : str = d_inner _UpperCamelCase : Any = untie_r _UpperCamelCase : List[Any] = attn_type _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Dict = layer_norm_eps _UpperCamelCase : str = dropout _UpperCamelCase : int = mem_len _UpperCamelCase : Union[str, Any] = reuse_len _UpperCamelCase : int = bi_data _UpperCamelCase : List[str] = clamp_len _UpperCamelCase : List[Any] = same_length _UpperCamelCase : Union[str, Any] = summary_type _UpperCamelCase : str = summary_use_proj _UpperCamelCase : Any = summary_activation _UpperCamelCase : Dict = summary_last_dropout _UpperCamelCase : Optional[Any] = start_n_top _UpperCamelCase : Tuple = end_n_top _UpperCamelCase : Any = bos_token_id _UpperCamelCase : Union[str, Any] = pad_token_id _UpperCamelCase : int = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __a , ) _UpperCamelCase : List[str] = kwargs["use_cache"] _UpperCamelCase : str = use_mems_eval _UpperCamelCase : str = use_mems_train super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[str] ) -> Optional[Any]: # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
367
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : int = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : str = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : int = do_center_crop _UpperCamelCase : int = crop_size _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Dict = do_rescale _UpperCamelCase : Any = rescale_factor _UpperCamelCase : Any = offset _UpperCamelCase : Union[str, Any] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: _UpperCamelCase : str = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: _UpperCamelCase : Any = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> Optional[Any]: _UpperCamelCase : Any = image.astype(np.floataa ) if offset: _UpperCamelCase : Dict = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCamelCase : Optional[Any] = to_numpy_array(__a ) if do_resize: _UpperCamelCase : Any = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: _UpperCamelCase : Dict = self.center_crop(__a , size=__a ) if do_rescale: _UpperCamelCase : Union[str, Any] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: _UpperCamelCase : int = self.normalize(image=__a , mean=__a , std=__a ) _UpperCamelCase : str = to_channel_dimension_format(__a , __a ) return image def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: _UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = offset if offset is not None else self.offset _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(__a , param_name="crop_size" ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Union[str, Any] = make_batched(__a ) _UpperCamelCase : Optional[Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase : List[Any] = {"pixel_values": videos} return BatchFeature(data=__a , tensor_type=__a )
310
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
368
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCamelCase__ = True except ImportError: lowerCamelCase__ = False try: from torch.hub import _get_torch_home lowerCamelCase__ = _get_torch_home() except ImportError: lowerCamelCase__ = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) lowerCamelCase__ = os.path.join(torch_cache_home, "transformers") lowerCamelCase__ = "https://cdn.huggingface.co" lowerCamelCase__ = "https://s3.amazonaws.com/models.huggingface.co/bert" lowerCamelCase__ = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) lowerCamelCase__ = os.path.join(PATH, "config.yaml") lowerCamelCase__ = os.path.join(PATH, "attributes.txt") lowerCamelCase__ = os.path.join(PATH, "objects.txt") lowerCamelCase__ = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) lowerCamelCase__ = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) lowerCamelCase__ = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) lowerCamelCase__ = "pytorch_model.bin" lowerCamelCase__ = "config.yaml" def lowercase__ ( lowercase_=OBJECTS ,lowercase_=ATTRIBUTES ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _UpperCamelCase : Any = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = OrderedDict() with open(lowercase_ ,"rb" ) as f: _UpperCamelCase : List[str] = pkl.load(lowercase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _UpperCamelCase : List[str] = ckp.pop(lowercase_ ) if isinstance(lowercase_ ,np.ndarray ): _UpperCamelCase : List[Any] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ ,torch.tensor ), type(lowercase_ ) _UpperCamelCase : Optional[Any] = v return r class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = {} def __init__( self : str , __a : dict , __a : str = "root" , __a : Any=0 ) -> Any: _UpperCamelCase : Optional[Any] = name _UpperCamelCase : Optional[Any] = level _UpperCamelCase : Union[str, Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _UpperCamelCase : Optional[int] = copy.deepcopy(__a ) _UpperCamelCase : Dict = copy.deepcopy(__a ) if isinstance(__a , __a ): _UpperCamelCase : Union[str, Any] = Config(__a , name=__a , level=level + 1 ) _UpperCamelCase : Optional[Any] = v setattr(self , __a , __a ) _UpperCamelCase : Optional[Any] = d def __repr__( self : List[str] ) -> List[Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : Dict , __a : Union[str, Any] , __a : Optional[int] ) -> int: _UpperCamelCase : Any = val _UpperCamelCase : Optional[Any] = val _UpperCamelCase : Dict = key.split("." ) _UpperCamelCase : int = len(__a ) - 1 _UpperCamelCase : List[str] = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: _UpperCamelCase : str = val else: _UpperCamelCase : List[str] = pointer[l] def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._pointer def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Tuple , __a : List[str] ) -> Dict: with open(F'''{file_name}''' , "w" ) as stream: dump(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : Dict ) -> List[Any]: with open(F'''{file_name}''' , "w" ) as stream: json.dump(__a , __a ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Union[str, Any] ) -> Optional[int]: with open(__a ) as stream: _UpperCamelCase : int = load(__a , Loader=__a ) return data def __str__( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = " " if self._name != "root": _UpperCamelCase : Dict = F'''{t * (self._level-1)}{self._name}:\n''' else: _UpperCamelCase : Any = "" _UpperCamelCase : Any = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n''' _UpperCamelCase : Optional[Any] = level return r[:-1] @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict , __a : str , **__a : str ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : int = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __a : str , **__a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Tuple = kwargs.pop("cache_dir" , __a ) _UpperCamelCase : Optional[int] = kwargs.pop("force_download" , __a ) _UpperCamelCase : str = kwargs.pop("resume_download" , __a ) _UpperCamelCase : Any = kwargs.pop("proxies" , __a ) _UpperCamelCase : List[Any] = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): _UpperCamelCase : Optional[Any] = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): _UpperCamelCase : Optional[int] = pretrained_model_name_or_path else: _UpperCamelCase : int = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached _UpperCamelCase : Optional[int] = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _UpperCamelCase : List[Any] = Config.load_yaml(__a ) except EnvironmentError: _UpperCamelCase : Union[str, Any] = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : str = torch.load("dump.pt" ,map_location=in_tensor.device ) _UpperCamelCase : str = in_tensor.numpy() _UpperCamelCase : Union[str, Any] = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ), ( F'''{sum([1 for x in np.isclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Dict = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=True ) -> str: """simple docstring""" _UpperCamelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _UpperCamelCase : List[str] = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=0 ,lowercase_=None ,) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ ,lowercase_ ): ua += "; " + "; ".join("{}/{}".format(lowercase_ ,lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ ,lowercase_ ): ua += "; " + user_agent _UpperCamelCase : Any = {"user-agent": ua} if resume_size > 0: _UpperCamelCase : str = "bytes=%d-" % (resume_size,) _UpperCamelCase : str = requests.get(lowercase_ ,stream=lowercase_ ,proxies=lowercase_ ,headers=lowercase_ ) if response.status_code == 416: # Range not satisfiable return _UpperCamelCase : List[str] = response.headers.get("Content-Length" ) _UpperCamelCase : Union[str, Any] = resume_size + int(lowercase_ ) if content_length is not None else None _UpperCamelCase : Optional[int] = tqdm( unit="B" ,unit_scale=lowercase_ ,total=lowercase_ ,initial=lowercase_ ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=10 ,lowercase_=False ,lowercase_=None ,lowercase_=False ,) -> Tuple: """simple docstring""" if cache_dir is None: _UpperCamelCase : str = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Dict = str(lowercase_ ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) _UpperCamelCase : Dict = None if not local_files_only: try: _UpperCamelCase : List[Any] = requests.head(lowercase_ ,allow_redirects=lowercase_ ,proxies=lowercase_ ,timeout=lowercase_ ) if response.status_code == 200: _UpperCamelCase : str = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _UpperCamelCase : int = url_to_filename(lowercase_ ,lowercase_ ) # get cache path to put the file _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: _UpperCamelCase : Optional[int] = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _UpperCamelCase : Dict = cache_path + ".lock" with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _UpperCamelCase : List[str] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(lowercase_ ,"a+b" ) as f: yield f _UpperCamelCase : Union[str, Any] = _resumable_file_manager if os.path.exists(lowercase_ ): _UpperCamelCase : str = os.stat(lowercase_ ).st_size else: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Tuple = partial(tempfile.NamedTemporaryFile ,dir=lowercase_ ,delete=lowercase_ ) _UpperCamelCase : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,lowercase_ ,temp_file.name ,) http_get( lowercase_ ,lowercase_ ,proxies=lowercase_ ,resume_size=lowercase_ ,user_agent=lowercase_ ,) os.replace(temp_file.name ,lowercase_ ) _UpperCamelCase : Optional[int] = {"url": url, "etag": etag} _UpperCamelCase : List[str] = cache_path + ".json" with open(lowercase_ ,"w" ) as meta_file: json.dump(lowercase_ ,lowercase_ ) return cache_path def lowercase__ ( lowercase_ ,lowercase_=None ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = url.encode("utf-8" ) _UpperCamelCase : List[str] = shaaaa(lowercase_ ) _UpperCamelCase : List[str] = url_hash.hexdigest() if etag: _UpperCamelCase : Optional[Any] = etag.encode("utf-8" ) _UpperCamelCase : Optional[Any] = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=False ,lowercase_=False ,) -> str: """simple docstring""" if cache_dir is None: _UpperCamelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) _UpperCamelCase : Union[str, Any] = get_from_cache( lowercase_ ,cache_dir=lowercase_ ,force_download=lowercase_ ,proxies=lowercase_ ,resume_download=lowercase_ ,user_agent=lowercase_ ,local_files_only=lowercase_ ,) elif os.path.exists(lowercase_ ): # File, and it exists. _UpperCamelCase : List[str] = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(lowercase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _UpperCamelCase, _UpperCamelCase : Any = os.path.split(lowercase_ ) _UpperCamelCase : Optional[int] = output_file.replace("." ,"-" ) + "-extracted" _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _UpperCamelCase : Optional[int] = output_path + ".lock" with FileLock(lowercase_ ): shutil.rmtree(lowercase_ ,ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ ,"r" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): _UpperCamelCase : int = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(lowercase_ ) ) return output_path_extracted return output_path def lowercase__ ( lowercase_ ,lowercase_="," ) -> Optional[int]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: _UpperCamelCase : Tuple = eval(f.read() ) else: _UpperCamelCase : str = requests.get(lowercase_ ) try: _UpperCamelCase : Optional[int] = requests.json() except Exception: _UpperCamelCase : Union[str, Any] = req.content.decode() assert data is not None, "could not connect" try: _UpperCamelCase : List[Any] = eval(lowercase_ ) except Exception: _UpperCamelCase : int = data.split("\n" ) req.close() return data def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[Any] = requests.get(lowercase_ ) _UpperCamelCase : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ ,"rb" ) as stream: _UpperCamelCase : Union[str, Any] = pkl.load(lowercase_ ) _UpperCamelCase : Union[str, Any] = weights.pop("model" ) _UpperCamelCase : Optional[int] = {} for k, v in model.items(): _UpperCamelCase : str = torch.from_numpy(lowercase_ ) if "running_var" in k: _UpperCamelCase : List[Any] = torch.tensor([0] ) _UpperCamelCase : str = k.replace("running_var" ,"num_batches_tracked" ) _UpperCamelCase : Any = zero return new def lowercase__ ( ) -> Dict: """simple docstring""" print(F'''{os.path.abspath(os.path.join(lowercase_ ,os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( lowercase_ ,lowercase_="RGB" ) -> int: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): _UpperCamelCase : Optional[Any] = cva.imread(lowercase_ ) else: _UpperCamelCase : Optional[int] = get_image_from_url(lowercase_ ) assert img is not None, F'''could not connect to: {im}''' _UpperCamelCase : Optional[int] = cva.cvtColor(lowercase_ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": _UpperCamelCase : List[Any] = img[:, :, ::-1] return img def lowercase__ ( lowercase_ ,lowercase_=1 ) -> List[Any]: """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(lowercase_ ) ,lowercase_ ))
310
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" _UpperCamelCase : Optional[int] = str(lowercase_ ) return n == n[::-1] def lowercase__ ( lowercase_ = 1_000_000 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = 0 for i in range(1 ,lowercase_ ): if is_palindrome(lowercase_ ) and is_palindrome(bin(lowercase_ ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
369
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : int = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : str = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : int = do_center_crop _UpperCamelCase : int = crop_size _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Dict = do_rescale _UpperCamelCase : Any = rescale_factor _UpperCamelCase : Any = offset _UpperCamelCase : Union[str, Any] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: _UpperCamelCase : str = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: _UpperCamelCase : Any = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> Optional[Any]: _UpperCamelCase : Any = image.astype(np.floataa ) if offset: _UpperCamelCase : Dict = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCamelCase : Optional[Any] = to_numpy_array(__a ) if do_resize: _UpperCamelCase : Any = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: _UpperCamelCase : Dict = self.center_crop(__a , size=__a ) if do_rescale: _UpperCamelCase : Union[str, Any] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: _UpperCamelCase : int = self.normalize(image=__a , mean=__a , std=__a ) _UpperCamelCase : str = to_channel_dimension_format(__a , __a ) return image def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: _UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = offset if offset is not None else self.offset _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(__a , param_name="crop_size" ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Union[str, Any] = make_batched(__a ) _UpperCamelCase : Optional[Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase : List[Any] = {"pixel_values": videos} return BatchFeature(data=__a , tensor_type=__a )
370
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=1e-12 ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(lowercase_ ,axis=1 ) ,a_min=lowercase_ ) ).T _UpperCamelCase : int = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(lowercase_ ,axis=1 ) ,a_min=lowercase_ ) ).T return jnp.matmul(lowercase_ ,norm_emb_a.T ) class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :CLIPConfig SCREAMING_SNAKE_CASE__ :jnp.dtype = jnp.floataa def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Any = FlaxCLIPVisionModule(self.config.vision_config ) _UpperCamelCase : Dict = nn.Dense(self.config.projection_dim , use_bias=__a , dtype=self.dtype ) _UpperCamelCase : Tuple = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) _UpperCamelCase : Tuple = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _UpperCamelCase : Union[str, Any] = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) _UpperCamelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self : Tuple , __a : str ) -> str: _UpperCamelCase : Union[str, Any] = self.vision_model(__a )[1] _UpperCamelCase : Optional[int] = self.visual_projection(__a ) _UpperCamelCase : Any = jax_cosine_distance(__a , self.special_care_embeds ) _UpperCamelCase : List[str] = jax_cosine_distance(__a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _UpperCamelCase : int = 0.0 _UpperCamelCase : str = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _UpperCamelCase : Any = jnp.round(__a , 3 ) _UpperCamelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__a ) # Use a lower threshold if an image has any special care concept _UpperCamelCase : Optional[int] = is_special_care * 0.01 _UpperCamelCase : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _UpperCamelCase : List[str] = jnp.round(__a , 3 ) _UpperCamelCase : Union[str, Any] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = CLIPConfig SCREAMING_SNAKE_CASE__ :Dict = "clip_input" SCREAMING_SNAKE_CASE__ :Union[str, Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Dict , __a : CLIPConfig , __a : Optional[Tuple] = None , __a : int = 0 , __a : jnp.dtype = jnp.floataa , __a : bool = True , **__a : Optional[int] , ) -> Tuple: if input_shape is None: _UpperCamelCase : Optional[Any] = (1, 224, 224, 3) _UpperCamelCase : List[str] = self.module_class(config=__a , dtype=__a , **__a ) super().__init__(__a , __a , input_shape=__a , seed=__a , dtype=__a , _do_init=_do_init ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : jax.random.KeyArray , __a : Tuple , __a : FrozenDict = None ) -> FrozenDict: # init input tensor _UpperCamelCase : Optional[int] = jax.random.normal(__a , __a ) _UpperCamelCase : Tuple = jax.random.split(__a ) _UpperCamelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} _UpperCamelCase : Optional[int] = self.module.init(__a , __a )["params"] return random_params def __call__( self : Tuple , __a : List[Any] , __a : dict = None , ) -> str: _UpperCamelCase : Tuple = jnp.transpose(__a , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__a , dtype=jnp.floataa ) , rngs={} , )
371
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
0
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowercase : str = get_logger(__name__) lowercase : List[Any] = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class A : @add_start_docstrings(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class A : @add_start_docstrings(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class A ( __snake_case ): @add_start_docstrings(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" for processor in self: A : List[Any] = inspect.signature(processor.__call__ ).parameters if len(SCREAMING_SNAKE_CASE ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys() )} for ' F'{processor.__class__} are passed to the logits processor.' ) A : List[str] = processor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: A : Union[str, Any] = processor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' ) A : Any = temperature def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" A : Union[str, Any] = scores / self.temperature return scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -float('''Inf''' ) , SCREAMING_SNAKE_CASE = 1 ) -> Union[str, Any]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) A : Tuple = top_p A : Tuple = filter_value A : str = min_tokens_to_keep def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" A, A : List[Any] = lax.top_k(SCREAMING_SNAKE_CASE , scores.shape[-1] ) A : Dict = jnp.full_like(SCREAMING_SNAKE_CASE , self.filter_value ) A : Optional[int] = jax.nn.softmax(SCREAMING_SNAKE_CASE , axis=-1 ).cumsum(axis=-1 ) A : Optional[int] = cumulative_probs < self.top_p # include the token that is higher than top_p as well A : Tuple = jnp.roll(SCREAMING_SNAKE_CASE , 1 ) score_mask |= score_mask.at[:, 0].set(SCREAMING_SNAKE_CASE ) # min tokens to keep A : Optional[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(SCREAMING_SNAKE_CASE ) A : str = jnp.where(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : int = jax.lax.sort_key_val(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[-1] return next_scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -float('''Inf''' ) , SCREAMING_SNAKE_CASE = 1 ) -> Any: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' ) A : Any = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Dict = filter_value def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" A, A : Optional[int] = scores.shape A : Union[str, Any] = jnp.full(batch_size * vocab_size , self.filter_value ) A : str = min(self.top_k , scores.shape[-1] ) # Safety check A, A : Any = lax.top_k(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = jnp.broadcast_to((jnp.arange(SCREAMING_SNAKE_CASE ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A : Any = topk_scores.flatten() A : Tuple = topk_indices.flatten() + shift A : str = next_scores_flat.at[topk_indices_flat].set(SCREAMING_SNAKE_CASE ) A : str = next_scores_flat.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return next_scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : Any = bos_token_id def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" A : Optional[int] = jnp.full(scores.shape , -float('''inf''' ) ) A : Dict = 1 - jnp.bool_(cur_len - 1 ) A : List[Any] = jnp.where(SCREAMING_SNAKE_CASE , new_scores.at[:, self.bos_token_id].set(0 ) , SCREAMING_SNAKE_CASE ) return scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : List[str] = max_length A : Optional[Any] = eos_token_id def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" A : List[Any] = jnp.full(scores.shape , -float('''inf''' ) ) A : Any = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A : Dict = jnp.where(SCREAMING_SNAKE_CASE , new_scores.at[:, self.eos_token_id].set(0 ) , SCREAMING_SNAKE_CASE ) return scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) A : List[Any] = min_length A : List[Any] = eos_token_id def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" A : Union[str, Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A : Union[str, Any] = jnp.where(SCREAMING_SNAKE_CASE , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , SCREAMING_SNAKE_CASE ) return scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Tuple = list(SCREAMING_SNAKE_CASE ) A : Dict = begin_index def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : List[str] = 1 - jnp.bool_(cur_len - self.begin_index ) A : List[str] = jnp.where(SCREAMING_SNAKE_CASE , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , SCREAMING_SNAKE_CASE ) return scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Tuple = list(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" A : Union[str, Any] = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Optional[Any] = dict(SCREAMING_SNAKE_CASE ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A : int = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A : List[Any] = force_token_array.at[index].set(SCREAMING_SNAKE_CASE ) A : List[str] = jnp.intaa(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> jnp.ndarray: """simple docstring""" def _force_token(SCREAMING_SNAKE_CASE ): A : List[str] = scores.shape[0] A : int = self.force_token_array[generation_idx] A : Union[str, Any] = jnp.ones_like(SCREAMING_SNAKE_CASE , dtype=scores.dtype ) * -float('''inf''' ) A : Optional[int] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A : List[str] = lax.dynamic_update_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (0, current_token) ) return new_scores A : Dict = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(SCREAMING_SNAKE_CASE ) , lambda: scores , ) , ) return scores class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : int = generate_config.eos_token_id A : Union[str, Any] = generate_config.no_timestamps_token_id A : Any = generate_config.no_timestamps_token_id + 1 A : Tuple = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(SCREAMING_SNAKE_CASE , '''max_initial_timestamp_index''' ): A : List[str] = generate_config.max_initial_timestamp_index else: A : int = model_config.vocab_size if self.max_initial_timestamp_index is None: A : int = model_config.vocab_size def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : List[str] = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Union[str, Any] = jnp.where((cur_len - self.begin_index) >= 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , SCREAMING_SNAKE_CASE , ) A : Optional[int] = jnp.where((cur_len - self.begin_index) < 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return jnp.where( SCREAMING_SNAKE_CASE , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , SCREAMING_SNAKE_CASE , ) A : Tuple = jax.vmap(SCREAMING_SNAKE_CASE )(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Any = jnp.where(cur_len == self.begin_index , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Dict = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , SCREAMING_SNAKE_CASE , ) A : Dict = self.timestamp_begin + self.max_initial_timestamp_index A : Optional[int] = jnp.where( SCREAMING_SNAKE_CASE , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , SCREAMING_SNAKE_CASE , ) # if sum of probability over timestamps is above any other token, sample timestamp A : List[Any] = jax.nn.log_softmax(SCREAMING_SNAKE_CASE , axis=-1 ) def handle_cumulative_probs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Optional[Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A : int = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , SCREAMING_SNAKE_CASE , ) A : List[Any] = jax.vmap(SCREAMING_SNAKE_CASE )(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return scores
311
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase : str = datasets.utils.logging.get_logger(__name__) lowercase : Union[str, Any] = ['names', 'prefix'] lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowercase : List[Any] = ['encoding_errors', 'on_bad_lines'] lowercase : Any = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): __magic_name__ = "," __magic_name__ = None __magic_name__ = "infer" __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = "." __magic_name__ = None __magic_name__ = '"' __magic_name__ = 0 __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = None __magic_name__ = 10000 __magic_name__ = None __magic_name__ = "strict" __magic_name__ = "error" __magic_name__ = None def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" if self.delimiter is not None: A : Optional[Any] = self.delimiter if self.column_names is not None: A : Optional[Any] = self.column_names @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : str = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): __magic_name__ = CsvConfig def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ): A : str = data_files if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : int = [files] A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A : Tuple = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[str] = [files] A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table: """simple docstring""" if self.config.features is not None: A : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return pa_table def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ): A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ): A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' ) raise
311
1
