code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __a : Any , __a : Optional[Any]=13 , __a : int=32 , __a : List[str]=3 , __a : int=4 , __a : Tuple=[10, 20, 30, 40] , __a : Optional[int]=[2, 2, 3, 2] , __a : int=True , __a : Tuple=True , __a : Union[str, Any]=37 , __a : Dict="gelu" , __a : int=10 , __a : Any=0.02 , __a : Dict=["stage2", "stage3", "stage4"] , __a : Tuple=[2, 3, 4] , __a : Dict=None , ) -> Dict: _UpperCamelCase : Optional[int] = parent _UpperCamelCase : Any = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Any = num_stages _UpperCamelCase : int = hidden_sizes _UpperCamelCase : Tuple = depths _UpperCamelCase : Dict = is_training _UpperCamelCase : List[Any] = use_labels _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Optional[Any] = hidden_act _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : str = initializer_range _UpperCamelCase : Dict = out_features _UpperCamelCase : List[Any] = out_indices _UpperCamelCase : str = scope def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Optional[int] = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase : int = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : int , __a : int , __a : Optional[int] ) -> List[Any]: _UpperCamelCase : Tuple = ConvNextVaModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Tuple , __a : Dict , __a : int ) -> Union[str, Any]: _UpperCamelCase : Any = ConvNextVaForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[Any] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[Any] , __a : List[str] , __a : Optional[int] ) -> int: _UpperCamelCase : List[Any] = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : Any = ConvNextVaBackbone(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : List[str] = self.prepare_config_and_inputs() _UpperCamelCase : Any = config_and_inputs _UpperCamelCase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : Tuple = self.prepare_config_and_inputs() _UpperCamelCase : Any = config_and_inputs _UpperCamelCase : Optional[int] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Tuple = False def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: _UpperCamelCase : Dict = ConvNextVaModelTester(self ) _UpperCamelCase : Tuple = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Any = True if model_class.__name__ in [ *get_values(__a ), *get_values(__a ), ]: continue _UpperCamelCase : List[Any] = model_class(__a ) model.to(__a ) model.train() _UpperCamelCase : List[str] = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Union[str, Any] = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Tuple = False _UpperCamelCase : int = True if ( model_class.__name__ in [*get_values(__a ), *get_values(__a )] or not model_class.supports_gradient_checkpointing ): continue _UpperCamelCase : List[str] = model_class(__a ) model.to(__a ) model.gradient_checkpointing_enable() model.train() _UpperCamelCase : int = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Dict = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : str = model_class(__a ) _UpperCamelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[Any] = [*signature.parameters.keys()] _UpperCamelCase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: def check_hidden_states_output(__a : Optional[int] , __a : List[Any] , __a : int ): _UpperCamelCase : Optional[int] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : int = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Tuple = True check_hidden_states_output(__a , __a , __a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[int] = ConvNextVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> Any: """simple docstring""" _UpperCamelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : Union[str, Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__a ) _UpperCamelCase : Any = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = preprocessor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Tuple = model(**__a ) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : List[str] = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
351
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = old_name if "patch_embed" in old_name: _UpperCamelCase : Union[str, Any] = old_name.split("." ) if layer == "0": _UpperCamelCase : str = old_name.replace("0" ,"convolution1" ) elif layer == "1": _UpperCamelCase : int = old_name.replace("1" ,"batchnorm_before" ) elif layer == "3": _UpperCamelCase : List[str] = old_name.replace("3" ,"convolution2" ) else: _UpperCamelCase : Union[str, Any] = old_name.replace("4" ,"batchnorm_after" ) if "network" in old_name and re.search(r"\d\.\d" ,lowerCAmelCase__ ): _UpperCamelCase : List[Any] = R'''\b\d{2}\b''' if bool(re.search(lowerCAmelCase__ ,lowerCAmelCase__ ) ): _UpperCamelCase : Optional[int] = re.search(r"\d\.\d\d." ,lowerCAmelCase__ ).group() else: _UpperCamelCase : Tuple = re.search(r"\d\.\d." ,lowerCAmelCase__ ).group() if int(match[0] ) < 6: _UpperCamelCase : str = old_name.replace(lowerCAmelCase__ ,"" ) _UpperCamelCase : List[str] = trimmed_name.replace("network" ,match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _UpperCamelCase : List[Any] = '''intermediate_stages.''' + trimmed_name else: _UpperCamelCase : Dict = old_name.replace(lowerCAmelCase__ ,"" ) if int(match[2] ) < num_meta4D_last_stage: _UpperCamelCase : int = trimmed_name.replace("network" ,"meta4D_layers.blocks." + match[2] ) else: _UpperCamelCase : Optional[Any] = str(int(match[2] ) - num_meta4D_last_stage ) _UpperCamelCase : str = trimmed_name.replace("network" ,"meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _UpperCamelCase : int = trimmed_name.replace("norm1" ,"layernorm1" ) elif "norm2" in old_name: _UpperCamelCase : int = trimmed_name.replace("norm2" ,"layernorm2" ) elif "fc1" in old_name: _UpperCamelCase : str = trimmed_name.replace("fc1" ,"linear_in" ) elif "fc2" in old_name: _UpperCamelCase : Optional[Any] = trimmed_name.replace("fc2" ,"linear_out" ) _UpperCamelCase : Optional[Any] = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r".