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowercase : Optional[Any] = datasets.load_iris() lowercase : Optional[Any] = np.array(data['data']) lowercase : Optional[Any] = np.array(data['target']) lowercase : Optional[int] = data['target_names'] lowercase , lowercase , lowercase , lowercase : List[Any] = train_test_split(X, y) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' return np.linalg.norm(np.array(snake_case__ ) - np.array(snake_case__ ) ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=5 ): '''simple docstring''' A : Dict = zip(snake_case__ , snake_case__ ) # List of distances of all points from the point to be classified A : Any = [] for data_point in data: A : Any = euclidean_distance(data_point[0] , snake_case__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A : str = [i[1] for i in sorted(snake_case__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A : List[Any] = Counter(snake_case__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
311
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : int = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class A ( __snake_case ): __magic_name__ = '''sew''' def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="group" , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) A : Optional[Any] = hidden_size A : Any = feat_extract_norm A : Optional[int] = feat_extract_activation A : Tuple = list(SCREAMING_SNAKE_CASE ) A : List[str] = list(SCREAMING_SNAKE_CASE ) A : List[str] = list(SCREAMING_SNAKE_CASE ) A : int = conv_bias A : List[Any] = num_conv_pos_embeddings A : Tuple = num_conv_pos_embedding_groups A : int = len(self.conv_dim ) A : Dict = num_hidden_layers A : Optional[int] = intermediate_size A : Any = squeeze_factor A : int = hidden_act A : str = num_attention_heads A : Dict = hidden_dropout A : Optional[Any] = attention_dropout A : List[str] = activation_dropout A : Union[str, Any] = feat_proj_dropout A : Union[str, Any] = final_dropout A : int = layerdrop A : Optional[Any] = layer_norm_eps A : Any = initializer_range A : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A : Optional[Any] = apply_spec_augment A : Optional[Any] = mask_time_prob A : Union[str, Any] = mask_time_length A : Optional[Any] = mask_time_min_masks A : str = mask_feature_prob A : Tuple = mask_feature_length A : Any = mask_feature_min_masks # ctc loss A : List[Any] = ctc_loss_reduction A : Dict = ctc_zero_infinity # sequence classification A : int = use_weighted_layer_sum A : Optional[int] = classifier_proj_size @property def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
311
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : str = len(snake_case__ ) # We need to create solution object to save path. A : Optional[int] = [[0 for _ in range(snake_case__ )] for _ in range(snake_case__ )] A : str = run_maze(snake_case__ , 0 , 0 , snake_case__ ) if solved: print('''\n'''.join(str(snake_case__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[int] = len(snake_case__ ) # Final check point. if i == j == (size - 1): A : List[Any] = 1 return True A : Any = (not i < 0) and (not j < 0) # Check lower bounds A : Optional[int] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A : str = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A : Optional[int] = 1 # check for directions if ( run_maze(snake_case__ , i + 1 , snake_case__ , snake_case__ ) or run_maze(snake_case__ , snake_case__ , j + 1 , snake_case__ ) or run_maze(snake_case__ , i - 1 , snake_case__ , snake_case__ ) or run_maze(snake_case__ , snake_case__ , j - 1 , snake_case__ ) ): return True A : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
311
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = SwinConfig() A : List[Any] = swin_name.split('''_''' ) A : Tuple = name_split[1] A : Union[str, Any] = int(name_split[4] ) A : str = int(name_split[3][-1] ) if model_size == "tiny": A : Optional[int] = 96 A : Optional[Any] = (2, 2, 6, 2) A : Any = (3, 6, 12, 24) elif model_size == "small": A : Optional[int] = 96 A : str = (2, 2, 18, 2) A : Tuple = (3, 6, 12, 24) elif model_size == "base": A : int = 128 A : Optional[Any] = (2, 2, 18, 2) A : List[str] = (4, 8, 16, 32) else: A : Dict = 192 A : Optional[Any] = (2, 2, 18, 2) A : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: A : Dict = 2_1841 else: A : str = 1000 A : List[str] = '''huggingface/label-files''' A : Any = '''imagenet-1k-id2label.json''' A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) A : str = {int(snake_case__ ): v for k, v in idalabel.items()} A : Tuple = idalabel A : Tuple = {v: k for k, v in idalabel.items()} A : Tuple = img_size A : Dict = num_classes A : Optional[Any] = embed_dim A : str = depths A : str = num_heads A : Optional[int] = window_size return config def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if "patch_embed.proj" in name: A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: A : Optional[int] = '''encoder.''' + name if "attn.proj" in name: A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A : Any = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A : str = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": A : Tuple = '''layernorm.weight''' if name == "norm.bias": A : Tuple = '''layernorm.bias''' if "head" in name: A : Any = name.replace('''head''' , '''classifier''' ) else: A : List[Any] = '''swin.''' + name return name def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A : Dict = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A : Dict = key.split('''.''' ) A : Optional[int] = int(key_split[1] ) A : List[str] = int(key_split[3] ) A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A : Any = val[:dim, :] A : Dict = val[ dim : dim * 2, : ] A : List[str] = val[-dim:, :] else: A : Any = val[ :dim ] A : Optional[int] = val[ dim : dim * 2 ] A : Any = val[ -dim: ] else: A : str = val return orig_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A : Optional[Any] = get_swin_config(snake_case__ ) A : Optional[int] = SwinForImageClassification(snake_case__ ) model.eval() A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' ) A : Any = timm_model(inputs['''pixel_values'''] ) A : Optional[Any] = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase : int = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
311
1
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class A ( __snake_case ): __magic_name__ = '''M-CLIP''' def __init__( self , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=768 , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Tuple = transformerDimSize A : Optional[Any] = imageDimSize super().__init__(**SCREAMING_SNAKE_CASE ) class A ( __snake_case ): __magic_name__ = MCLIPConfig def __init__( self , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : List[Any] = XLMRobertaModel(SCREAMING_SNAKE_CASE ) A : str = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Optional[Any] = self.transformer(input_ids=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(SCREAMING_SNAKE_CASE ), embs
311
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Tuple = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class A ( __snake_case ): __magic_name__ = '''pix2struct_text_model''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" A : str = vocab_size A : List[str] = hidden_size A : List[Any] = d_kv A : Optional[Any] = d_ff A : Dict = num_layers A : Dict = num_heads A : Optional[int] = relative_attention_num_buckets A : Optional[Any] = relative_attention_max_distance A : Dict = dropout_rate A : Dict = layer_norm_epsilon A : Tuple = initializer_factor A : Union[str, Any] = use_cache A : int = eos_token_id A : List[str] = decoder_start_token_id # for backwards compatibility A : int = dense_act_fn super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A : Union[str, Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A ( __snake_case ): __magic_name__ = '''pix2struct_vision_model''' def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : List[str] = hidden_size A : Optional[Any] = patch_embed_hidden_size A : Union[str, Any] = d_ff A : Dict = dropout_rate A : str = num_hidden_layers A : Dict = num_attention_heads A : Tuple = initializer_range A : List[str] = initializer_factor A : Union[str, Any] = attention_dropout A : Tuple = layer_norm_eps A : int = dense_act_fn A : Optional[int] = seq_len A : Tuple = relative_attention_num_buckets A : str = relative_attention_max_distance A : Optional[Any] = d_kv @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A ( __snake_case ): __magic_name__ = '''pix2struct''' __magic_name__ = True def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text_config is None: A : Dict = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: A : str = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE ) A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE ) A : Any = self.text_config.decoder_start_token_id A : Any = self.text_config.pad_token_id A : Dict = self.text_config.eos_token_id A : Union[str, Any] = initializer_factor A : Tuple = initializer_range A : Optional[Any] = self.initializer_range A : int = self.initializer_range A : Tuple = is_vqa @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Tuple = copy.deepcopy(self.__dict__ ) A : Dict = self.text_config.to_dict() A : int = self.vision_config.to_dict() A : Any = self.__class__.model_type return output
311
1
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class A ( __snake_case ): __magic_name__ = (CMStochasticIterativeScheduler,) __magic_name__ = 10 def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : Optional[Any] = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[Any] = 10 A : Union[str, Any] = self.get_scheduler_config() A : Optional[Any] = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler.timesteps[0] A : List[Any] = scheduler.timesteps[1] A : List[str] = self.dummy_sample A : List[str] = 0.1 * sample A : List[str] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample A : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : List[Any] = self.scheduler_classes[0] A : int = self.get_scheduler_config() A : int = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) A : int = scheduler.timesteps A : int = torch.manual_seed(0 ) A : Optional[int] = self.dummy_model() A : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE ): # 1. scale model input A : int = scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # 2. predict noise residual A : Tuple = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # 3. predict previous sample x_t-1 A : Tuple = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample A : Any = pred_prev_sample A : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) ) A : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = self.scheduler_classes[0] A : Tuple = self.get_scheduler_config() A : int = scheduler_class(**SCREAMING_SNAKE_CASE ) A : int = [106, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE ) A : str = scheduler.timesteps A : Any = torch.manual_seed(0 ) A : Optional[Any] = self.dummy_model() A : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A : List[str] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # 2. predict noise residual A : Tuple = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # 3. predict previous sample x_t-1 A : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = pred_prev_sample A : Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE ) ) A : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = self.scheduler_classes[0] A : Any = self.get_scheduler_config() A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) A : str = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Tuple = self.scheduler_classes[0] A : Dict = self.get_scheduler_config() A : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Optional[int] = [39, 30, 12, 1, 0] A : Optional[int] = len(SCREAMING_SNAKE_CASE ) with self.assertRaises(SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : List[str] = self.scheduler_classes[0] A : List[str] = self.get_scheduler_config() A : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE )
311
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[str] = 2 A : Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case__ ) if n > 1: factors.append(snake_case__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
311
1
'''simple docstring''' import math def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[Any] = 0 A : Union[str, Any] = 0 while num > 0: A : int = num % 8 A : Optional[Any] = octal + (remainder * math.floor(math.pow(10 , snake_case__ ) )) counter += 1 A : Any = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'0o{int(snake_case__ )}' def lowerCAmelCase_ ( ): '''simple docstring''' print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(216 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(512 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
311
'''simple docstring''' # Function to print upper half of diamond (pyramid) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for i in range(0 , snake_case__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for i in range(snake_case__ , 0 , -1 ): for _ in range(snake_case__ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(snake_case__ ) # upper half reverse_floyd(snake_case__ ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') lowercase : List[str] = 1 while K: lowercase : List[Any] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) lowercase : Any = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
311
1
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Tuple = np.inf def set_batch_size(snake_case__ ) -> None: nonlocal batch_size if isinstance(snake_case__ , snake_case__ ): A : Any = min(snake_case__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(snake_case__ , snake_case__ ): A : Any = min(snake_case__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(snake_case__ , snake_case__ ) and feature.dtype == "binary": A : List[str] = min(snake_case__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(snake_case__ , snake_case__ ) return None if batch_size is np.inf else batch_size class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE , streaming=SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) A : Optional[int] = path_or_paths if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A : List[Any] = Parquet( cache_dir=SCREAMING_SNAKE_CASE , data_files=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , hash=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" if self.streaming: A : Optional[int] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A : Any = None A : Optional[Any] = None A : Tuple = None A : int = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE , download_mode=SCREAMING_SNAKE_CASE , verification_mode=SCREAMING_SNAKE_CASE , base_path=SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : str = dataset A : Optional[int] = path_or_buf A : Any = batch_size or get_writer_batch_size(dataset.features ) A : Union[str, Any] = parquet_writer_kwargs def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : int = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A : Dict = self._write(file_obj=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A : Dict = self._write(file_obj=self.path_or_buf , batch_size=SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Any = 0 A : Optional[Any] = parquet_writer_kwargs.pop('''path_or_buf''' , SCREAMING_SNAKE_CASE ) A : str = self.dataset.features.arrow_schema A : List[Any] = pq.ParquetWriter(SCREAMING_SNAKE_CASE , schema=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A : List[Any] = query_table( table=self.dataset._data , key=slice(SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
311
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" A : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , ) A : Optional[Any] = image.to(self.device ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
311
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase : Optional[Any] = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
311
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str: """simple docstring""" A : Any = parent A : List[Any] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : int = use_input_mask A : Union[str, Any] = vocab_size A : List[Any] = hidden_size A : List[Any] = num_hidden_layers A : Optional[int] = num_attention_heads A : str = intermediate_size A : Tuple = hidden_act A : Union[str, Any] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : int = max_position_embeddings A : Optional[int] = initializer_range A : Any = use_labels A : Optional[int] = scope def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[int] = None if self.use_input_mask: A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Dict = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ) : Any = self.prepare_config_and_inputs() A : Tuple = True A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) A : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" A : List[str] = True A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , ) A : List[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Optional[Any] = True A : Tuple = True A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval() # first forward pass A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , ) A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] A : Any = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A, A, A : Optional[int] = self.prepare_config_and_inputs() A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __magic_name__ = (BertGenerationDecoder,) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[str] = BertGenerationEncoderTester(self ) A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs() A : str = '''bert''' self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() A : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Dict = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Dict = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Any = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
1
'''simple docstring''' import datasets lowercase : Tuple = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' lowercase : Union[str, Any] = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' lowercase : Dict = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}
311
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ ) A : Any = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ ) class A ( __snake_case ): __magic_name__ = '''sigmoid''' __magic_name__ = '''softmax''' __magic_name__ = '''none''' @add_end_docstrings( __snake_case , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class A ( __snake_case ): __magic_name__ = False __magic_name__ = ClassificationFunction.NONE def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Optional[Any] = tokenizer_kwargs A : int = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: A : int = self.model.config.return_all_scores if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None: A : Union[str, Any] = top_k A : Dict = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , ) if return_all_scores: A : Optional[int] = None else: A : Dict = 1 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A : int = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A : Any = '''top_k''' not in kwargs if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: """simple docstring""" A : List[Any] = self.framework if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.model(**SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A : Optional[int] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A : Any = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: A : Optional[int] = self.model.config.function_to_apply else: A : Optional[int] = ClassificationFunction.NONE A : Any = model_outputs['''logits'''][0] A : List[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A : int = sigmoid(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: A : Any = softmax(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: A : int = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A : int = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE ) if top_k is not None: A : Union[str, Any] = dict_scores[:top_k] return dict_scores
311
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase : List[str] = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
311
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase_ ( snake_case__ = "laptop" ): '''simple docstring''' A : Tuple = F'https://www.amazon.in/laptop/s?k={product}' A : Optional[int] = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text ) # Initialize a Pandas dataframe with the column titles A : List[str] = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: A : Optional[Any] = item.ha.text A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: A : Optional[int] = '''Not available''' try: A : str = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: A : List[Any] = '''''' try: A : Dict = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: A : str = float('''nan''' ) except AttributeError: pass A : Union[str, Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A : List[str] = ''' ''' A : Optional[Any] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase : Union[str, Any] = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
311
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase : List[str] = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowerCAmelCase_ ( snake_case__ = "mumbai" ): '''simple docstring''' A : Optional[int] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): A : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() A : Union[str, Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
311
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[int] = x A : str = y for step in range(snake_case__ ): # noqa: B007 A : str = a * a - b * b + x A : List[str] = 2 * a * b + y A : str = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) ) def lowerCAmelCase_ ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ): '''simple docstring''' A : List[Any] = Image.new('''RGB''' , (image_width, image_height) ) A : Tuple = img.load() # loop through the image-coordinates for image_x in range(snake_case__ ): for image_y in range(snake_case__ ): # determine the figure-coordinates based on the image-coordinates A : Optional[int] = figure_width / image_width * image_height A : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width A : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height A : str = get_distance(snake_case__ , snake_case__ , snake_case__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: A : str = get_color_coded_rgb(snake_case__ ) else: A : List[Any] = get_black_and_white_rgb(snake_case__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
311
1
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowercase : Union[str, Any] = 'bert-base-cased' lowercase : int = 'fp16' lowercase : List[Any] = 'bf16' lowercase : Optional[int] = [FPaa, BFaa] @require_fsdp @require_cuda class A ( __snake_case ): def __lowerCAmelCase ( self ) -> str: """simple docstring""" super().setUp() A : List[Any] = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(SCREAMING_SNAKE_CASE ): A : List[Any] = self.dist_env.copy() A : Any = F'{i + 1}' A : List[Any] = strategy with mockenv_context(**SCREAMING_SNAKE_CASE ): A : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(SCREAMING_SNAKE_CASE ): A : Optional[Any] = self.dist_env.copy() A : List[Any] = prefetch_policy with mockenv_context(**SCREAMING_SNAKE_CASE ): A : Union[str, Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(SCREAMING_SNAKE_CASE ): A : Optional[Any] = self.dist_env.copy() A : Tuple = state_dict_type with mockenv_context(**SCREAMING_SNAKE_CASE ): A : Dict = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[int] = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) for policy in FSDP_AUTO_WRAP_POLICY: A : Tuple = self.dist_env.copy() A : List[Any] = policy if policy == "TRANSFORMER_BASED_WRAP": A : Dict = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": A : Any = '''2000''' with mockenv_context(**SCREAMING_SNAKE_CASE ): A : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(SCREAMING_SNAKE_CASE ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) A : Any = self.dist_env.copy() A : List[Any] = '''TRANSFORMER_BASED_WRAP''' A : Optional[int] = '''T5Layer''' with mockenv_context(**SCREAMING_SNAKE_CASE ): A : List[Any] = FullyShardedDataParallelPlugin() with self.assertRaises(SCREAMING_SNAKE_CASE ) as cm: fsdp_plugin.set_auto_wrap_policy(SCREAMING_SNAKE_CASE ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) A : int = self.dist_env.copy() A : Any = '''SIZE_BASED_WRAP''' A : Optional[int] = '''0''' with mockenv_context(**SCREAMING_SNAKE_CASE ): A : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(SCREAMING_SNAKE_CASE ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: A : Optional[int] = self.dist_env.copy() A : Any = mp_dtype with mockenv_context(**SCREAMING_SNAKE_CASE ): A : List[Any] = Accelerator() if mp_dtype == "fp16": A : int = torch.floataa elif mp_dtype == "bf16": A : int = torch.bfloataa A : str = MixedPrecision(param_dtype=SCREAMING_SNAKE_CASE , reduce_dtype=SCREAMING_SNAKE_CASE , buffer_dtype=SCREAMING_SNAKE_CASE ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , SCREAMING_SNAKE_CASE ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , SCREAMING_SNAKE_CASE ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: A : List[str] = self.dist_env.copy() A : Dict = str(SCREAMING_SNAKE_CASE ).lower() with mockenv_context(**SCREAMING_SNAKE_CASE ): A : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=SCREAMING_SNAKE_CASE ) ) @require_fsdp @require_multi_gpu @slow class A ( __snake_case ): def __lowerCAmelCase ( self ) -> int: """simple docstring""" super().setUp() A : Tuple = 0.82 A : Optional[int] = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] A : str = { '''multi_gpu_fp16''': 3200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } A : Union[str, Any] = 160 A : Any = 160 A : Union[str, Any] = inspect.getfile(accelerate.test_utils ) A : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : List[Any] = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) A : Any = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: A : str = cmd.copy() for i, strategy in enumerate(SCREAMING_SNAKE_CASE ): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Any = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) A : Dict = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(SCREAMING_SNAKE_CASE ): A : List[str] = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue A : int = len(SCREAMING_SNAKE_CASE ) for state_dict_type in FSDP_STATE_DICT_TYPE: A : Optional[int] = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) A : List[str] = cmd_config[:-1] A : Dict = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Tuple = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) A : Any = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): A : Tuple = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(SCREAMING_SNAKE_CASE ): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() )
311
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowercase : Optional[int] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowercase : Optional[Any] = parser.parse_args() if args.check_lib: lowercase : List[Any] = importlib.import_module('transformers') lowercase : str = Path(transformers_module.__file__).parent else: lowercase : List[Any] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
311
1
'''simple docstring''' import unittest import numpy as np def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ): '''simple docstring''' A : List[Any] = np.shape(snake_case__ ) A : Optional[Any] = np.shape(snake_case__ ) A : Any = np.shape(snake_case__ ) if shape_a[0] != shape_b[0]: A : Tuple = ( '''Expected the same number of rows for A and B. ''' F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(snake_case__ ) if shape_b[1] != shape_c[1]: A : List[Any] = ( '''Expected the same number of columns for B and C. ''' F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(snake_case__ ) A : str = pseudo_inv if a_inv is None: try: A : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> None: """simple docstring""" A : Optional[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A : Any = np.array([[0, 3], [3, 0], [2, 3]] ) A : Optional[int] = np.array([[2, 1], [6, 3]] ) A : int = schur_complement(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Union[str, Any] = np.block([[a, b], [b.T, c]] ) A : Any = np.linalg.det(SCREAMING_SNAKE_CASE ) A : List[str] = np.linalg.det(SCREAMING_SNAKE_CASE ) A : Tuple = np.linalg.det(SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(SCREAMING_SNAKE_CASE , det_a * det_s ) def __lowerCAmelCase ( self ) -> None: """simple docstring""" A : Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A : str = np.array([[0, 3], [3, 0], [2, 3]] ) A : Tuple = np.array([[2, 1], [6, 3]] ) with self.assertRaises(SCREAMING_SNAKE_CASE ): schur_complement(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> None: """simple docstring""" A : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) A : int = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(SCREAMING_SNAKE_CASE ): schur_complement(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
311
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]: """simple docstring""" A : List[str] = parent A : Optional[Any] = batch_size A : Tuple = image_size A : int = patch_size A : Optional[int] = num_channels A : str = is_training A : List[Any] = use_labels A : Any = hidden_size A : Any = num_hidden_layers A : Optional[int] = num_attention_heads A : Any = intermediate_size A : List[str] = hidden_act A : str = hidden_dropout_prob A : Tuple = attention_probs_dropout_prob A : Any = type_sequence_label_size A : Optional[int] = initializer_range A : Dict = scope A : Tuple = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A : List[Any] = (image_size // patch_size) ** 2 A : Tuple = num_patches + 2 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Tuple = None if self.use_labels: A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE ) A : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE ) A : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A : Optional[int] = 1 A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE ) A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : str = self.type_sequence_label_size A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A : Optional[Any] = 1 A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Optional[int] = self.prepare_config_and_inputs() A, A, A : Tuple = config_and_inputs A : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __magic_name__ = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = TFDeiTModelTester(self ) A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A, A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Union[str, Any] = [*signature.parameters.keys()] A : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowerCAmelCase ( self ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) A : Dict = self.default_image_processor A : List[str] = prepare_img() A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass A : Optional[int] = model(**SCREAMING_SNAKE_CASE ) # verify the logits A : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class A ( __snake_case ): __magic_name__ = ['''pixel_values'''] def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : Dict = size if size is not None else {'''shortest_edge''': 224} A : Dict = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : int = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A : Any = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) A : Optional[Any] = do_resize A : Union[str, Any] = size A : Optional[Any] = resample A : int = do_center_crop A : str = crop_size A : List[str] = do_rescale A : Dict = rescale_factor A : Optional[Any] = do_normalize A : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD A : int = do_convert_rgb def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" A : int = get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" A : Optional[Any] = do_resize if do_resize is not None else self.do_resize A : Optional[Any] = size if size is not None else self.size A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , param_name='''size''' , default_to_square=SCREAMING_SNAKE_CASE ) A : str = resample if resample is not None else self.resample A : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop A : Tuple = crop_size if crop_size is not None else self.crop_size A : int = get_size_dict(SCREAMING_SNAKE_CASE , param_name='''crop_size''' , default_to_square=SCREAMING_SNAKE_CASE ) A : Dict = do_rescale if do_rescale is not None else self.do_rescale A : str = rescale_factor if rescale_factor is not None else self.rescale_factor A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize A : Dict = image_mean if image_mean is not None else self.image_mean A : Any = image_std if image_std is not None else self.image_std A : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A : str = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A : Any = [convert_to_rgb(SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. A : Union[str, Any] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: A : int = [self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: A : Optional[int] = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A : Optional[int] = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] A : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] A : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
311
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : List[str] = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
311
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase : Tuple = 16 lowercase : Tuple = 32 def lowerCAmelCase_ ( snake_case__ , snake_case__ = 16 , snake_case__ = "bert-base-cased" ): '''simple docstring''' A : List[str] = AutoTokenizer.from_pretrained(snake_case__ ) A : List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) A : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A : str = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. A : Tuple = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) A : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : str = config['''lr'''] A : str = int(config['''num_epochs'''] ) A : Any = int(config['''seed'''] ) A : Any = int(config['''batch_size'''] ) A : Any = args.model_name_or_path set_seed(snake_case__ ) A, A : Optional[Any] = get_dataloaders(snake_case__ , snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : List[Any] = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ ) # Instantiate optimizer A : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A : List[str] = optimizer_cls(params=model.parameters() , lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: A : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: A : Union[str, Any] = 1 A : Optional[int] = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A : Optional[int] = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: A : str = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A, A, A, A, A : Union[str, Any] = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over A : List[Any] = 0 # We also need to keep track of the stating epoch so files are named properly A : Tuple = 0 # Now we train the model A : Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) A : Dict = 0 A : Union[str, Any] = {} for epoch in range(snake_case__ , snake_case__ ): model.train() for step, batch in enumerate(snake_case__ ): A : Union[str, Any] = model(**snake_case__ ) A : List[str] = outputs.loss A : str = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() A : Dict = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A : Union[str, Any] = model(**snake_case__ ) A : Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A, A : int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case__ ) - 1: A : Optional[int] = predictions[: len(eval_dataloader.dataset ) - samples_seen] A : Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) A : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , snake_case__ ) A : List[str] = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: A : Union[str, Any] = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( ): '''simple docstring''' A : List[str] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case__ , ) parser.add_argument( '''--output_dir''' , type=snake_case__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=snake_case__ , default=snake_case__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case__ , default=3 , help='''Number of train epochs.''' , ) A : Optional[int] = parser.parse_args() A : Optional[int] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
311
'''simple docstring''' from __future__ import annotations lowercase : Union[str, Any] = list[tuple[int, int]] lowercase : Optional[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" A : int = pos_x A : Optional[Any] = pos_y A : Optional[Any] = (pos_y, pos_x) A : str = goal_x A : Optional[int] = goal_y A : List[Any] = g_cost A : str = parent A : str = self.calculate_heuristic() def __lowerCAmelCase ( self ) -> float: """simple docstring""" A : Optional[int] = abs(self.pos_x - self.goal_x ) A : Optional[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE ) A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE ) A : Optional[Any] = [self.start] A : list[Node] = [] A : Tuple = False def __lowerCAmelCase ( self ) -> Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: A : Optional[int] = True return self.retrace_path(SCREAMING_SNAKE_CASE ) self.closed_nodes.append(SCREAMING_SNAKE_CASE ) A : Any = self.get_successors(SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" A : List[Any] = [] for action in delta: A : List[str] = parent.pos_x + action[1] A : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path: """simple docstring""" A : int = node A : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A : int = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase : Tuple = (0, 0) lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') lowercase : int = GreedyBestFirst(init, goal) lowercase : Union[str, Any] = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase : Dict = 2 for elem in grid: print(elem)
311
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) A : Dict = number_of_bytes // partitions A : Optional[Any] = [] for i in range(snake_case__ ): A : Dict = i * bytes_per_partition + 1 A : Optional[int] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
311
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase : Any = 'src/transformers' lowercase : str = 'docs/source/en/tasks' def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A : Union[str, Any] = f.readlines() # Find the start prompt. A : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 A : List[str] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase : int = direct_transformers_import(TRANSFORMERS_PATH) lowercase : str = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase : Optional[int] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : int = TASK_GUIDE_TO_MODELS[task_guide] A : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) A : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def lowerCAmelCase_ ( snake_case__ , snake_case__=False ): '''simple docstring''' A, A, A, A : Optional[int] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) A : Optional[int] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ''' to fix this.''' ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase : List[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
311
1
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return x + 2 class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : List[str] = '''x = 3''' A : Union[str, Any] = {} A : Optional[Any] = evaluate(SCREAMING_SNAKE_CASE , {} , state=SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3} ) A : Union[str, Any] = '''x = y''' A : Optional[Any] = {'''y''': 5} A : Optional[Any] = evaluate(SCREAMING_SNAKE_CASE , {} , state=SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 5, '''y''': 5} ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : str = '''y = add_two(x)''' A : Optional[Any] = {'''x''': 3} A : Optional[int] = evaluate(SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: A : int = evaluate(SCREAMING_SNAKE_CASE , {} , state=SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[str] = '''x = 3''' A : Optional[int] = {} A : Tuple = evaluate(SCREAMING_SNAKE_CASE , {} , state=SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3} ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Union[str, Any] = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' A : Optional[Any] = {'''x''': 3} A : Union[str, Any] = evaluate(SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE ) self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[int] = '''x = 3\ny = 5''' A : List[Any] = {} A : str = evaluate(SCREAMING_SNAKE_CASE , {} , state=SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 5} ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Any = '''text = f\'This is x: {x}.\'''' A : str = {'''x''': 3} A : Tuple = evaluate(SCREAMING_SNAKE_CASE , {} , state=SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Tuple = '''if x <= 3:\n y = 2\nelse:\n y = 5''' A : Dict = {'''x''': 3} A : Any = evaluate(SCREAMING_SNAKE_CASE , {} , state=SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 2} ) A : Optional[Any] = {'''x''': 8} A : Optional[int] = evaluate(SCREAMING_SNAKE_CASE , {} , state=SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 8, '''y''': 5} ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[Any] = '''test_list = [x, add_two(x)]''' A : List[Any] = {'''x''': 3} A : Optional[Any] = evaluate(SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_list''': [3, 5]} ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = '''y = x''' A : str = {'''x''': 3} A : List[str] = evaluate(SCREAMING_SNAKE_CASE , {} , state=SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 3} ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Tuple = '''test_list = [x, add_two(x)]\ntest_list[1]''' A : int = {'''x''': 3} A : Dict = evaluate(SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_list''': [3, 5]} ) A : List[Any] = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' A : List[Any] = {'''x''': 3} A : Dict = evaluate(SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : int = '''x = 0\nfor i in range(3):\n x = i''' A : Dict = {} A : Optional[int] = evaluate(SCREAMING_SNAKE_CASE , {'''range''': range} , state=SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(SCREAMING_SNAKE_CASE , {'''x''': 2, '''i''': 2} )
311
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] A : Tuple = [] def generate(snake_case__ , snake_case__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A, A : Optional[Any] = arr[k - 1], arr[i] else: # k is odd A, A : Optional[Any] = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip() lowercase : int = [int(item) for item in user_input.split(',')] print(heaps(arr))
311
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : int = AlbertConfig.from_json_file(snake_case__ ) print(F'Building PyTorch model from configuration: {config}' ) A : Dict = AlbertForPreTraining(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
311
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( __snake_case ): __magic_name__ = (UniPCMultistepScheduler,) __magic_name__ = (('''num_inference_steps''', 25),) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[Any] = dict(self.forward_default_kwargs ) A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : int = 0.1 * sample A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A, A : Tuple = sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Optional[Any] = dict(self.forward_default_kwargs ) A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : List[Any] = self.dummy_sample A : int = 0.1 * sample A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) A : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if scheduler is None: A : Dict = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : int = 10 A : Tuple = self.dummy_model() A : Any = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = dict(self.forward_default_kwargs ) A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config() A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): A : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] A : List[str] = dummy_past_residuals[: scheduler.config.solver_order] A : List[Any] = scheduler.timesteps[5] A : Dict = scheduler.timesteps[6] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) A : Dict = self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : int = self.full_loop() A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.scheduler_classes[0] A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = 10 A : Union[str, Any] = self.dummy_model() A : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
311
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowercase : Union[str, Any] = 0 lowercase : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowercase : List[str] = tuple[int, int] class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" A : Union[str, Any] = pos_x A : List[str] = pos_y A : int = (pos_y, pos_x) A : Optional[Any] = goal_x A : Any = goal_y A : int = g_cost A : List[str] = parent A : List[Any] = self.calculate_heuristic() A : Any = self.g_cost + self.h_cost def __lowerCAmelCase ( self ) -> float: """simple docstring""" A : Optional[Any] = self.pos_x - self.goal_x A : Dict = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(SCREAMING_SNAKE_CASE ) + abs(SCREAMING_SNAKE_CASE ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE ) A : Optional[int] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE ) A : Tuple = [self.start] A : list[Node] = [] A : Union[str, Any] = False def __lowerCAmelCase ( self ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(SCREAMING_SNAKE_CASE ) self.closed_nodes.append(SCREAMING_SNAKE_CASE ) A : Optional[int] = self.get_successors(SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path A : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE ) return [self.start.pos] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" A : str = [] for action in delta: A : Any = parent.pos_x + action[1] A : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[TPosition]: """simple docstring""" A : str = node A : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A : Dict = current_node.parent path.reverse() return path class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : int = AStar(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Dict = AStar(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[Any] = False def __lowerCAmelCase ( self ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() A : Dict = self.fwd_astar.open_nodes.pop(0 ) A : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE ) self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE ) A : Optional[Any] = current_bwd_node A : int = current_fwd_node A : Optional[int] = { self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE ), self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path A : str = astar.open_nodes.pop( astar.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(SCREAMING_SNAKE_CASE ) else: astar.open_nodes.append(SCREAMING_SNAKE_CASE ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[TPosition]: """simple docstring""" A : Tuple = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE ) A : int = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() A : Union[str, Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowercase : Union[str, Any] = (0, 0) lowercase : int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase : str = time.time() lowercase : int = AStar(init, goal) lowercase : int = a_star.search() lowercase : str = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') lowercase : List[Any] = time.time() lowercase : str = BidirectionalAStar(init, goal) lowercase : Optional[int] = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
311
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM A : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ): A : List[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : int = self.scheduler.step( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample A : Dict = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
311
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase : str = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Tuple = list(s_dict.keys() ) for key in keys: A : List[str] = R'''.*/layers_(\d+)''' A : int = key if re.match(snake_case__ , snake_case__ ): A : List[str] = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , snake_case__ ) A : Optional[Any] = R'''(encoder|decoder)\/''' if re.match(snake_case__ , snake_case__ ): A : Optional[int] = re.match(snake_case__ , snake_case__ ).groups() if groups[0] == "encoder": A : Tuple = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , snake_case__ ) A : Optional[int] = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , snake_case__ ) elif groups[0] == "decoder": A : str = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , snake_case__ ) A : List[str] = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , snake_case__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A : List[str] = new_key.replace(snake_case__ , snake_case__ ) print(F'{key} -> {new_key}' ) A : Optional[Any] = s_dict.pop(snake_case__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A : Union[str, Any] = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A : str = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A : Union[str, Any] = s_dict[key].shape[0] A : str = s_dict[key] for idx in range(snake_case__ ): A : Union[str, Any] = expert_weihts[idx] print(F'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(snake_case__ ) return s_dict lowercase : Dict = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import regex as re with open(snake_case__ , '''r''' ) as f: A : Optional[Any] = f.read() A : Union[str, Any] = re.findall(R'''(.*) = ([0-9.]*)''' , snake_case__ ) A : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A : Any = float(snake_case__ ) if '''.''' in value else int(snake_case__ ) A : str = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , snake_case__ )[0] A : Union[str, Any] = str(activation[1] ) A : List[Any] = num_experts A : int = SwitchTransformersConfig(**snake_case__ ) return config def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__="./" , snake_case__=8 ): '''simple docstring''' print(F'Loading flax weights from : {flax_checkpoint_path}' ) A : Tuple = checkpoints.load_tax_checkpoint(snake_case__ ) if gin_file is not None: A : str = convert_gin_to_config(snake_case__ , snake_case__ ) else: A : Union[str, Any] = SwitchTransformersConfig.from_pretrained(snake_case__ ) A : Dict = SwitchTransformersForConditionalGeneration(snake_case__ ) A : Tuple = flax_params['''target'''] A : Tuple = flatten_dict(snake_case__ , sep='''/''' ) A : str = rename_keys(snake_case__ ) A : Dict = unflatten_dict(snake_case__ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) print(F'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') lowercase : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
311
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" A : Optional[Any] = value A : Any = random() A : Node | None = None A : Node | None = None def __repr__( self ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: """simple docstring""" A : Optional[Any] = str(self.value ) + ''' ''' A : Union[str, Any] = str(self.left or '''''' ) A : Any = str(self.right or '''''' ) return value + left + right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A, A : Any = split(root.left , snake_case__ ) return left, root else: A, A : Optional[int] = split(root.right , snake_case__ ) return root, right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A : List[str] = merge(left.right , snake_case__ ) return left else: A : Tuple = merge(snake_case__ , right.left ) return right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = Node(snake_case__ ) A, A : Tuple = split(snake_case__ , snake_case__ ) return merge(merge(snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A, A : Dict = split(snake_case__ , value - 1 ) A, A : Any = split(snake_case__ , snake_case__ ) return merge(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": A : int = insert(snake_case__ , int(arg[1:] ) ) elif arg[0] == "-": A : int = erase(snake_case__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) A : Optional[int] = input() while args != "q": A : str = interact_treap(snake_case__ , snake_case__ ) print(snake_case__ ) A : Union[str, Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A ( __snake_case , unittest.TestCase ): __magic_name__ = MvpTokenizer __magic_name__ = MvpTokenizerFast __magic_name__ = True __magic_name__ = filter_roberta_detectors def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" super().setUp() A : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] A : Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) A : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A : Any = {'''unk_token''': '''<unk>'''} A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return "lower newer", "lower newer" @cached_property def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A : List[str] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A : int = tokenizer(SCREAMING_SNAKE_CASE , max_length=len(SCREAMING_SNAKE_CASE ) , padding=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) A : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test that special tokens are reset @require_torch def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A : str = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , SCREAMING_SNAKE_CASE ) self.assertIn('''attention_mask''' , SCREAMING_SNAKE_CASE ) self.assertNotIn('''labels''' , SCREAMING_SNAKE_CASE ) self.assertNotIn('''decoder_attention_mask''' , SCREAMING_SNAKE_CASE ) @require_torch def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A : List[Any] = tokenizer(text_target=SCREAMING_SNAKE_CASE , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A : Tuple = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Tuple = ['''A long paragraph for summarization.'''] A : Optional[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A : int = tokenizer(SCREAMING_SNAKE_CASE , text_target=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A : Optional[Any] = inputs['''input_ids'''] A : Optional[int] = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Union[str, Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Dict = '''A, <mask> AllenNLP sentence.''' A : Optional[Any] = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) A : Dict = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) A : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) A : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
311
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]: """simple docstring""" A : Tuple = '''bilinear''' A : Optional[int] = max_size A : Dict = short_edge_length def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Tuple = [] for img in imgs: A, A : str = img.shape[:2] # later: provide list and randomly choose index for resize A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if h < w: A, A : Tuple = size, scale * w else: A, A : str = scale * h, size if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size: A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Tuple = newh * scale A : int = neww * scale A : List[str] = int(neww + 0.5 ) A : int = int(newh + 0.5 ) if img.dtype == np.uinta: A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE ) A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A : str = np.asarray(SCREAMING_SNAKE_CASE ) else: A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A : List[Any] = nn.functional.interpolate( SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE ) return img_augs class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A : str = cfg.INPUT.FORMAT A : int = cfg.SIZE_DIVISIBILITY A : Optional[int] = cfg.PAD_VALUE A : Dict = cfg.INPUT.MAX_SIZE_TEST A : Optional[Any] = cfg.MODEL.DEVICE A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) A : List[str] = [im.shape[-2:] for im in images] A : Optional[Any] = [ nn.functional.pad( SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : str = [images] if single_image: assert len(SCREAMING_SNAKE_CASE ) == 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A : Tuple = torch.tensor([im.shape[:2] for im in images] ) A : Dict = self.aug(SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!" A, A : str = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__ ) tensor[:, 1].clamp_(min=0 , max=snake_case__ ) tensor[:, 2].clamp_(min=0 , max=snake_case__ ) tensor[:, 3].clamp_(min=0 , max=snake_case__ )
311
1
'''simple docstring''' from collections.abc import Callable import numpy as np def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : int = int(np.ceil((x_end - xa) / step_size ) ) A : Optional[int] = np.zeros((n + 1,) ) A : List[Any] = ya A : Tuple = xa for k in range(snake_case__ ): A : str = y[k] + step_size * ode_func(snake_case__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
311
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowercase : Tuple = parser.parse_args() lowercase : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
311
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''sentencepiece'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" requires_backends(self , ['''sentencepiece'''] )
311
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase : str = datasets.utils.logging.get_logger(__name__) lowercase : Union[str, Any] = ['names', 'prefix'] lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowercase : List[Any] = ['encoding_errors', 'on_bad_lines'] lowercase : Any = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): __magic_name__ = "," __magic_name__ = None __magic_name__ = "infer" __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = "." __magic_name__ = None __magic_name__ = '"' __magic_name__ = 0 __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = None __magic_name__ = 10000 __magic_name__ = None __magic_name__ = "strict" __magic_name__ = "error" __magic_name__ = None def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" if self.delimiter is not None: A : Optional[Any] = self.delimiter if self.column_names is not None: A : Optional[Any] = self.column_names @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : str = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): __magic_name__ = CsvConfig def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ): A : str = data_files if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : int = [files] A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A : Tuple = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[str] = [files] A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table: """simple docstring""" if self.config.features is not None: A : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return pa_table def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ): A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ): A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' ) raise
311
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Dict = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class A ( __snake_case ): __magic_name__ = '''canine''' def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=16384 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=0XE_000 , SCREAMING_SNAKE_CASE=0XE_001 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=16384 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : List[str] = max_position_embeddings A : Any = hidden_size A : List[str] = num_hidden_layers A : Any = num_attention_heads A : Dict = intermediate_size A : str = hidden_act A : Optional[int] = hidden_dropout_prob A : Tuple = attention_probs_dropout_prob A : str = initializer_range A : List[str] = type_vocab_size A : List[Any] = layer_norm_eps # Character config: A : Optional[int] = downsampling_rate A : int = upsampling_kernel_size A : Any = num_hash_functions A : List[str] = num_hash_buckets A : int = local_transformer_stride
311
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : int = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class A ( __snake_case ): __magic_name__ = '''sew''' def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="group" , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) A : Optional[Any] = hidden_size A : Any = feat_extract_norm A : Optional[int] = feat_extract_activation A : Tuple = list(SCREAMING_SNAKE_CASE ) A : List[str] = list(SCREAMING_SNAKE_CASE ) A : List[str] = list(SCREAMING_SNAKE_CASE ) A : int = conv_bias A : List[Any] = num_conv_pos_embeddings A : Tuple = num_conv_pos_embedding_groups A : int = len(self.conv_dim ) A : Dict = num_hidden_layers A : Optional[int] = intermediate_size A : Any = squeeze_factor A : int = hidden_act A : str = num_attention_heads A : Dict = hidden_dropout A : Optional[Any] = attention_dropout A : List[str] = activation_dropout A : Union[str, Any] = feat_proj_dropout A : Union[str, Any] = final_dropout A : int = layerdrop A : Optional[Any] = layer_norm_eps A : Any = initializer_range A : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A : Optional[Any] = apply_spec_augment A : Optional[Any] = mask_time_prob A : Union[str, Any] = mask_time_length A : Optional[Any] = mask_time_min_masks A : str = mask_feature_prob A : Tuple = mask_feature_length A : Any = mask_feature_min_masks # ctc loss A : List[Any] = ctc_loss_reduction A : Dict = ctc_zero_infinity # sequence classification A : int = use_weighted_layer_sum A : Optional[int] = classifier_proj_size @property def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
311
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase : Optional[Any] = get_tests_dir('fixtures') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : List[Any] = mock.Mock() A : str = 500 A : Dict = {} A : Union[str, Any] = HTTPError A : List[Any] = {} # Download this model to make sure it's in the cache. A : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=SCREAMING_SNAKE_CASE ) as mock_head: A : Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : str = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class A ( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls ) -> Any: """simple docstring""" A : Optional[int] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE ) @classmethod def __lowerCAmelCase ( cls ) -> Tuple: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) A : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( SCREAMING_SNAKE_CASE , repo_id='''test-feature-extractor''' , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A : int = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) A : Any = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A : Dict = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() A : Dict = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) A : List[str] = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
311
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = SwinConfig() A : List[Any] = swin_name.split('''_''' ) A : Tuple = name_split[1] A : Union[str, Any] = int(name_split[4] ) A : str = int(name_split[3][-1] ) if model_size == "tiny": A : Optional[int] = 96 A : Optional[Any] = (2, 2, 6, 2) A : Any = (3, 6, 12, 24) elif model_size == "small": A : Optional[int] = 96 A : str = (2, 2, 18, 2) A : Tuple = (3, 6, 12, 24) elif model_size == "base": A : int = 128 A : Optional[Any] = (2, 2, 18, 2) A : List[str] = (4, 8, 16, 32) else: A : Dict = 192 A : Optional[Any] = (2, 2, 18, 2) A : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: A : Dict = 2_1841 else: A : str = 1000 A : List[str] = '''huggingface/label-files''' A : Any = '''imagenet-1k-id2label.json''' A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) A : str = {int(snake_case__ ): v for k, v in idalabel.items()} A : Tuple = idalabel A : Tuple = {v: k for k, v in idalabel.items()} A : Tuple = img_size A : Dict = num_classes A : Optional[Any] = embed_dim A : str = depths A : str = num_heads A : Optional[int] = window_size return config def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if "patch_embed.proj" in name: A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: A : Optional[int] = '''encoder.''' + name if "attn.proj" in name: A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A : Any = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A : str = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": A : Tuple = '''layernorm.weight''' if name == "norm.bias": A : Tuple = '''layernorm.bias''' if "head" in name: A : Any = name.replace('''head''' , '''classifier''' ) else: A : List[Any] = '''swin.''' + name return name def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A : Dict = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A : Dict = key.split('''.''' ) A : Optional[int] = int(key_split[1] ) A : List[str] = int(key_split[3] ) A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A : Any = val[:dim, :] A : Dict = val[ dim : dim * 2, : ] A : List[str] = val[-dim:, :] else: A : Any = val[ :dim ] A : Optional[int] = val[ dim : dim * 2 ] A : Any = val[ -dim: ] else: A : str = val return orig_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A : Optional[Any] = get_swin_config(snake_case__ ) A : Optional[int] = SwinForImageClassification(snake_case__ ) model.eval() A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' ) A : Any = timm_model(inputs['''pixel_values'''] ) A : Optional[Any] = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase : int = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
311
1
'''simple docstring''' lowercase : Tuple = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
311
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Tuple = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class A ( __snake_case ): __magic_name__ = '''pix2struct_text_model''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" A : str = vocab_size A : List[str] = hidden_size A : List[Any] = d_kv A : Optional[Any] = d_ff A : Dict = num_layers A : Dict = num_heads A : Optional[int] = relative_attention_num_buckets A : Optional[Any] = relative_attention_max_distance A : Dict = dropout_rate A : Dict = layer_norm_epsilon A : Tuple = initializer_factor A : Union[str, Any] = use_cache A : int = eos_token_id A : List[str] = decoder_start_token_id # for backwards compatibility A : int = dense_act_fn super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A : Union[str, Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A ( __snake_case ): __magic_name__ = '''pix2struct_vision_model''' def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : List[str] = hidden_size A : Optional[Any] = patch_embed_hidden_size A : Union[str, Any] = d_ff A : Dict = dropout_rate A : str = num_hidden_layers A : Dict = num_attention_heads A : Tuple = initializer_range A : List[str] = initializer_factor A : Union[str, Any] = attention_dropout A : Tuple = layer_norm_eps A : int = dense_act_fn A : Optional[int] = seq_len A : Tuple = relative_attention_num_buckets A : str = relative_attention_max_distance A : Optional[Any] = d_kv @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A ( __snake_case ): __magic_name__ = '''pix2struct''' __magic_name__ = True def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text_config is None: A : Dict = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: A : str = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE ) A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE ) A : Any = self.text_config.decoder_start_token_id A : Any = self.text_config.pad_token_id A : Dict = self.text_config.eos_token_id A : Union[str, Any] = initializer_factor A : Tuple = initializer_range A : Optional[Any] = self.initializer_range A : int = self.initializer_range A : Tuple = is_vqa @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Tuple = copy.deepcopy(self.__dict__ ) A : Dict = self.text_config.to_dict() A : int = self.vision_config.to_dict() A : Any = self.__class__.model_type return output
311
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Union[str, Any] = {'vocab_file': 'spiece.model'} lowercase : Tuple = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } lowercase : List[Any] = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } lowercase : Any = '▁' class A ( __snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" A : Dict = ( AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE , normalized=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token ) A : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) A : List[Any] = do_lower_case A : int = remove_space A : str = keep_accents A : Any = vocab_file A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Tuple = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: """simple docstring""" A : Dict = self.__dict__.copy() A : Dict = None return state def __setstate__( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A : Dict = {} A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if self.remove_space: A : Optional[int] = ''' '''.join(inputs.strip().split() ) else: A : Dict = inputs A : int = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A : List[str] = unicodedata.normalize('''NFKD''' , SCREAMING_SNAKE_CASE ) A : List[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: A : List[Any] = outputs.lower() return outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Dict = self.preprocess_text(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) A : Dict = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A : Dict = cur_pieces[1:] else: A : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE ) else: new_pieces.append(SCREAMING_SNAKE_CASE ) return new_pieces def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : List[Any] = [] A : int = '''''' A : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token A : Any = True A : Optional[int] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) A : Dict = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string.strip() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" A : Dict = [self.sep_token_id] A : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" A : Tuple = [self.sep_token_id] A : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A : List[str] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , '''wb''' ) as fi: A : Dict = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
311
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[str] = 2 A : Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case__ ) if n > 1: factors.append(snake_case__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
311
1
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]: """simple docstring""" A : Tuple = '''bilinear''' A : Optional[int] = max_size A : Dict = short_edge_length def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Tuple = [] for img in imgs: A, A : str = img.shape[:2] # later: provide list and randomly choose index for resize A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if h < w: A, A : Tuple = size, scale * w else: A, A : str = scale * h, size if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size: A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Tuple = newh * scale A : int = neww * scale A : List[str] = int(neww + 0.5 ) A : int = int(newh + 0.5 ) if img.dtype == np.uinta: A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE ) A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A : str = np.asarray(SCREAMING_SNAKE_CASE ) else: A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A : List[Any] = nn.functional.interpolate( SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE ) return img_augs class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A : str = cfg.INPUT.FORMAT A : int = cfg.SIZE_DIVISIBILITY A : Optional[int] = cfg.PAD_VALUE A : Dict = cfg.INPUT.MAX_SIZE_TEST A : Optional[Any] = cfg.MODEL.DEVICE A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) A : List[str] = [im.shape[-2:] for im in images] A : Optional[Any] = [ nn.functional.pad( SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : str = [images] if single_image: assert len(SCREAMING_SNAKE_CASE ) == 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A : Tuple = torch.tensor([im.shape[:2] for im in images] ) A : Dict = self.aug(SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!" A, A : str = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__ ) tensor[:, 1].clamp_(min=0 , max=snake_case__ ) tensor[:, 2].clamp_(min=0 , max=snake_case__ ) tensor[:, 3].clamp_(min=0 , max=snake_case__ )
311
'''simple docstring''' # Function to print upper half of diamond (pyramid) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for i in range(0 , snake_case__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for i in range(snake_case__ , 0 , -1 ): for _ in range(snake_case__ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(snake_case__ ) # upper half reverse_floyd(snake_case__ ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') lowercase : List[str] = 1 while K: lowercase : List[Any] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) lowercase : Any = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
311
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowercase : Dict = logging.get_logger(__name__) # General docstring lowercase : str = 'MobileNetV1Config' # Base docstring lowercase : str = 'google/mobilenet_v1_1.0_224' lowercase : List[Any] = [1, 10_24, 7, 7] # Image classification docstring lowercase : Tuple = 'google/mobilenet_v1_1.0_224' lowercase : Dict = 'tabby, tabby cat' lowercase : Union[str, Any] = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' A : int = {} if isinstance(snake_case__ , snake_case__ ): A : Optional[Any] = model.mobilenet_va else: A : Optional[Any] = model A : Dict = '''MobilenetV1/Conv2d_0/''' A : List[Any] = backbone.conv_stem.convolution.weight A : List[Any] = backbone.conv_stem.normalization.bias A : int = backbone.conv_stem.normalization.weight A : List[str] = backbone.conv_stem.normalization.running_mean A : Union[str, Any] = backbone.conv_stem.normalization.running_var for i in range(13 ): A : List[str] = i + 1 A : Dict = i * 2 A : Any = backbone.layer[pt_index] A : Dict = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' A : Union[str, Any] = pointer.convolution.weight A : Union[str, Any] = pointer.normalization.bias A : Any = pointer.normalization.weight A : int = pointer.normalization.running_mean A : int = pointer.normalization.running_var A : Optional[Any] = backbone.layer[pt_index + 1] A : Optional[int] = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' A : List[str] = pointer.convolution.weight A : str = pointer.normalization.bias A : Union[str, Any] = pointer.normalization.weight A : Union[str, Any] = pointer.normalization.running_mean A : Optional[Any] = pointer.normalization.running_var if isinstance(snake_case__ , snake_case__ ): A : Tuple = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' A : int = model.classifier.weight A : Union[str, Any] = model.classifier.bias return tf_to_pt_map def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model A : str = tf.train.list_variables(snake_case__ ) A : List[str] = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) A : List[Any] = tf.train.load_variable(snake_case__ , snake_case__ ) A : Union[str, Any] = array # Build TF to PyTorch weights loading map A : Tuple = _build_tf_to_pytorch_map(snake_case__ , snake_case__ , snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue A : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) A : int = np.transpose(snake_case__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer A : Any = array.squeeze().transpose() else: A : List[str] = np.transpose(snake_case__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) A : Optional[Any] = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ , snake_case__ ) tf_weights.pop(name + '''/RMSProp''' , snake_case__ ) tf_weights.pop(name + '''/RMSProp_1''' , snake_case__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A, A : int = features.shape[-2:] A, A : Any = conv_layer.stride A, A : Tuple = conv_layer.kernel_size if in_height % stride_height == 0: A : Optional[Any] = max(kernel_height - stride_height , 0 ) else: A : int = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: A : Tuple = max(kernel_width - stride_width , 0 ) else: A : Optional[Any] = max(kernel_width - (in_width % stride_width) , 0 ) A : Union[str, Any] = pad_along_width // 2 A : Optional[Any] = pad_along_width - pad_left A : int = pad_along_height // 2 A : str = pad_along_height - pad_top A : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ , snake_case__ , '''constant''' , 0.0 ) class A ( nn.Module ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , ) -> None: """simple docstring""" super().__init__() A : int = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) A : Union[str, Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) A : List[Any] = nn.Convad( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , kernel_size=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , groups=SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE , padding_mode='''zeros''' , ) if use_normalization: A : str = nn.BatchNormad( num_features=SCREAMING_SNAKE_CASE , eps=config.layer_norm_eps , momentum=0.9_997 , affine=SCREAMING_SNAKE_CASE , track_running_stats=SCREAMING_SNAKE_CASE , ) else: A : Optional[int] = None if use_activation: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act , SCREAMING_SNAKE_CASE ): A : Tuple = ACTaFN[config.hidden_act] else: A : Any = config.hidden_act else: A : Union[str, Any] = None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> torch.Tensor: """simple docstring""" if self.config.tf_padding: A : List[str] = apply_tf_padding(SCREAMING_SNAKE_CASE , self.convolution ) A : str = self.convolution(SCREAMING_SNAKE_CASE ) if self.normalization is not None: A : Union[str, Any] = self.normalization(SCREAMING_SNAKE_CASE ) if self.activation is not None: A : Optional[Any] = self.activation(SCREAMING_SNAKE_CASE ) return features class A ( __snake_case ): __magic_name__ = MobileNetVaConfig __magic_name__ = load_tf_weights_in_mobilenet_va __magic_name__ = '''mobilenet_v1''' __magic_name__ = '''pixel_values''' __magic_name__ = False def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowercase : Union[str, Any] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase : str = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , __snake_case , ) class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ) -> Optional[int]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE ) A : Optional[int] = config A : int = 32 A : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) A : Any = MobileNetVaConvLayer( SCREAMING_SNAKE_CASE , in_channels=config.num_channels , out_channels=SCREAMING_SNAKE_CASE , kernel_size=3 , stride=2 , ) A : Optional[Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] A : str = nn.ModuleList() for i in range(13 ): A : List[str] = out_channels if strides[i] == 2 or i == 0: depth *= 2 A : Optional[int] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE , in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , kernel_size=3 , stride=strides[i] , groups=SCREAMING_SNAKE_CASE , ) ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE , in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , kernel_size=1 , ) ) A : Dict = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" A : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A : Tuple = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) A : str = self.conv_stem(SCREAMING_SNAKE_CASE ) A : Optional[int] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): A : Tuple = layer_module(SCREAMING_SNAKE_CASE ) if output_hidden_states: A : Union[str, Any] = all_hidden_states + (hidden_states,) A : List[str] = hidden_states if self.pooler is not None: A : str = torch.flatten(self.pooler(SCREAMING_SNAKE_CASE ) , start_dim=1 ) else: A : Optional[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE , pooler_output=SCREAMING_SNAKE_CASE , hidden_states=SCREAMING_SNAKE_CASE , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __snake_case , ) class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE ) A : List[Any] = config.num_labels A : Union[str, Any] = MobileNetVaModel(SCREAMING_SNAKE_CASE ) A : List[Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head A : List[str] = nn.Dropout(config.classifier_dropout_prob , inplace=SCREAMING_SNAKE_CASE ) A : List[Any] = nn.Linear(SCREAMING_SNAKE_CASE , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" A : Tuple = return_dict if return_dict is not None else self.config.use_return_dict A : List[str] = self.mobilenet_va(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE ) A : List[str] = outputs.pooler_output if return_dict else outputs[1] A : List[str] = self.classifier(self.dropout(SCREAMING_SNAKE_CASE ) ) A : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A : Any = '''single_label_classification''' else: A : Union[str, Any] = '''multi_label_classification''' if self.config.problem_type == "regression": A : Dict = MSELoss() if self.num_labels == 1: A : Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: A : Optional[Any] = loss_fct(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": A : Union[str, Any] = CrossEntropyLoss() A : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A : Dict = BCEWithLogitsLoss() A : str = loss_fct(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not return_dict: A : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=SCREAMING_SNAKE_CASE , logits=SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , )
311
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" A : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , ) A : Optional[Any] = image.to(self.device ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
311
1
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowercase : Tuple = logging.get_logger(__name__) lowercase : Dict = 'T5Config' def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = jnp.zeros_like(snake_case__ ) A : Dict = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) A : Optional[Any] = shifted_input_ids.at[:, 0].set(snake_case__ ) A : Union[str, Any] = jnp.where(shifted_input_ids == -100 , snake_case__ , snake_case__ ) return shifted_input_ids class A ( __snake_case ): __magic_name__ = '''mt5''' __magic_name__ = MTaConfig class A ( __snake_case ): __magic_name__ = '''mt5''' __magic_name__ = MTaConfig class A ( __snake_case ): __magic_name__ = '''mt5''' __magic_name__ = MTaConfig
311
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str: """simple docstring""" A : Any = parent A : List[Any] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : int = use_input_mask A : Union[str, Any] = vocab_size A : List[Any] = hidden_size A : List[Any] = num_hidden_layers A : Optional[int] = num_attention_heads A : str = intermediate_size A : Tuple = hidden_act A : Union[str, Any] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : int = max_position_embeddings A : Optional[int] = initializer_range A : Any = use_labels A : Optional[int] = scope def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[int] = None if self.use_input_mask: A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Dict = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ) : Any = self.prepare_config_and_inputs() A : Tuple = True A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) A : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" A : List[str] = True A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , ) A : List[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Optional[Any] = True A : Tuple = True A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval() # first forward pass A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , ) A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] A : Any = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A, A, A : Optional[int] = self.prepare_config_and_inputs() A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __magic_name__ = (BertGenerationDecoder,) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[str] = BertGenerationEncoderTester(self ) A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs() A : str = '''bert''' self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() A : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Dict = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Dict = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Any = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
1
'''simple docstring''' import argparse lowercase : Dict = 'docs/source/_static/js/custom.js' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' with open(snake_case__ , encoding='''utf-8''' , newline='''\n''' ) as f: A : str = f.readlines() A : int = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 A : Any = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(snake_case__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(snake_case__ ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowercase : str = parser.parse_args() update_custom_js(args.version)
311
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ ) A : Any = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ ) class A ( __snake_case ): __magic_name__ = '''sigmoid''' __magic_name__ = '''softmax''' __magic_name__ = '''none''' @add_end_docstrings( __snake_case , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class A ( __snake_case ): __magic_name__ = False __magic_name__ = ClassificationFunction.NONE def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Optional[Any] = tokenizer_kwargs A : int = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: A : int = self.model.config.return_all_scores if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None: A : Union[str, Any] = top_k A : Dict = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , ) if return_all_scores: A : Optional[int] = None else: A : Dict = 1 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A : int = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A : Any = '''top_k''' not in kwargs if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: """simple docstring""" A : List[Any] = self.framework if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.model(**SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A : Optional[int] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A : Any = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: A : Optional[int] = self.model.config.function_to_apply else: A : Optional[int] = ClassificationFunction.NONE A : Any = model_outputs['''logits'''][0] A : List[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A : int = sigmoid(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: A : Any = softmax(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: A : int = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A : int = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE ) if top_k is not None: A : Union[str, Any] = dict_scores[:top_k] return dict_scores
311
1
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ ) A : Any = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ ) class A ( __snake_case ): __magic_name__ = '''sigmoid''' __magic_name__ = '''softmax''' __magic_name__ = '''none''' @add_end_docstrings( __snake_case , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class A ( __snake_case ): __magic_name__ = False __magic_name__ = ClassificationFunction.NONE def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Optional[Any] = tokenizer_kwargs A : int = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: A : int = self.model.config.return_all_scores if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None: A : Union[str, Any] = top_k A : Dict = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , ) if return_all_scores: A : Optional[int] = None else: A : Dict = 1 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A : int = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A : Any = '''top_k''' not in kwargs if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: """simple docstring""" A : List[Any] = self.framework if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.model(**SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A : Optional[int] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A : Any = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: A : Optional[int] = self.model.config.function_to_apply else: A : Optional[int] = ClassificationFunction.NONE A : Any = model_outputs['''logits'''][0] A : List[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A : int = sigmoid(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: A : Any = softmax(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: A : int = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A : int = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE ) if top_k is not None: A : Union[str, Any] = dict_scores[:top_k] return dict_scores
311
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase_ ( snake_case__ = "laptop" ): '''simple docstring''' A : Tuple = F'https://www.amazon.in/laptop/s?k={product}' A : Optional[int] = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text ) # Initialize a Pandas dataframe with the column titles A : List[str] = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: A : Optional[Any] = item.ha.text A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: A : Optional[int] = '''Not available''' try: A : str = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: A : List[Any] = '''''' try: A : Dict = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: A : str = float('''nan''' ) except AttributeError: pass A : Union[str, Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A : List[str] = ''' ''' A : Optional[Any] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase : Union[str, Any] = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
311
1
'''simple docstring''' import cva import numpy as np class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if k in (0.04, 0.06): A : str = k A : Dict = window_size else: raise ValueError('''invalid k value''' ) def __str__( self ) -> str: """simple docstring""" return str(self.k ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" A : List[Any] = cva.imread(SCREAMING_SNAKE_CASE , 0 ) A, A : Dict = img.shape A : list[list[int]] = [] A : List[str] = img.copy() A : str = cva.cvtColor(SCREAMING_SNAKE_CASE , cva.COLOR_GRAY2RGB ) A, A : Any = np.gradient(SCREAMING_SNAKE_CASE ) A : List[str] = dx**2 A : Dict = dy**2 A : Optional[Any] = dx * dy A : List[Any] = 0.04 A : int = self.window_size // 2 for y in range(SCREAMING_SNAKE_CASE , h - offset ): for x in range(SCREAMING_SNAKE_CASE , w - offset ): A : Tuple = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A : Any = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A : Optional[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A : int = (wxx * wyy) - (wxy**2) A : Optional[Any] = wxx + wyy A : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowercase : Optional[int] = HarrisCorner(0.04, 3) lowercase , lowercase : Dict = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
311
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[int] = x A : str = y for step in range(snake_case__ ): # noqa: B007 A : str = a * a - b * b + x A : List[str] = 2 * a * b + y A : str = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) ) def lowerCAmelCase_ ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ): '''simple docstring''' A : List[Any] = Image.new('''RGB''' , (image_width, image_height) ) A : Tuple = img.load() # loop through the image-coordinates for image_x in range(snake_case__ ): for image_y in range(snake_case__ ): # determine the figure-coordinates based on the image-coordinates A : Optional[int] = figure_width / image_width * image_height A : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width A : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height A : str = get_distance(snake_case__ , snake_case__ , snake_case__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: A : str = get_color_coded_rgb(snake_case__ ) else: A : List[Any] = get_black_and_white_rgb(snake_case__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
311
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase : int = 2 class A : def __init__( self , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE=None , ) -> Any: """simple docstring""" A, A, A, A : str = bos, unk, pad, eos A : Tuple = [] A : List[str] = [] A : Dict = {} A : int = self.add_symbol(SCREAMING_SNAKE_CASE ) A : Optional[int] = self.add_symbol(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = self.add_symbol(SCREAMING_SNAKE_CASE ) A : Any = self.add_symbol(SCREAMING_SNAKE_CASE ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE ) A : Optional[int] = len(self.symbols ) def __eq__( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return self.indices == other.indices def __getitem__( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return sym in self.indices @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : str = cls() d.add_from_file(SCREAMING_SNAKE_CASE ) return d def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" if word in self.indices and not overwrite: A : Optional[int] = self.indices[word] A : Optional[int] = self.count[idx] + n return idx else: A : Optional[int] = len(self.symbols ) A : List[str] = idx self.symbols.append(SCREAMING_SNAKE_CASE ) self.count.append(SCREAMING_SNAKE_CASE ) return idx def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return 0 def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): try: with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(SCREAMING_SNAKE_CASE ) ) return A : str = f.readlines() A : List[Any] = self._load_meta(SCREAMING_SNAKE_CASE ) for line in lines[indices_start_line:]: try: A, A : List[Any] = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": A : Optional[Any] = True A, A : Union[str, Any] = line.rsplit(''' ''' , 1 ) else: A : int = False A : Optional[int] = int(SCREAMING_SNAKE_CASE ) A : Dict = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(SCREAMING_SNAKE_CASE ) ) self.add_symbol(SCREAMING_SNAKE_CASE , n=SCREAMING_SNAKE_CASE , overwrite=SCREAMING_SNAKE_CASE ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[Any] = dict((re.sub(R'''@@$''' , '''''' , snake_case__ ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , snake_case__ ), v) for k, v in d.items() ) A : Dict = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] A : Tuple = d[k] # restore return da def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if not os.path.exists(snake_case__ ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models A : List[Any] = os.path.join(snake_case__ , '''checkpoint.pt''' ) if not os.path.isfile(snake_case__ ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) A : Union[str, Any] = torch.load(snake_case__ , map_location='''cpu''' ) A : Optional[Any] = chkpt['''cfg''']['''model'''] # dicts A : Tuple = os.path.join(snake_case__ , '''dict.txt''' ) if not os.path.isfile(snake_case__ ): raise ValueError(F'path to the file {dict_file} does not exist!' ) A : Any = Dictionary.load(snake_case__ ) A : Any = rewrite_dict_keys(src_dict.indices ) A : int = len(snake_case__ ) A : Tuple = os.path.join(snake_case__ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__ , ensure_ascii=snake_case__ , indent=snake_case__ ) ) # merges_file (bpecodes) A : Union[str, Any] = os.path.join(snake_case__ , '''bpecodes''' ) if not os.path.isfile(snake_case__ ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) A : str = os.path.join(snake_case__ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(snake_case__ , snake_case__ ) # model config A : Any = os.path.join(snake_case__ , '''config.json''' ) A : Optional[int] = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__ , ensure_ascii=snake_case__ , indent=snake_case__ ) ) # tokenizer config A : Optional[int] = os.path.join(snake_case__ , snake_case__ ) A : str = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__ , ensure_ascii=snake_case__ , indent=snake_case__ ) ) # model A : Tuple = chkpt['''model'''] # remove unneeded keys A : Union[str, Any] = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(snake_case__ , snake_case__ ) A : Tuple = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): A : Tuple = model_state_dict.pop(snake_case__ ) else: A : Union[str, Any] = model_state_dict.pop(snake_case__ ) A : Tuple = BioGptConfig.from_pretrained(snake_case__ ) A : Dict = BioGptForCausalLM(snake_case__ ) # check that it loads ok model_new.load_state_dict(snake_case__ ) # save A : Any = os.path.join(snake_case__ , snake_case__ ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(snake_case__ , snake_case__ ) print('''Conversion is done!''' ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : List[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
311
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowercase : Optional[int] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowercase : Optional[Any] = parser.parse_args() if args.check_lib: lowercase : List[Any] = importlib.import_module('transformers') lowercase : str = Path(transformers_module.__file__).parent else: lowercase : List[Any] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
311
1
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=[1, 16, 4, 4] , SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]: """simple docstring""" A : Any = parent A : str = batch_size A : Optional[Any] = image_size A : Dict = patch_size A : List[str] = num_channels A : Optional[int] = is_training A : List[str] = use_labels A : Tuple = hidden_size A : Optional[int] = num_hidden_layers A : Optional[Any] = num_attention_heads A : int = intermediate_size A : Union[str, Any] = hidden_act A : Dict = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : Dict = type_sequence_label_size A : List[Any] = initializer_range A : int = scope A : Dict = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size A : Tuple = (self.image_size // 32) ** 2 A : Union[str, Any] = num_patches + 1 def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Optional[int] = None if self.use_labels: A : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Union[str, Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Optional[int] = ViTHybridModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Optional[int] = self.type_sequence_label_size A : Dict = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Dict = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Union[str, Any] = self.prepare_config_and_inputs() A, A, A : Tuple = config_and_inputs A : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[int] = ViTHybridModelTester(self ) A : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A, A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[Any] = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : int = model_class(SCREAMING_SNAKE_CASE ) A : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Tuple = [*signature.parameters.keys()] A : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A, A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A : Union[str, Any] = _config_zero_init(SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A : Union[str, Any] = model_class(config=SCREAMING_SNAKE_CASE ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": A : List[Any] = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Optional[int] = ViTHybridModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[int] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) A : List[str] = self.default_image_processor A : Any = prepare_img() A : List[str] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A : List[str] = model(**SCREAMING_SNAKE_CASE ) # verify the logits A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) A : Dict = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[int] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) A : Union[str, Any] = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) A : Any = prepare_img() A : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A : Optional[int] = model(**SCREAMING_SNAKE_CASE ) A : List[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes A : Any = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
311
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]: """simple docstring""" A : List[str] = parent A : Optional[Any] = batch_size A : Tuple = image_size A : int = patch_size A : Optional[int] = num_channels A : str = is_training A : List[Any] = use_labels A : Any = hidden_size A : Any = num_hidden_layers A : Optional[int] = num_attention_heads A : Any = intermediate_size A : List[str] = hidden_act A : str = hidden_dropout_prob A : Tuple = attention_probs_dropout_prob A : Any = type_sequence_label_size A : Optional[int] = initializer_range A : Dict = scope A : Tuple = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A : List[Any] = (image_size // patch_size) ** 2 A : Tuple = num_patches + 2 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Tuple = None if self.use_labels: A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE ) A : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE ) A : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A : Optional[int] = 1 A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE ) A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : str = self.type_sequence_label_size A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A : Optional[Any] = 1 A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Optional[int] = self.prepare_config_and_inputs() A, A, A : Tuple = config_and_inputs A : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __magic_name__ = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = TFDeiTModelTester(self ) A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A, A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Union[str, Any] = [*signature.parameters.keys()] A : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowerCAmelCase ( self ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) A : Dict = self.default_image_processor A : List[str] = prepare_img() A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass A : Optional[int] = model(**SCREAMING_SNAKE_CASE ) # verify the logits A : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
1
'''simple docstring''' from __future__ import annotations import bisect def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ = 0 , snake_case__ = -1 ): '''simple docstring''' if hi < 0: A : Optional[int] = len(snake_case__ ) while lo < hi: A : str = lo + (hi - lo) // 2 if sorted_collection[mid] < item: A : List[Any] = mid + 1 else: A : List[Any] = mid return lo def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ = 0 , snake_case__ = -1 ): '''simple docstring''' if hi < 0: A : Optional[int] = len(snake_case__ ) while lo < hi: A : Dict = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: A : Optional[Any] = mid + 1 else: A : Optional[int] = mid return lo def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ = 0 , snake_case__ = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ = 0 , snake_case__ = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : str = 0 A : List[Any] = len(snake_case__ ) - 1 while left <= right: A : List[str] = left + (right - left) // 2 A : int = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: A : str = midpoint - 1 else: A : Any = midpoint + 1 return None def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[str] = bisect.bisect_left(snake_case__ , snake_case__ ) if index != len(snake_case__ ) and sorted_collection[index] == item: return index return None def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if right < left: return None A : Optional[Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case__ , snake_case__ , snake_case__ , midpoint - 1 ) else: return binary_search_by_recursion(snake_case__ , snake_case__ , midpoint + 1 , snake_case__ ) if __name__ == "__main__": lowercase : Union[str, Any] = input('Enter numbers separated by comma:\n').strip() lowercase : Union[str, Any] = sorted(int(item) for item in user_input.split(',')) lowercase : List[str] = int(input('Enter a single number to be found in the list:\n')) lowercase : List[str] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
311
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : List[str] = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
311
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : str = inspect.getfile(accelerate.test_utils ) A : str = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) A : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) A : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) A : List[Any] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self ) -> str: """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) A : int = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[int] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) @require_multi_gpu def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) A : Optional[Any] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if __name__ == "__main__": lowercase : int = Accelerator() lowercase : Optional[Any] = (accelerator.state.process_index + 2, 10) lowercase : List[Any] = torch.randint(0, 10, shape).to(accelerator.device) lowercase : List[Any] = '' lowercase : Optional[Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase : Tuple = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase : int = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
311
'''simple docstring''' from __future__ import annotations lowercase : Union[str, Any] = list[tuple[int, int]] lowercase : Optional[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" A : int = pos_x A : Optional[Any] = pos_y A : Optional[Any] = (pos_y, pos_x) A : str = goal_x A : Optional[int] = goal_y A : List[Any] = g_cost A : str = parent A : str = self.calculate_heuristic() def __lowerCAmelCase ( self ) -> float: """simple docstring""" A : Optional[int] = abs(self.pos_x - self.goal_x ) A : Optional[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE ) A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE ) A : Optional[Any] = [self.start] A : list[Node] = [] A : Tuple = False def __lowerCAmelCase ( self ) -> Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: A : Optional[int] = True return self.retrace_path(SCREAMING_SNAKE_CASE ) self.closed_nodes.append(SCREAMING_SNAKE_CASE ) A : Any = self.get_successors(SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" A : List[Any] = [] for action in delta: A : List[str] = parent.pos_x + action[1] A : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path: """simple docstring""" A : int = node A : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A : int = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase : Tuple = (0, 0) lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') lowercase : int = GreedyBestFirst(init, goal) lowercase : Union[str, Any] = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase : Dict = 2 for elem in grid: print(elem)
311
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class A : __magic_name__ = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) __magic_name__ = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) __magic_name__ = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) __magic_name__ = field( default=__snake_case , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) __magic_name__ = field( default=__snake_case , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = HfArgumentParser((ModelArguments,) ) ((A), ) : str = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: A : str = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: A : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: A : Any = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: A : int = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed A : Any = True A : Dict = True A : List[str] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=snake_case__ , decoder_config=snake_case__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens A : int = decoder_config.decoder_start_token_id A : int = decoder_config.pad_token_id if decoder_start_token_id is None: A : Tuple = decoder_config.bos_token_id if pad_token_id is None: A : Union[str, Any] = decoder_config.eos_token_id # This is necessary to make Flax's generate() work A : List[str] = decoder_config.eos_token_id A : List[Any] = decoder_start_token_id A : Any = pad_token_id A : List[str] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) A : Dict = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) A : List[Any] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
311
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase : Any = 'src/transformers' lowercase : str = 'docs/source/en/tasks' def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A : Union[str, Any] = f.readlines() # Find the start prompt. A : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 A : List[str] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase : int = direct_transformers_import(TRANSFORMERS_PATH) lowercase : str = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase : Optional[int] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : int = TASK_GUIDE_TO_MODELS[task_guide] A : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) A : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def lowerCAmelCase_ ( snake_case__ , snake_case__=False ): '''simple docstring''' A, A, A, A : Optional[int] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) A : Optional[int] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ''' to fix this.''' ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase : List[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
311
1
'''simple docstring''' def lowerCAmelCase_ ( ): '''simple docstring''' A : int = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] A : int = 6 A : List[str] = 1 A : int = 1901 A : List[Any] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 A : List[str] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 A : Union[str, Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 A : Dict = day - days_per_month[month - 2] if month > 12: year += 1 A : Tuple = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
311
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] A : Tuple = [] def generate(snake_case__ , snake_case__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A, A : Optional[Any] = arr[k - 1], arr[i] else: # k is odd A, A : Optional[Any] = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip() lowercase : int = [int(item) for item in user_input.split(',')] print(heaps(arr))
311
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Tuple = [1] A, A, A : Dict = 0, 0, 0 A : Tuple = ugly_nums[ia] * 2 A : List[str] = ugly_nums[ia] * 3 A : Optional[int] = ugly_nums[ia] * 5 for _ in range(1 , snake_case__ ): A : Any = min(snake_case__ , snake_case__ , snake_case__ ) ugly_nums.append(snake_case__ ) if next_num == next_a: ia += 1 A : Tuple = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 A : Dict = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 A : Tuple = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_00) = }''')
311
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( __snake_case ): __magic_name__ = (UniPCMultistepScheduler,) __magic_name__ = (('''num_inference_steps''', 25),) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[Any] = dict(self.forward_default_kwargs ) A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : int = 0.1 * sample A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A, A : Tuple = sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Optional[Any] = dict(self.forward_default_kwargs ) A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : List[Any] = self.dummy_sample A : int = 0.1 * sample A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) A : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if scheduler is None: A : Dict = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : int = 10 A : Tuple = self.dummy_model() A : Any = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = dict(self.forward_default_kwargs ) A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config() A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): A : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] A : List[str] = dummy_past_residuals[: scheduler.config.solver_order] A : List[Any] = scheduler.timesteps[5] A : Dict = scheduler.timesteps[6] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) A : Dict = self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : int = self.full_loop() A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.scheduler_classes[0] A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = 10 A : Union[str, Any] = self.dummy_model() A : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
311
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( __snake_case ): __magic_name__ = (UniPCMultistepScheduler,) __magic_name__ = (('''num_inference_steps''', 25),) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[Any] = dict(self.forward_default_kwargs ) A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : int = 0.1 * sample A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A, A : Tuple = sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Optional[Any] = dict(self.forward_default_kwargs ) A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : List[Any] = self.dummy_sample A : int = 0.1 * sample A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) A : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if scheduler is None: A : Dict = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : int = 10 A : Tuple = self.dummy_model() A : Any = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = dict(self.forward_default_kwargs ) A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config() A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): A : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] A : List[str] = dummy_past_residuals[: scheduler.config.solver_order] A : List[Any] = scheduler.timesteps[5] A : Dict = scheduler.timesteps[6] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) A : Dict = self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : int = self.full_loop() A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.scheduler_classes[0] A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = 10 A : Union[str, Any] = self.dummy_model() A : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
311
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM A : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ): A : List[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : int = self.scheduler.step( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample A : Dict = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
311
1
'''simple docstring''' from __future__ import annotations lowercase : Union[str, Any] = list[tuple[int, int]] lowercase : Optional[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" A : int = pos_x A : Optional[Any] = pos_y A : Optional[Any] = (pos_y, pos_x) A : str = goal_x A : Optional[int] = goal_y A : List[Any] = g_cost A : str = parent A : str = self.calculate_heuristic() def __lowerCAmelCase ( self ) -> float: """simple docstring""" A : Optional[int] = abs(self.pos_x - self.goal_x ) A : Optional[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE ) A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE ) A : Optional[Any] = [self.start] A : list[Node] = [] A : Tuple = False def __lowerCAmelCase ( self ) -> Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: A : Optional[int] = True return self.retrace_path(SCREAMING_SNAKE_CASE ) self.closed_nodes.append(SCREAMING_SNAKE_CASE ) A : Any = self.get_successors(SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" A : List[Any] = [] for action in delta: A : List[str] = parent.pos_x + action[1] A : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path: """simple docstring""" A : int = node A : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A : int = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase : Tuple = (0, 0) lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') lowercase : int = GreedyBestFirst(init, goal) lowercase : Union[str, Any] = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase : Dict = 2 for elem in grid: print(elem)
311
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" A : Optional[Any] = value A : Any = random() A : Node | None = None A : Node | None = None def __repr__( self ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: """simple docstring""" A : Optional[Any] = str(self.value ) + ''' ''' A : Union[str, Any] = str(self.left or '''''' ) A : Any = str(self.right or '''''' ) return value + left + right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A, A : Any = split(root.left , snake_case__ ) return left, root else: A, A : Optional[int] = split(root.right , snake_case__ ) return root, right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A : List[str] = merge(left.right , snake_case__ ) return left else: A : Tuple = merge(snake_case__ , right.left ) return right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = Node(snake_case__ ) A, A : Tuple = split(snake_case__ , snake_case__ ) return merge(merge(snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A, A : Dict = split(snake_case__ , value - 1 ) A, A : Any = split(snake_case__ , snake_case__ ) return merge(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": A : int = insert(snake_case__ , int(arg[1:] ) ) elif arg[0] == "-": A : int = erase(snake_case__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) A : Optional[int] = input() while args != "q": A : str = interact_treap(snake_case__ , snake_case__ ) print(snake_case__ ) A : Union[str, Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[str] = 2 A : Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case__ ) if n > 1: factors.append(snake_case__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
311
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]: """simple docstring""" A : Tuple = '''bilinear''' A : Optional[int] = max_size A : Dict = short_edge_length def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Tuple = [] for img in imgs: A, A : str = img.shape[:2] # later: provide list and randomly choose index for resize A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if h < w: A, A : Tuple = size, scale * w else: A, A : str = scale * h, size if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size: A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Tuple = newh * scale A : int = neww * scale A : List[str] = int(neww + 0.5 ) A : int = int(newh + 0.5 ) if img.dtype == np.uinta: A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE ) A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A : str = np.asarray(SCREAMING_SNAKE_CASE ) else: A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A : List[Any] = nn.functional.interpolate( SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE ) return img_augs class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A : str = cfg.INPUT.FORMAT A : int = cfg.SIZE_DIVISIBILITY A : Optional[int] = cfg.PAD_VALUE A : Dict = cfg.INPUT.MAX_SIZE_TEST A : Optional[Any] = cfg.MODEL.DEVICE A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) A : List[str] = [im.shape[-2:] for im in images] A : Optional[Any] = [ nn.functional.pad( SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : str = [images] if single_image: assert len(SCREAMING_SNAKE_CASE ) == 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A : Tuple = torch.tensor([im.shape[:2] for im in images] ) A : Dict = self.aug(SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!" A, A : str = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__ ) tensor[:, 1].clamp_(min=0 , max=snake_case__ ) tensor[:, 2].clamp_(min=0 , max=snake_case__ ) tensor[:, 3].clamp_(min=0 , max=snake_case__ )
311
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase : Tuple = logging.get_logger(__name__) class A ( __snake_case ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
311
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowercase : Tuple = parser.parse_args() lowercase : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
311
1
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" debug_launcher(test_script.main ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
311
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase : str = datasets.utils.logging.get_logger(__name__) lowercase : Union[str, Any] = ['names', 'prefix'] lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowercase : List[Any] = ['encoding_errors', 'on_bad_lines'] lowercase : Any = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): __magic_name__ = "," __magic_name__ = None __magic_name__ = "infer" __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = "." __magic_name__ = None __magic_name__ = '"' __magic_name__ = 0 __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = None __magic_name__ = 10000 __magic_name__ = None __magic_name__ = "strict" __magic_name__ = "error" __magic_name__ = None def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" if self.delimiter is not None: A : Optional[Any] = self.delimiter if self.column_names is not None: A : Optional[Any] = self.column_names @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : str = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): __magic_name__ = CsvConfig def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ): A : str = data_files if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : int = [files] A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A : Tuple = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[str] = [files] A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table: """simple docstring""" if self.config.features is not None: A : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return pa_table def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ): A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ): A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' ) raise
311
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case__ , x % y ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ = 20 ): '''simple docstring''' A : Any = 1 for i in range(1 , n + 1 ): A : int = lcm(snake_case__ , snake_case__ ) return g if __name__ == "__main__": print(f'''{solution() = }''')
311
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : int = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class A ( __snake_case ): __magic_name__ = '''sew''' def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="group" , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) A : Optional[Any] = hidden_size A : Any = feat_extract_norm A : Optional[int] = feat_extract_activation A : Tuple = list(SCREAMING_SNAKE_CASE ) A : List[str] = list(SCREAMING_SNAKE_CASE ) A : List[str] = list(SCREAMING_SNAKE_CASE ) A : int = conv_bias A : List[Any] = num_conv_pos_embeddings A : Tuple = num_conv_pos_embedding_groups A : int = len(self.conv_dim ) A : Dict = num_hidden_layers A : Optional[int] = intermediate_size A : Any = squeeze_factor A : int = hidden_act A : str = num_attention_heads A : Dict = hidden_dropout A : Optional[Any] = attention_dropout A : List[str] = activation_dropout A : Union[str, Any] = feat_proj_dropout A : Union[str, Any] = final_dropout A : int = layerdrop A : Optional[Any] = layer_norm_eps A : Any = initializer_range A : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A : Optional[Any] = apply_spec_augment A : Optional[Any] = mask_time_prob A : Union[str, Any] = mask_time_length A : Optional[Any] = mask_time_min_masks A : str = mask_feature_prob A : Tuple = mask_feature_length A : Any = mask_feature_min_masks # ctc loss A : List[Any] = ctc_loss_reduction A : Dict = ctc_zero_infinity # sequence classification A : int = use_weighted_layer_sum A : Optional[int] = classifier_proj_size @property def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
311
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 1000 ): '''simple docstring''' A : Optional[int] = 2**power A : str = 0 while n: A, A : Tuple = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
311
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = SwinConfig() A : List[Any] = swin_name.split('''_''' ) A : Tuple = name_split[1] A : Union[str, Any] = int(name_split[4] ) A : str = int(name_split[3][-1] ) if model_size == "tiny": A : Optional[int] = 96 A : Optional[Any] = (2, 2, 6, 2) A : Any = (3, 6, 12, 24) elif model_size == "small": A : Optional[int] = 96 A : str = (2, 2, 18, 2) A : Tuple = (3, 6, 12, 24) elif model_size == "base": A : int = 128 A : Optional[Any] = (2, 2, 18, 2) A : List[str] = (4, 8, 16, 32) else: A : Dict = 192 A : Optional[Any] = (2, 2, 18, 2) A : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: A : Dict = 2_1841 else: A : str = 1000 A : List[str] = '''huggingface/label-files''' A : Any = '''imagenet-1k-id2label.json''' A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) A : str = {int(snake_case__ ): v for k, v in idalabel.items()} A : Tuple = idalabel A : Tuple = {v: k for k, v in idalabel.items()} A : Tuple = img_size A : Dict = num_classes A : Optional[Any] = embed_dim A : str = depths A : str = num_heads A : Optional[int] = window_size return config def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if "patch_embed.proj" in name: A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: A : Optional[int] = '''encoder.''' + name if "attn.proj" in name: A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A : Any = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A : str = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": A : Tuple = '''layernorm.weight''' if name == "norm.bias": A : Tuple = '''layernorm.bias''' if "head" in name: A : Any = name.replace('''head''' , '''classifier''' ) else: A : List[Any] = '''swin.''' + name return name def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A : Dict = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A : Dict = key.split('''.''' ) A : Optional[int] = int(key_split[1] ) A : List[str] = int(key_split[3] ) A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A : Any = val[:dim, :] A : Dict = val[ dim : dim * 2, : ] A : List[str] = val[-dim:, :] else: A : Any = val[ :dim ] A : Optional[int] = val[ dim : dim * 2 ] A : Any = val[ -dim: ] else: A : str = val return orig_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A : Optional[Any] = get_swin_config(snake_case__ ) A : Optional[int] = SwinForImageClassification(snake_case__ ) model.eval() A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' ) A : Any = timm_model(inputs['''pixel_values'''] ) A : Optional[Any] = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase : int = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
311
1
'''simple docstring''' import string import numpy def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , snake_case__ ) class A : __magic_name__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __magic_name__ = numpy.vectorize(lambda __snake_case : x % 36 ) __magic_name__ = numpy.vectorize(__snake_case ) def __init__( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : List[Any] = self.modulus(SCREAMING_SNAKE_CASE ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key A : Optional[Any] = encrypt_key.shape[0] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.key_string.index(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.key_string[round(SCREAMING_SNAKE_CASE )] def __lowerCAmelCase ( self ) -> None: """simple docstring""" A : Tuple = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: A : List[Any] = det % len(self.key_string ) A : List[str] = len(self.key_string ) if greatest_common_divisor(SCREAMING_SNAKE_CASE , len(self.key_string ) ) != 1: A : Tuple = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : List[Any] = [char for char in text.upper() if char in self.key_string] A : str = chars[-1] while len(SCREAMING_SNAKE_CASE ) % self.break_key != 0: chars.append(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Dict = self.process_text(text.upper() ) A : Union[str, Any] = '''''' for i in range(0 , len(SCREAMING_SNAKE_CASE ) - self.break_key + 1 , self.break_key ): A : Any = text[i : i + self.break_key] A : int = [self.replace_letters(SCREAMING_SNAKE_CASE ) for char in batch] A : Tuple = numpy.array([vec] ).T A : Optional[int] = self.modulus(self.encrypt_key.dot(SCREAMING_SNAKE_CASE ) ).T.tolist()[ 0 ] A : str = ''''''.join( self.replace_digits(SCREAMING_SNAKE_CASE ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __lowerCAmelCase ( self ) -> numpy.ndarray: """simple docstring""" A : List[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: A : Union[str, Any] = det % len(self.key_string ) A : int = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: A : int = i break A : Dict = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : int = self.make_decrypt_key() A : Tuple = self.process_text(text.upper() ) A : Tuple = '''''' for i in range(0 , len(SCREAMING_SNAKE_CASE ) - self.break_key + 1 , self.break_key ): A : Any = text[i : i + self.break_key] A : Dict = [self.replace_letters(SCREAMING_SNAKE_CASE ) for char in batch] A : int = numpy.array([vec] ).T A : List[Any] = self.modulus(decrypt_key.dot(SCREAMING_SNAKE_CASE ) ).T.tolist()[0] A : Tuple = ''''''.join( self.replace_digits(SCREAMING_SNAKE_CASE ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = int(input('''Enter the order of the encryption key: ''' ) ) A : int = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(snake_case__ ): A : List[str] = [int(snake_case__ ) for x in input().split()] hill_matrix.append(snake_case__ ) A : str = HillCipher(numpy.array(snake_case__ ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) A : Tuple = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": A : List[str] = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(snake_case__ ) ) elif option == "2": A : Optional[int] = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Tuple = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class A ( __snake_case ): __magic_name__ = '''pix2struct_text_model''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , SCREAMING_SNAKE_CASE=50244 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" A : str = vocab_size A : List[str] = hidden_size A : List[Any] = d_kv A : Optional[Any] = d_ff A : Dict = num_layers A : Dict = num_heads A : Optional[int] = relative_attention_num_buckets A : Optional[Any] = relative_attention_max_distance A : Dict = dropout_rate A : Dict = layer_norm_epsilon A : Tuple = initializer_factor A : Union[str, Any] = use_cache A : int = eos_token_id A : List[str] = decoder_start_token_id # for backwards compatibility A : int = dense_act_fn super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , is_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) A, A : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A : Union[str, Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A ( __snake_case ): __magic_name__ = '''pix2struct_vision_model''' def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : List[str] = hidden_size A : Optional[Any] = patch_embed_hidden_size A : Union[str, Any] = d_ff A : Dict = dropout_rate A : str = num_hidden_layers A : Dict = num_attention_heads A : Tuple = initializer_range A : List[str] = initializer_factor A : Union[str, Any] = attention_dropout A : Tuple = layer_norm_eps A : int = dense_act_fn A : Optional[int] = seq_len A : Tuple = relative_attention_num_buckets A : str = relative_attention_max_distance A : Optional[Any] = d_kv @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) A, A : int = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": A : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A ( __snake_case ): __magic_name__ = '''pix2struct''' __magic_name__ = True def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text_config is None: A : Dict = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: A : str = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) A : Dict = PixaStructTextConfig(**SCREAMING_SNAKE_CASE ) A : Any = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE ) A : Any = self.text_config.decoder_start_token_id A : Any = self.text_config.pad_token_id A : Dict = self.text_config.eos_token_id A : Union[str, Any] = initializer_factor A : Tuple = initializer_range A : Optional[Any] = self.initializer_range A : int = self.initializer_range A : Tuple = is_vqa @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Tuple = copy.deepcopy(self.__dict__ ) A : Dict = self.text_config.to_dict() A : int = self.vision_config.to_dict() A : Any = self.__class__.model_type return output
311
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM A : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ): A : List[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : int = self.scheduler.step( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample A : Dict = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
311
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[str] = 2 A : Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case__ ) if n > 1: factors.append(snake_case__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
311
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = inspect.getfile(accelerate.test_utils ) A : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A : Optional[Any] = test_metrics @require_cpu def __lowerCAmelCase ( self ) -> Any: """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def __lowerCAmelCase ( self ) -> str: """simple docstring""" self.test_metrics.main() @require_multi_gpu def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) A : List[str] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() )
311
'''simple docstring''' # Function to print upper half of diamond (pyramid) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for i in range(0 , snake_case__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for i in range(snake_case__ , 0 , -1 ): for _ in range(snake_case__ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(snake_case__ ) # upper half reverse_floyd(snake_case__ ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') lowercase : List[str] = 1 while K: lowercase : List[Any] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) lowercase : Any = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
311
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowercase : Union[str, Any] = logging.get_logger(__name__) class A ( __snake_case ): __magic_name__ = ['''pixel_values'''] def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : Dict = size if size is not None else {'''shortest_edge''': 256} A : int = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) A : Optional[int] = do_resize A : Union[str, Any] = size A : str = resample A : Optional[int] = do_center_crop A : Optional[int] = crop_size A : Dict = do_rescale A : List[Any] = rescale_factor A : str = do_normalize A : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" A : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A : Optional[int] = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" A : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" A : Dict = do_resize if do_resize is not None else self.do_resize A : Tuple = size if size is not None else self.size A : Dict = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : Dict = resample if resample is not None else self.resample A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop A : Optional[int] = crop_size if crop_size is not None else self.crop_size A : str = get_size_dict(SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) A : Dict = do_rescale if do_rescale is not None else self.do_rescale A : str = rescale_factor if rescale_factor is not None else self.rescale_factor A : Dict = do_normalize if do_normalize is not None else self.do_normalize A : Optional[int] = image_mean if image_mean is not None else self.image_mean A : Union[str, Any] = image_std if image_std is not None else self.image_std A : Optional[int] = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A : Dict = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: A : List[Any] = [self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: A : List[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A : Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] A : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] A : int = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[str]: """simple docstring""" A : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(SCREAMING_SNAKE_CASE ): A : str = target_sizes.numpy() A : Tuple = [] for idx in range(len(SCREAMING_SNAKE_CASE ) ): A : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=SCREAMING_SNAKE_CASE ) A : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE ) else: A : List[Any] = logits.argmax(dim=1 ) A : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
311
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" A : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=SCREAMING_SNAKE_CASE , ) A : Optional[Any] = image.to(self.device ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Tuple = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE ), "This is a local test"
311
1
'''simple docstring''' # Lint as: python3 import itertools import os import re lowercase : Optional[int] = re.compile(R'([A-Z]+)([A-Z][a-z])') lowercase : Optional[Any] = re.compile(R'([a-z\d])([A-Z])') lowercase : int = re.compile(R'(?<!_)_(?!_)') lowercase : str = re.compile(R'(_{2,})') lowercase : Tuple = R'^\w+(\.\w+)*$' lowercase : List[Any] = R'<>:/\|?*' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : str = _uppercase_uppercase_re.sub(R'''\1_\2''' , snake_case__ ) A : Optional[int] = _lowercase_uppercase_re.sub(R'''\1_\2''' , snake_case__ ) return name.lower() def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[Any] = _single_underscore_re.split(snake_case__ ) A : Dict = [_multiple_underscores_re.split(snake_case__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(snake_case__ ) if n != '''''' ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if os.path.basename(snake_case__ ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if os.path.basename(snake_case__ ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , snake_case__ ): raise ValueError(F'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return F'{filename_prefix_for_name(snake_case__ )}-{split}' def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' A : int = filename_prefix_for_split(snake_case__ , snake_case__ ) if filetype_suffix: prefix += F'.{filetype_suffix}' A : Dict = os.path.join(snake_case__ , snake_case__ ) return F'{filepath}*' def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): '''simple docstring''' A : str = filename_prefix_for_split(snake_case__ , snake_case__ ) A : Dict = os.path.join(snake_case__ , snake_case__ ) if shard_lengths: A : Optional[int] = len(snake_case__ ) A : Union[str, Any] = [F'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(snake_case__ )] if filetype_suffix: A : Dict = [filename + F'.{filetype_suffix}' for filename in filenames] return filenames else: A : List[str] = prefix if filetype_suffix: filename += F'.{filetype_suffix}' return [filename]
311
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> str: """simple docstring""" A : Any = parent A : List[Any] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : int = use_input_mask A : Union[str, Any] = vocab_size A : List[Any] = hidden_size A : List[Any] = num_hidden_layers A : Optional[int] = num_attention_heads A : str = intermediate_size A : Tuple = hidden_act A : Union[str, Any] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : int = max_position_embeddings A : Optional[int] = initializer_range A : Any = use_labels A : Optional[int] = scope def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[int] = None if self.use_input_mask: A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Dict = self.get_config() return config, input_ids, input_mask, token_labels def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ) : Any = self.prepare_config_and_inputs() A : Tuple = True A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : List[str] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) A : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" A : List[str] = True A : Union[str, Any] = BertGenerationEncoder(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , ) A : List[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Optional[Any] = True A : Tuple = True A : Optional[int] = BertGenerationDecoder(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval() # first forward pass A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , ) A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) A : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) A : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] A : Any = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationDecoder(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A, A, A : Optional[int] = self.prepare_config_and_inputs() A : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __magic_name__ = (BertGenerationDecoder,) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[str] = BertGenerationEncoderTester(self ) A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A, A, A : Tuple = self.model_tester.prepare_config_and_inputs() A : str = '''bert''' self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() A : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Dict = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Dict = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[Any] = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) A : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A : Optional[Any] = model(SCREAMING_SNAKE_CASE )[0] A : Optional[Any] = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Any = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
1
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowercase : List[Any] = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[Any] = _TestCommandArgs(dataset=snake_case__ , all_configs=snake_case__ , save_infos=snake_case__ ) A : Optional[int] = TestCommand(*snake_case__ ) test_command.run() A : List[str] = os.path.join(snake_case__ , '''README.md''' ) assert os.path.exists(snake_case__ ) A : Union[str, Any] = DatasetInfosDict.from_directory(snake_case__ ) A : Dict = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 235_1563, '''num_examples''': 1_0000, }, { '''name''': '''validation''', '''num_bytes''': 23_8418, '''num_examples''': 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: A, A : str = getattr(dataset_infos['''default'''] , snake_case__ ), getattr(expected_dataset_infos['''default'''] , snake_case__ ) if key == "num_bytes": assert is_apercent_close(snake_case__ , snake_case__ ) elif key == "splits": assert list(snake_case__ ) == list(snake_case__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
311
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = np.max(_outputs , axis=-1 , keepdims=snake_case__ ) A : Any = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case__ ) class A ( __snake_case ): __magic_name__ = '''sigmoid''' __magic_name__ = '''softmax''' __magic_name__ = '''none''' @add_end_docstrings( __snake_case , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class A ( __snake_case ): __magic_name__ = False __magic_name__ = ClassificationFunction.NONE def __init__( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="" , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Optional[Any] = tokenizer_kwargs A : int = {} if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None: A : int = self.model.config.return_all_scores if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or top_k is None: A : Union[str, Any] = top_k A : Dict = False elif return_all_scores is not None: warnings.warn( '''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of''' ''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , SCREAMING_SNAKE_CASE , ) if return_all_scores: A : Optional[int] = None else: A : Dict = 1 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A : int = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : str = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A : Any = '''top_k''' not in kwargs if isinstance(args[0] , SCREAMING_SNAKE_CASE ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: """simple docstring""" A : List[Any] = self.framework if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return self.tokenizer(**SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( '''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a''' ''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' ) return self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.model(**SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=True ) -> List[str]: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A : Optional[int] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A : Any = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None: A : Optional[int] = self.model.config.function_to_apply else: A : Optional[int] = ClassificationFunction.NONE A : Any = model_outputs['''logits'''][0] A : List[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A : int = sigmoid(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.SOFTMAX: A : Any = softmax(SCREAMING_SNAKE_CASE ) elif function_to_apply == ClassificationFunction.NONE: A : int = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A : int = [ {'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE ) ] if not _legacy: dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE : x["score"] , reverse=SCREAMING_SNAKE_CASE ) if top_k is not None: A : Union[str, Any] = dict_scores[:top_k] return dict_scores
311
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=__snake_case ): __magic_name__ = ['''speech'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" requires_backends(self , ['''speech'''] ) class A ( metaclass=__snake_case ): __magic_name__ = ['''speech'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''speech'''] )
311
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase_ ( snake_case__ = "laptop" ): '''simple docstring''' A : Tuple = F'https://www.amazon.in/laptop/s?k={product}' A : Optional[int] = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text ) # Initialize a Pandas dataframe with the column titles A : List[str] = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: A : Optional[Any] = item.ha.text A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: A : Optional[int] = '''Not available''' try: A : str = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: A : List[Any] = '''''' try: A : Dict = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: A : str = float('''nan''' ) except AttributeError: pass A : Union[str, Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A : List[str] = ''' ''' A : Optional[Any] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase : Union[str, Any] = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
311
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] A : Tuple = [] def generate(snake_case__ , snake_case__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A, A : Optional[Any] = arr[k - 1], arr[i] else: # k is odd A, A : Optional[Any] = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip() lowercase : int = [int(item) for item in user_input.split(',')] print(heaps(arr))
311
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[int] = x A : str = y for step in range(snake_case__ ): # noqa: B007 A : str = a * a - b * b + x A : List[str] = 2 * a * b + y A : str = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) ) def lowerCAmelCase_ ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ): '''simple docstring''' A : List[Any] = Image.new('''RGB''' , (image_width, image_height) ) A : Tuple = img.load() # loop through the image-coordinates for image_x in range(snake_case__ ): for image_y in range(snake_case__ ): # determine the figure-coordinates based on the image-coordinates A : Optional[int] = figure_width / image_width * image_height A : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width A : List[str] = figure_center_y + (image_y / image_height - 0.5) * figure_height A : str = get_distance(snake_case__ , snake_case__ , snake_case__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: A : str = get_color_coded_rgb(snake_case__ ) else: A : List[Any] = get_black_and_white_rgb(snake_case__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
311
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : int = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class A ( __snake_case ): __magic_name__ = '''vivit''' def __init__( self , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=[2, 16, 16] , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu_fast" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-06 , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Any = hidden_size A : Union[str, Any] = num_hidden_layers A : int = num_attention_heads A : str = intermediate_size A : Optional[int] = hidden_act A : List[str] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : Tuple = initializer_range A : Dict = layer_norm_eps A : Any = image_size A : Any = num_frames A : Tuple = tubelet_size A : int = num_channels A : Optional[int] = qkv_bias super().__init__(**SCREAMING_SNAKE_CASE )
311
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowercase : Optional[int] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowercase : Optional[Any] = parser.parse_args() if args.check_lib: lowercase : List[Any] = importlib.import_module('transformers') lowercase : str = Path(transformers_module.__file__).parent else: lowercase : List[Any] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
311
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Optional[int] = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class A ( __snake_case ): __magic_name__ = '''swin2sr''' __magic_name__ = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=180 , SCREAMING_SNAKE_CASE=[6, 6, 6, 6, 6, 6] , SCREAMING_SNAKE_CASE=[6, 6, 6, 6, 6, 6] , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=2.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE="1conv" , SCREAMING_SNAKE_CASE="pixelshuffle" , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : Tuple = image_size A : Optional[int] = patch_size A : Tuple = num_channels A : List[Any] = embed_dim A : Union[str, Any] = depths A : int = len(SCREAMING_SNAKE_CASE ) A : Dict = num_heads A : List[str] = window_size A : int = mlp_ratio A : List[str] = qkv_bias A : List[str] = hidden_dropout_prob A : int = attention_probs_dropout_prob A : Optional[int] = drop_path_rate A : int = hidden_act A : List[Any] = use_absolute_embeddings A : Optional[int] = layer_norm_eps A : str = initializer_range A : List[Any] = upscale A : List[Any] = img_range A : List[str] = resi_connection A : int = upsampler
311
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]: """simple docstring""" A : List[str] = parent A : Optional[Any] = batch_size A : Tuple = image_size A : int = patch_size A : Optional[int] = num_channels A : str = is_training A : List[Any] = use_labels A : Any = hidden_size A : Any = num_hidden_layers A : Optional[int] = num_attention_heads A : Any = intermediate_size A : List[str] = hidden_act A : str = hidden_dropout_prob A : Tuple = attention_probs_dropout_prob A : Any = type_sequence_label_size A : Optional[int] = initializer_range A : Dict = scope A : Tuple = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A : List[Any] = (image_size // patch_size) ** 2 A : Tuple = num_patches + 2 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Tuple = None if self.use_labels: A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE ) A : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE ) A : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A : Optional[int] = 1 A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE ) A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : str = self.type_sequence_label_size A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A : Optional[Any] = 1 A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Optional[int] = self.prepare_config_and_inputs() A, A, A : Tuple = config_and_inputs A : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __magic_name__ = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = TFDeiTModelTester(self ) A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A, A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Union[str, Any] = [*signature.parameters.keys()] A : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowerCAmelCase ( self ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) A : Dict = self.default_image_processor A : List[str] = prepare_img() A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass A : Optional[int] = model(**SCREAMING_SNAKE_CASE ) # verify the logits A : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Tuple = logging.get_logger(__name__) lowercase : int = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A ( __snake_case ): __magic_name__ = '''vit_msn''' def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-06 , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : List[str] = hidden_size A : List[Any] = num_hidden_layers A : Dict = num_attention_heads A : str = intermediate_size A : str = hidden_act A : Union[str, Any] = hidden_dropout_prob A : str = attention_probs_dropout_prob A : List[str] = initializer_range A : Dict = layer_norm_eps A : Any = image_size A : Optional[int] = patch_size A : Optional[int] = num_channels A : Union[str, Any] = qkv_bias
311
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : List[str] = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
311
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : int = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowercase : Dict = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : str = {} with open(snake_case__ , '''r''' ) as file: for line_number, line in enumerate(snake_case__ ): A : List[str] = line.strip() if line: A : List[Any] = line.split() A : int = line_number A : List[Any] = words[0] A : Union[str, Any] = value return result def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' for attribute in key.split('''.''' ): A : List[str] = getattr(snake_case__ , snake_case__ ) A : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): A : str = PARAM_MAPPING[full_name.split('''.''' )[-1]] A : int = '''param''' if weight_type is not None and weight_type != "param": A : Dict = getattr(snake_case__ , snake_case__ ).shape elif weight_type is not None and weight_type == "param": A : Tuple = hf_pointer for attribute in hf_param_name.split('''.''' ): A : Optional[Any] = getattr(snake_case__ , snake_case__ ) A : str = shape_pointer.shape # let's reduce dimension A : int = value[0] else: A : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": A : Optional[int] = value elif weight_type == "weight_g": A : str = value elif weight_type == "weight_v": A : Any = value elif weight_type == "bias": A : Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): A : Optional[Any] = getattr(snake_case__ , snake_case__ ) A : Optional[int] = value else: A : Union[str, Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): A : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] A : Any = '''param''' if weight_type is not None and weight_type != "param": A : List[str] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": A : List[Any] = '''.'''.join([key, hf_param_name] ) else: A : Optional[int] = key A : Dict = value if '''lm_head''' in full_key else value[0] lowercase : Tuple = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): '''simple docstring''' A : Dict = False for key, mapped_key in MAPPING.items(): A : str = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: A : Any = True if "*" in mapped_key: A : Optional[int] = name.split(snake_case__ )[0].split('''.''' )[-2] A : List[Any] = mapped_key.replace('''*''' , snake_case__ ) if "weight_g" in name: A : List[Any] = '''weight_g''' elif "weight_v" in name: A : str = '''weight_v''' elif "bias" in name: A : List[str] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj A : str = '''weight''' else: A : Tuple = None if hf_dict is not None: rename_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return is_used return is_used def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[str] = [] A : str = fairseq_model.state_dict() A : Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): A : List[str] = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == '''group''' , ) A : Optional[Any] = True else: A : int = load_wavaveca_layer(snake_case__ , snake_case__ , snake_case__ ) if not is_used: unused_weights.append(snake_case__ ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[str] = full_name.split('''conv_layers.''' )[-1] A : Optional[int] = name.split('''.''' ) A : Dict = int(items[0] ) A : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A : Dict = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A : Union[str, Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) A : Any = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) A : Dict = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__=False ): '''simple docstring''' if config_path is not None: A : Union[str, Any] = WavaVecaConfig.from_pretrained(snake_case__ ) else: A : Optional[int] = WavaVecaConfig() if is_seq_class: A : Tuple = read_txt_into_dict(snake_case__ ) A : Dict = idalabel A : Union[str, Any] = WavaVecaForSequenceClassification(snake_case__ ) A : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) feature_extractor.save_pretrained(snake_case__ ) elif is_finetuned: if dict_path: A : Union[str, Any] = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A : Any = target_dict.pad_index A : int = target_dict.bos_index A : Dict = target_dict.eos_index A : Optional[Any] = len(target_dict.symbols ) A : int = os.path.join(snake_case__ , '''vocab.json''' ) if not os.path.isdir(snake_case__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) A : Dict = target_dict.indices # fairseq has the <pad> and <s> switched A : str = 0 A : str = 1 with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(snake_case__ , snake_case__ ) A : Optional[Any] = WavaVecaCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case__ , ) A : int = True if config.feat_extract_norm == '''layer''' else False A : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) A : Optional[Any] = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) A : Tuple = WavaVecaForCTC(snake_case__ ) else: A : List[str] = WavaVecaForPreTraining(snake_case__ ) if is_finetuned or is_seq_class: A, A, A : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: A : Dict = argparse.Namespace(task='''audio_pretraining''' ) A : Tuple = fairseq.tasks.setup_task(snake_case__ ) A, A, A : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case__ ) A : str = model[0].eval() recursively_load_weights(snake_case__ , snake_case__ , not is_finetuned ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowercase : Tuple = parser.parse_args() lowercase : Optional[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
311
'''simple docstring''' from __future__ import annotations lowercase : Union[str, Any] = list[tuple[int, int]] lowercase : Optional[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : Any = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" A : int = pos_x A : Optional[Any] = pos_y A : Optional[Any] = (pos_y, pos_x) A : str = goal_x A : Optional[int] = goal_y A : List[Any] = g_cost A : str = parent A : str = self.calculate_heuristic() def __lowerCAmelCase ( self ) -> float: """simple docstring""" A : Optional[int] = abs(self.pos_x - self.goal_x ) A : Optional[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE ) A : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE ) A : Optional[Any] = [self.start] A : list[Node] = [] A : Tuple = False def __lowerCAmelCase ( self ) -> Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: A : Optional[int] = True return self.retrace_path(SCREAMING_SNAKE_CASE ) self.closed_nodes.append(SCREAMING_SNAKE_CASE ) A : Any = self.get_successors(SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path A : str = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" A : List[Any] = [] for action in delta: A : List[str] = parent.pos_x + action[1] A : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Path: """simple docstring""" A : int = node A : Union[str, Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A : int = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase : Tuple = (0, 0) lowercase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') lowercase : int = GreedyBestFirst(init, goal) lowercase : Union[str, Any] = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase : Dict = 2 for elem in grid: print(elem)
311
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase : Union[str, Any] = get_tests_dir('fixtures/dummy-config.json') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : int = 0 def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Union[str, Any] = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. A : List[Any] = os.path.join(SCREAMING_SNAKE_CASE , '''fake-roberta''' ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) A : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertEqual(type(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE ) # Wrong model type will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): AutoConfig.register('''model''' , SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): AutoConfig.register('''bert''' , SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API A : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE ) A : Tuple = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ): A : Any = AutoConfig.from_pretrained('''bert-base''' ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): A : Dict = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE ): A : Optional[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE ): A : List[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=SCREAMING_SNAKE_CASE ) A : Dict = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE ) A : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" class A ( __snake_case ): __magic_name__ = '''new-model''' try: AutoConfig.register('''new-model''' , SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local A : str = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. A : Any = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub A : List[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
311
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase : Any = 'src/transformers' lowercase : str = 'docs/source/en/tasks' def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A : Union[str, Any] = f.readlines() # Find the start prompt. A : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 A : List[str] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase : int = direct_transformers_import(TRANSFORMERS_PATH) lowercase : str = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase : Optional[int] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : int = TASK_GUIDE_TO_MODELS[task_guide] A : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) A : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def lowerCAmelCase_ ( snake_case__ , snake_case__=False ): '''simple docstring''' A, A, A, A : Optional[int] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) A : Optional[int] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ''' to fix this.''' ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase : List[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
311
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = AltDiffusionPipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) A : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) A : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) A : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) A : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) A : Tuple = CLIPTextModel(SCREAMING_SNAKE_CASE ) A : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) A : str = 77 A : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ) -> Dict: """simple docstring""" if str(SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A : Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE ) else: A : List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE ) A : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : Dict = self.get_dummy_components() torch.manual_seed(0 ) A : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder A : Union[str, Any] = RobertaSeriesModelWithTransformation(SCREAMING_SNAKE_CASE ) A : int = text_encoder A : Tuple = AltDiffusionPipeline(**SCREAMING_SNAKE_CASE ) A : int = alt_pipe.to(SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) A : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) A : List[Any] = '''A photo of an astronaut''' A : Union[str, Any] = alt_pipe(**SCREAMING_SNAKE_CASE ) A : Optional[int] = output.images A : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A : Any = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : str = self.get_dummy_components() A : Dict = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) A : Union[str, Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder A : Union[str, Any] = RobertaSeriesModelWithTransformation(SCREAMING_SNAKE_CASE ) A : Optional[int] = text_encoder A : int = AltDiffusionPipeline(**SCREAMING_SNAKE_CASE ) A : Union[str, Any] = alt_pipe.to(SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) A : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) A : Dict = alt_pipe(**SCREAMING_SNAKE_CASE ) A : Tuple = output.images A : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A : Optional[Any] = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[int] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=SCREAMING_SNAKE_CASE ) A : str = alt_pipe.to(SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) A : Any = '''A painting of a squirrel eating a burger''' A : Union[str, Any] = torch.manual_seed(0 ) A : str = alt_pipe([prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) A : Optional[int] = output.images A : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A : Any = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Dict = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) A : List[str] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE ) A : int = alt_pipe.to(SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = '''A painting of a squirrel eating a burger''' A : Optional[Any] = torch.manual_seed(0 ) A : int = alt_pipe([prompt] , generator=SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''numpy''' ) A : Any = output.images A : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A : Optional[int] = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
311
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] A : Tuple = [] def generate(snake_case__ , snake_case__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A, A : Optional[Any] = arr[k - 1], arr[i] else: # k is odd A, A : Optional[Any] = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": lowercase : List[str] = input('Enter numbers separated by a comma:\n').strip() lowercase : int = [int(item) for item in user_input.split(',')] print(heaps(arr))
311
1
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowercase : str = logging.getLogger(__name__) def lowerCAmelCase_ ( ): '''simple docstring''' A : Any = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=snake_case__ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=snake_case__ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=snake_case__ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=snake_case__ , default='''data/dump''' , help='''The dump file prefix.''' ) A : List[str] = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": A : Optional[int] = BertTokenizer.from_pretrained(args.tokenizer_name ) A : Optional[int] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` A : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": A : Optional[int] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) A : Optional[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` A : Any = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": A : Any = GPTaTokenizer.from_pretrained(args.tokenizer_name ) A : str = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` A : Optional[int] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: A : Optional[int] = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'{len(snake_case__ )} examples to process.' ) A : List[str] = [] A : str = 0 A : Optional[int] = 1_0000 A : Any = time.time() for text in data: A : int = F'{bos} {text.strip()} {sep}' A : Dict = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) rslt.append(snake_case__ ) iter += 1 if iter % interval == 0: A : int = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) A : int = time.time() logger.info('''Finished binarization''' ) logger.info(F'{len(snake_case__ )} examples processed.' ) A : str = F'{args.dump_file}.{args.tokenizer_name}.pickle' A : List[Any] = tokenizer.vocab_size if vocab_size < (1 << 16): A : Optional[Any] = [np.uintaa(snake_case__ ) for d in rslt] else: A : Dict = [np.intaa(snake_case__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(snake_case__ , '''wb''' ) as handle: pickle.dump(rslt_ , snake_case__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
311
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( __snake_case ): __magic_name__ = (UniPCMultistepScheduler,) __magic_name__ = (('''num_inference_steps''', 25),) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[Any] = dict(self.forward_default_kwargs ) A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : int = 0.1 * sample A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A, A : Tuple = sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Optional[Any] = dict(self.forward_default_kwargs ) A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : List[Any] = self.dummy_sample A : int = 0.1 * sample A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) A : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if scheduler is None: A : Dict = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : int = 10 A : Tuple = self.dummy_model() A : Any = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = dict(self.forward_default_kwargs ) A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config() A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): A : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] A : List[str] = dummy_past_residuals[: scheduler.config.solver_order] A : List[Any] = scheduler.timesteps[5] A : Dict = scheduler.timesteps[6] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) A : Dict = self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : int = self.full_loop() A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.scheduler_classes[0] A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = 10 A : Union[str, Any] = self.dummy_model() A : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
311
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase : int = logging.get_logger(__name__) # TODO: upload to AWS lowercase : List[Any] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class A ( __snake_case ): __magic_name__ = '''retribert''' def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Union[str, Any] = vocab_size A : Optional[int] = hidden_size A : Any = num_hidden_layers A : Tuple = num_attention_heads A : Union[str, Any] = hidden_act A : Union[str, Any] = intermediate_size A : Optional[Any] = hidden_dropout_prob A : int = attention_probs_dropout_prob A : List[Any] = max_position_embeddings A : List[str] = type_vocab_size A : int = initializer_range A : Union[str, Any] = layer_norm_eps A : List[str] = share_encoders A : List[str] = projection_dim
311
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __snake_case ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM A : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE ): A : List[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) A : str = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A : Any = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A : int = self.scheduler.step( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).prev_sample A : Dict = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : int = self.numpy_to_pil(SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE )
311
1
'''simple docstring''' from typing import Any def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not input_list: return [] A : Any = [input_list.count(snake_case__ ) for value in input_list] A : Any = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
311
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" A : Optional[Any] = value A : Any = random() A : Node | None = None A : Node | None = None def __repr__( self ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: """simple docstring""" A : Optional[Any] = str(self.value ) + ''' ''' A : Union[str, Any] = str(self.left or '''''' ) A : Any = str(self.right or '''''' ) return value + left + right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A, A : Any = split(root.left , snake_case__ ) return left, root else: A, A : Optional[int] = split(root.right , snake_case__ ) return root, right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A : List[str] = merge(left.right , snake_case__ ) return left else: A : Tuple = merge(snake_case__ , right.left ) return right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = Node(snake_case__ ) A, A : Tuple = split(snake_case__ , snake_case__ ) return merge(merge(snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A, A : Dict = split(snake_case__ , value - 1 ) A, A : Any = split(snake_case__ , snake_case__ ) return merge(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": A : int = insert(snake_case__ , int(arg[1:] ) ) elif arg[0] == "-": A : int = erase(snake_case__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) A : Optional[int] = input() while args != "q": A : str = interact_treap(snake_case__ , snake_case__ ) print(snake_case__ ) A : Union[str, Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
1
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase_ ( snake_case__ , snake_case__=10 ): '''simple docstring''' A : str = [] for _ in range(snake_case__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase_ ( snake_case__ , snake_case__=10 ): '''simple docstring''' A : Any = [] for step in range(snake_case__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A : List[str] = os.path.join(snake_case__ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , snake_case__ ) A : Union[str, Any] = torch.load(snake_case__ ) scheduler.load_state_dict(snake_case__ ) return lrs @require_torch class A ( unittest.TestCase ): def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) for a, b in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , delta=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=SCREAMING_SNAKE_CASE ) A : Dict = torch.tensor([0.4, 0.2, -0.5] ) A : Dict = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A : Tuple = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): A : Tuple = criterion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=SCREAMING_SNAKE_CASE ) A : str = torch.tensor([0.4, 0.2, -0.5] ) A : Dict = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A : Optional[int] = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=SCREAMING_SNAKE_CASE , scale_parameter=SCREAMING_SNAKE_CASE , warmup_init=SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): A : str = criterion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class A ( unittest.TestCase ): __magic_name__ = nn.Linear(50 , 50 ) if is_torch_available() else None __magic_name__ = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __magic_name__ = 10 def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) for a, b in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , delta=SCREAMING_SNAKE_CASE , msg=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : List[str] = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A : Tuple = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A, A : Tuple = data A : Tuple = scheduler_func(self.optimizer , **SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A : Any = unwrap_schedule(SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tol=1e-2 , msg=F'failed for {scheduler_func} in normal scheduler' , ) A : Tuple = scheduler_func(self.optimizer , **SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule A : Dict = unwrap_and_save_reload_schedule(SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , msg=F'failed for {scheduler_func} in save and reload' ) class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : str = fn def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.fn(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @classmethod def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Any = list(map(self , scheduler.lr_lambdas ) )
311
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]: """simple docstring""" A : Tuple = '''bilinear''' A : Optional[int] = max_size A : Dict = short_edge_length def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Tuple = [] for img in imgs: A, A : str = img.shape[:2] # later: provide list and randomly choose index for resize A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if h < w: A, A : Tuple = size, scale * w else: A, A : str = scale * h, size if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size: A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Tuple = newh * scale A : int = neww * scale A : List[str] = int(neww + 0.5 ) A : int = int(newh + 0.5 ) if img.dtype == np.uinta: A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE ) A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A : str = np.asarray(SCREAMING_SNAKE_CASE ) else: A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A : List[Any] = nn.functional.interpolate( SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE ) return img_augs class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A : str = cfg.INPUT.FORMAT A : int = cfg.SIZE_DIVISIBILITY A : Optional[int] = cfg.PAD_VALUE A : Dict = cfg.INPUT.MAX_SIZE_TEST A : Optional[Any] = cfg.MODEL.DEVICE A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) A : List[str] = [im.shape[-2:] for im in images] A : Optional[Any] = [ nn.functional.pad( SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : str = [images] if single_image: assert len(SCREAMING_SNAKE_CASE ) == 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A : Tuple = torch.tensor([im.shape[:2] for im in images] ) A : Dict = self.aug(SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!" A, A : str = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__ ) tensor[:, 1].clamp_(min=0 , max=snake_case__ ) tensor[:, 2].clamp_(min=0 , max=snake_case__ ) tensor[:, 3].clamp_(min=0 , max=snake_case__ )
311
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowercase : Dict = logging.get_logger(__name__) class A ( __snake_case ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
311
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowercase : Tuple = parser.parse_args() lowercase : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
311
1
'''simple docstring''' from math import factorial, pi def lowerCAmelCase_ ( snake_case__ , snake_case__ = 30 ): '''simple docstring''' if not isinstance(snake_case__ , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(snake_case__ , snake_case__ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) A : Tuple = float(snake_case__ ) A : str = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(snake_case__ ) ) def lowerCAmelCase_ ( snake_case__ , snake_case__ = 30 ): '''simple docstring''' if not isinstance(snake_case__ , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(snake_case__ , snake_case__ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) A : str = float(snake_case__ ) A : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
311
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase : str = datasets.utils.logging.get_logger(__name__) lowercase : Union[str, Any] = ['names', 'prefix'] lowercase : Union[str, Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowercase : List[Any] = ['encoding_errors', 'on_bad_lines'] lowercase : Any = ['date_format'] @dataclass class A ( datasets.BuilderConfig ): __magic_name__ = "," __magic_name__ = None __magic_name__ = "infer" __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = "." __magic_name__ = None __magic_name__ = '"' __magic_name__ = 0 __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = None __magic_name__ = 10000 __magic_name__ = None __magic_name__ = "strict" __magic_name__ = "error" __magic_name__ = None def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" if self.delimiter is not None: A : Optional[Any] = self.delimiter if self.column_names is not None: A : Optional[Any] = self.column_names @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : str = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A ( datasets.ArrowBasedBuilder ): __magic_name__ = CsvConfig def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) A : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE , (str, list, tuple) ): A : str = data_files if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : int = [files] A : Optional[int] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A : Tuple = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[str] = [files] A : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> pa.Table: """simple docstring""" if self.config.features is not None: A : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast A : List[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A : int = table_cast(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return pa_table def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ): A : Union[str, Any] = pd.read_csv(SCREAMING_SNAKE_CASE , iterator=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE ): A : Dict = pa.Table.from_pandas(SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE )}: {e}' ) raise
311
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> Dict: """simple docstring""" A : Dict = parent A : Any = 13 A : Optional[Any] = 7 A : Dict = True A : List[Any] = True A : List[str] = True A : List[str] = True A : Tuple = 99 A : List[str] = 384 A : Dict = 2 A : List[Any] = 4 A : Tuple = 37 A : str = '''gelu''' A : Dict = 0.1 A : Tuple = 0.1 A : Dict = 512 A : List[str] = 16 A : List[str] = 2 A : List[str] = 0.02 A : Optional[int] = 3 A : Any = 4 A : Any = 128 A : Optional[Any] = 2 A : Optional[int] = 9 A : Dict = 1 A : Union[str, Any] = None def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Dict = None if self.use_input_mask: A : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A : str = None if self.use_token_type_ids: A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A : Tuple = None A : int = None A : Tuple = None if self.use_labels: A : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Optional[Any] = TFConvBertModel(config=SCREAMING_SNAKE_CASE ) A : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A : Dict = [input_ids, input_mask] A : Dict = model(SCREAMING_SNAKE_CASE ) A : int = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : int = TFConvBertForMaskedLM(config=SCREAMING_SNAKE_CASE ) A : List[str] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : List[str] = self.num_labels A : Optional[Any] = TFConvBertForSequenceClassification(config=SCREAMING_SNAKE_CASE ) A : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A : Dict = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Tuple = self.num_choices A : List[Any] = TFConvBertForMultipleChoice(config=SCREAMING_SNAKE_CASE ) A : Tuple = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A : Union[str, Any] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A : str = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A : Union[str, Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Optional[Any] = self.num_labels A : Union[str, Any] = TFConvBertForTokenClassification(config=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A : Optional[int] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : int = TFConvBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Tuple = self.prepare_config_and_inputs() ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : str = config_and_inputs A : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __magic_name__ = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Union[str, Any] = TFConvBertModelTester(self ) A : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" A, A : str = self.model_tester.prepare_config_and_inputs_for_common() A : Optional[int] = True A : List[Any] = True if hasattr(SCREAMING_SNAKE_CASE , '''use_cache''' ): A : str = True A : Optional[int] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) A : str = getattr(self.model_tester , '''key_length''' , SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = model_class(SCREAMING_SNAKE_CASE ) A : Tuple = len(model(SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE , saved_model=SCREAMING_SNAKE_CASE ) A : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , '''saved_model''' , '''1''' ) A : Optional[int] = tf.keras.models.load_model(SCREAMING_SNAKE_CASE ) A : str = model(SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: A : str = outputs['''encoder_hidden_states'''] A : List[Any] = outputs['''encoder_attentions'''] else: A : int = outputs['''hidden_states'''] A : Optional[Any] = outputs['''attentions'''] self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) A : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Dict = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A, A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A : Tuple = True A : List[Any] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) A : Tuple = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) A : Optional[Any] = getattr(self.model_tester , '''key_length''' , SCREAMING_SNAKE_CASE ) A : str = getattr(self.model_tester , '''key_length''' , SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(SCREAMING_SNAKE_CASE ): A : Dict = len(SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 , 0 ) A : Any = outputs.decoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(SCREAMING_SNAKE_CASE ): A : Tuple = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A : Any = True A : int = False A : str = model_class(SCREAMING_SNAKE_CASE ) A : Optional[int] = model(self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) A : int = len(SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: A : Any = model_class(SCREAMING_SNAKE_CASE ) A : Optional[int] = model(self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A : Optional[int] = True A : Optional[Any] = model_class(SCREAMING_SNAKE_CASE ) A : Dict = model(self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine A : Union[str, Any] = True A : Any = True A : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) A : int = model(self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(SCREAMING_SNAKE_CASE ) @require_tf class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[int] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) A : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) A : List[str] = model(SCREAMING_SNAKE_CASE )[0] A : Tuple = [1, 6, 768] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) A : Union[str, Any] = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 )
311
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : int = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class A ( __snake_case ): __magic_name__ = '''sew''' def __init__( self , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE="group" , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.05 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) A : Optional[Any] = hidden_size A : Any = feat_extract_norm A : Optional[int] = feat_extract_activation A : Tuple = list(SCREAMING_SNAKE_CASE ) A : List[str] = list(SCREAMING_SNAKE_CASE ) A : List[str] = list(SCREAMING_SNAKE_CASE ) A : int = conv_bias A : List[Any] = num_conv_pos_embeddings A : Tuple = num_conv_pos_embedding_groups A : int = len(self.conv_dim ) A : Dict = num_hidden_layers A : Optional[int] = intermediate_size A : Any = squeeze_factor A : int = hidden_act A : str = num_attention_heads A : Dict = hidden_dropout A : Optional[Any] = attention_dropout A : List[str] = activation_dropout A : Union[str, Any] = feat_proj_dropout A : Union[str, Any] = final_dropout A : int = layerdrop A : Optional[Any] = layer_norm_eps A : Any = initializer_range A : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A : Optional[Any] = apply_spec_augment A : Optional[Any] = mask_time_prob A : Union[str, Any] = mask_time_length A : Optional[Any] = mask_time_min_masks A : str = mask_feature_prob A : Tuple = mask_feature_length A : Any = mask_feature_min_masks # ctc loss A : List[Any] = ctc_loss_reduction A : Dict = ctc_zero_infinity # sequence classification A : int = use_weighted_layer_sum A : Optional[int] = classifier_proj_size @property def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
311
1
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase : Dict = getLogger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = 8 , snake_case__ = 1024 , snake_case__="val" , snake_case__=None , snake_case__=False , snake_case__="summarization" , snake_case__=None , snake_case__=1 , snake_case__ = None , snake_case__="" , **snake_case__ , ): '''simple docstring''' A : str = str(snake_case__ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=snake_case__ ) A : Tuple = Path(snake_case__ ) A : str = save_dir.joinpath(F'rank_{local_rank}_output.json' ) torch.cuda.set_device(snake_case__ ) A : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ ).cuda() if fpaa: A : Tuple = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case__ , snake_case__ ) # update config with task specific params A : Optional[int] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: A : int = num_return_sequences A : int = AutoTokenizer.from_pretrained(snake_case__ ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: A : Union[str, Any] = tokenizer.model_max_length if prefix is None: A : str = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' A : Tuple = SeqaSeqDataset( snake_case__ , snake_case__ , snake_case__ , max_target_length=1024 , type_path=snake_case__ , n_obs=snake_case__ , prefix=snake_case__ , **snake_case__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. A : str = ds.make_sortish_sampler(snake_case__ , distributed=snake_case__ , add_extra_examples=snake_case__ , shuffle=snake_case__ ) A : str = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=snake_case__ , collate_fn=ds.collate_fn ) A : Any = [] for batch in tqdm(snake_case__ ): A : Optional[int] = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=snake_case__ , num_beams=snake_case__ , **snake_case__ , ) A : Optional[int] = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) A : List[str] = batch['''ids'''] if num_return_sequences > 1: A : Optional[int] = chunks(snake_case__ , snake_case__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case__ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(snake_case__ , snake_case__ ) return results, sampler.num_replicas def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=snake_case__ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=snake_case__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=snake_case__ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=snake_case__ , default=snake_case__ ) parser.add_argument( '''--type_path''' , type=snake_case__ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=snake_case__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case__ , default=8 , required=snake_case__ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=snake_case__ , default=-1 , required=snake_case__ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=snake_case__ , default=snake_case__ , required=snake_case__ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=snake_case__ , default=1 , required=snake_case__ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=snake_case__ , default=600 , required=snake_case__ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument('''--tgt_lang''' , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument( '''--prefix''' , type=snake_case__ , required=snake_case__ , default=snake_case__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) A : str = time.time() A, A : str = parser.parse_known_args() A : Dict = parse_numeric_n_bool_cl_kwargs(snake_case__ ) if generate_kwargs and args.local_rank <= 0: print(F'parsed the following generate kwargs: {generate_kwargs}' ) A : List[str] = Path(args.save_dir + '''_tmp''' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) # this handles locking. A : str = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(F'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. A : Tuple = {} if args.src_lang is not None: A : List[Any] = args.src_lang if args.tgt_lang is not None: A : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case__ ) A, A : Any = eval_data_dir( args.data_dir , snake_case__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case__ , **snake_case__ , ) if args.local_rank <= 0: A : Any = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case__ ) A : List[str] = gather_results_from_each_node(snake_case__ , snake_case__ , args.sync_timeout ) A : List[Any] = combine_partial_results(snake_case__ ) if args.num_return_sequences > 1: A : int = save_dir.joinpath('''pseudolabel_results.json''' ) print(F'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(snake_case__ , snake_case__ ) return A : Tuple = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(snake_case__ ) as f: A : List[str] = [x.rstrip() for x in f.readlines()][: len(snake_case__ )] # Calculate metrics, save metrics, and save _generations.txt A : Optional[Any] = '''translation''' in args.task A : List[Any] = calculate_bleu if calc_bleu else calculate_rouge A : List[str] = '''bleu''' if calc_bleu else '''rouge''' A : Dict = score_fn(snake_case__ , snake_case__ ) A : Optional[Any] = len(snake_case__ ) A : Tuple = time.time() - start_time A : Union[str, Any] = round(runtime / metrics['''n_obs'''] , 4 ) A : Dict = num_replicas # TODO(@stas00): add whatever metadata to metrics A : Any = save_dir.joinpath(F'{args.type_path}_{metric_name}.json' ) save_json(snake_case__ , snake_case__ , indent=snake_case__ ) print(snake_case__ ) write_txt_file(snake_case__ , save_dir.joinpath(F'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(snake_case__ , save_dir.joinpath(F'{args.type_path}.target' ) ) else: shutil.rmtree(snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = [] for partial_result in partial_results: records.extend(snake_case__ ) A : Optional[int] = sorted(snake_case__ , key=lambda snake_case__ : x["id"] ) A : int = [x['''pred'''] for x in records] return preds def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[int] = time.time() logger.info('''waiting for all nodes to finish''' ) A : List[Any] = None while (time.time() - start_wait) < timeout: A : Optional[Any] = list(save_dir.glob('''rank_*.json''' ) ) if len(snake_case__ ) < num_replicas: continue try: # make sure all json files are fully saved A : Union[str, Any] = lmap(snake_case__ , snake_case__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
311
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = SwinConfig() A : List[Any] = swin_name.split('''_''' ) A : Tuple = name_split[1] A : Union[str, Any] = int(name_split[4] ) A : str = int(name_split[3][-1] ) if model_size == "tiny": A : Optional[int] = 96 A : Optional[Any] = (2, 2, 6, 2) A : Any = (3, 6, 12, 24) elif model_size == "small": A : Optional[int] = 96 A : str = (2, 2, 18, 2) A : Tuple = (3, 6, 12, 24) elif model_size == "base": A : int = 128 A : Optional[Any] = (2, 2, 18, 2) A : List[str] = (4, 8, 16, 32) else: A : Dict = 192 A : Optional[Any] = (2, 2, 18, 2) A : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: A : Dict = 2_1841 else: A : str = 1000 A : List[str] = '''huggingface/label-files''' A : Any = '''imagenet-1k-id2label.json''' A : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) A : str = {int(snake_case__ ): v for k, v in idalabel.items()} A : Tuple = idalabel A : Tuple = {v: k for k, v in idalabel.items()} A : Tuple = img_size A : Dict = num_classes A : Optional[Any] = embed_dim A : str = depths A : str = num_heads A : Optional[int] = window_size return config def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if "patch_embed.proj" in name: A : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: A : Optional[int] = '''encoder.''' + name if "attn.proj" in name: A : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A : Any = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A : str = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": A : Tuple = '''layernorm.weight''' if name == "norm.bias": A : Tuple = '''layernorm.bias''' if "head" in name: A : Any = name.replace('''head''' , '''classifier''' ) else: A : List[Any] = '''swin.''' + name return name def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A : Dict = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A : Dict = key.split('''.''' ) A : Optional[int] = int(key_split[1] ) A : List[str] = int(key_split[3] ) A : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A : Any = val[:dim, :] A : Dict = val[ dim : dim * 2, : ] A : List[str] = val[-dim:, :] else: A : Any = val[ :dim ] A : Optional[int] = val[ dim : dim * 2 ] A : Any = val[ -dim: ] else: A : str = val return orig_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Tuple = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A : Optional[Any] = get_swin_config(snake_case__ ) A : Optional[int] = SwinForImageClassification(snake_case__ ) model.eval() A : List[str] = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A : Any = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) A : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' ) A : Any = timm_model(inputs['''pixel_values'''] ) A : Optional[Any] = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase : int = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
311
1