\d." ,lowerCAmelCase__ ): _UpperCamelCase : str = old_name.replace("network" ,"intermediate_stages" ) if "fc" in new_name: _UpperCamelCase : str = new_name.replace("fc" ,"convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _UpperCamelCase : Any = new_name.replace("norm1" ,"batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _UpperCamelCase : List[Any] = new_name.replace("norm2" ,"batchnorm_after" ) if "proj" in new_name: _UpperCamelCase : int = new_name.replace("proj" ,"projection" ) if "dist_head" in new_name: _UpperCamelCase : List[str] = new_name.replace("dist_head" ,"distillation_classifier" ) elif "head" in new_name: _UpperCamelCase : Tuple = new_name.replace("head" ,"classifier" ) elif "patch_embed" in new_name: _UpperCamelCase : Any = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _UpperCamelCase : Optional[Any] = new_name.replace("norm" ,"layernorm" ) _UpperCamelCase : Any = '''efficientformer.''' + new_name else: _UpperCamelCase : List[Any] = '''efficientformer.encoder.''' + new_name return new_name def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" for key in checkpoint.copy().keys(): _UpperCamelCase : Any = checkpoint.pop(lowerCAmelCase__ ) _UpperCamelCase : str = val return checkpoint def lowercase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase : str = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) return image def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = torch.load(lowerCAmelCase__ ,map_location="cpu" )['''model'''] _UpperCamelCase : Any = EfficientFormerConfig.from_json_file(lowerCAmelCase__ ) _UpperCamelCase : int = EfficientFormerForImageClassificationWithTeacher(lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = '''_'''.join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _UpperCamelCase : Optional[Any] = config.depths[-1] - config.num_metaad_blocks + 1 _UpperCamelCase : Optional[int] = convert_torch_checkpoint(lowerCAmelCase__ ,lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() _UpperCamelCase : List[Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image _UpperCamelCase : Optional[Any] = prepare_img() _UpperCamelCase : Optional[int] = 256 _UpperCamelCase : Any = 224 _UpperCamelCase : Tuple = EfficientFormerImageProcessor( size={"shortest_edge": image_size} ,crop_size={"height": crop_size, "width": crop_size} ,resample=pillow_resamplings["bicubic"] ,) _UpperCamelCase : Any = processor(images=lowerCAmelCase__ ,return_tensors="pt" ).pixel_values # original processing pipeline _UpperCamelCase : Any = Compose( [ Resize(lowerCAmelCase__ ,interpolation=pillow_resamplings["bicubic"] ), CenterCrop(lowerCAmelCase__ ), ToTensor(), Normalize(lowerCAmelCase__ ,lowerCAmelCase__ ), ] ) _UpperCamelCase : Union[str, Any] = image_transforms(lowerCAmelCase__ ).unsqueeze(0 ) assert torch.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = model(lowerCAmelCase__ ) _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[int] = (1, 1_000) if "l1" in model_name: _UpperCamelCase : Any = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] ,lowerCAmelCase__ ,atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _UpperCamelCase : List[Any] = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] ,lowerCAmelCase__ ,atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _UpperCamelCase : str = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(lowerCAmelCase__ ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' ,commit_message="Add model" ,use_temp_dir=lowerCAmelCase__ ,) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' ,commit_message="Add image processor" ,use_temp_dir=lowerCAmelCase__ ,) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowerCamelCase__ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
352
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
0
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: _UpperCamelCase : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__a , "num_attention_heads" ) ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __a : Optional[int] , __a : str=13 , __a : int=64 , __a : str=3 , __a : Tuple=3 , __a : Optional[Any]=2 , __a : Tuple=1 , __a : Union[str, Any]=16 , __a : Any=[128, 256, 384] , __a : List[Any]=[4, 6, 8] , __a : Union[str, Any]=[2, 3, 4] , __a : Union[str, Any]=[16, 16, 16] , __a : Optional[Any]=0 , __a : List[str]=[2, 2, 2] , __a : int=[2, 2, 2] , __a : List[str]=0.02 , __a : Tuple=True , __a : int=True , __a : Dict=2 , ) -> List[Any]: _UpperCamelCase : Tuple = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : Tuple = num_channels _UpperCamelCase : Any = kernel_size _UpperCamelCase : Any = stride _UpperCamelCase : Dict = padding _UpperCamelCase : List[str] = hidden_sizes _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : List[Any] = depths _UpperCamelCase : List[Any] = key_dim _UpperCamelCase : Dict = drop_path_rate _UpperCamelCase : Tuple = patch_size _UpperCamelCase : List[Any] = attention_ratio _UpperCamelCase : List[Any] = mlp_ratio _UpperCamelCase : List[Any] = initializer_range _UpperCamelCase : List[str] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _UpperCamelCase : Optional[Any] = is_training _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Any = num_labels _UpperCamelCase : Any = initializer_range def __SCREAMING_SNAKE_CASE ( self : str ) -> str: _UpperCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Union[str, Any] , __a : Optional[Any] , __a : int ) -> Optional[Any]: _UpperCamelCase : int = LevitModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Dict = model(__a ) _UpperCamelCase : Optional[Any] = (self.image_size, self.image_size) _UpperCamelCase, _UpperCamelCase : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): _UpperCamelCase : str = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _UpperCamelCase : Tuple = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any] , __a : Any , __a : str ) -> Tuple: _UpperCamelCase : List[str] = self.num_labels _UpperCamelCase : Optional[int] = LevitForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Union[str, Any] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: _UpperCamelCase : Tuple = self.prepare_config_and_inputs() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = config_and_inputs _UpperCamelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :List[Any] = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :Optional[int] = False SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Optional[int] = False SCREAMING_SNAKE_CASE__ :Tuple = False def __SCREAMING_SNAKE_CASE ( self : str ) -> str: _UpperCamelCase : Dict = LevitModelTester(self ) _UpperCamelCase : int = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: return @unittest.skip(reason="Levit does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: pass @unittest.skip(reason="Levit does not output attentions" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase, _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : int = [*signature.parameters.keys()] _UpperCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: def check_hidden_states_output(__a : List[str] , __a : List[Any] , __a : List[Any] ): _UpperCamelCase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : Dict = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : List[Any] = outputs.hidden_states _UpperCamelCase : int = len(self.model_tester.depths ) + 1 self.assertEqual(len(__a ) , __a ) _UpperCamelCase : Tuple = (self.model_tester.image_size, self.model_tester.image_size) _UpperCamelCase, _UpperCamelCase : int = image_size[0], image_size[1] for _ in range(4 ): _UpperCamelCase : str = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _UpperCamelCase : Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Any = True check_hidden_states_output(__a , __a , __a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict , __a : int , __a : Union[str, Any]=False ) -> Tuple: _UpperCamelCase : Optional[int] = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: if not self.model_tester.is_training: return _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Dict = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__a ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _UpperCamelCase : str = model_class(__a ) model.to(__a ) model.train() _UpperCamelCase : Tuple = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Optional[Any] = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase, _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _UpperCamelCase : Tuple = False _UpperCamelCase : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(__a ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _UpperCamelCase : Tuple = model_class(__a ) model.gradient_checkpointing_enable() model.to(__a ) model.train() _UpperCamelCase : List[str] = self._prepare_for_class(__a , __a , return_labels=__a ) _UpperCamelCase : Optional[Any] = model(**__a ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Dict = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__a ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type['title']}''' ): _UpperCamelCase : int = problem_type["title"] _UpperCamelCase : str = problem_type["num_labels"] _UpperCamelCase : Union[str, Any] = model_class(__a ) model.to(__a ) model.train() _UpperCamelCase : List[Any] = self._prepare_for_class(__a , __a , return_labels=__a ) if problem_type["num_labels"] > 1: _UpperCamelCase : str = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) _UpperCamelCase : List[str] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__a ) as warning_list: _UpperCamelCase : str = model(**__a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = LevitModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[int] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __a ) _UpperCamelCase : List[Any] = self.default_image_processor _UpperCamelCase : Union[str, Any] = prepare_img() _UpperCamelCase : Tuple = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : List[str] = model(**__a ) # verify the logits _UpperCamelCase : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : Union[str, Any] = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
353
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a ) }
310
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] , __a : int=13 , __a : Optional[Any]=7 , __a : Optional[Any]=True , __a : Any=True , __a : Optional[int]=True , __a : List[Any]=True , __a : List[str]=99 , __a : List[Any]=32 , __a : Tuple=2 , __a : Tuple=4 , __a : Dict=37 , __a : Optional[int]="gelu" , __a : Any=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : List[str]=16 , __a : Union[str, Any]=2 , __a : Tuple=0.02 , __a : Dict=3 , __a : List[str]=4 , __a : Any=None , __a : Dict=1000 , ) -> Optional[int]: _UpperCamelCase : str = parent _UpperCamelCase : Optional[int] = batch_size _UpperCamelCase : Optional[int] = seq_length _UpperCamelCase : Union[str, Any] = is_training _UpperCamelCase : List[Any] = use_input_mask _UpperCamelCase : Optional[Any] = use_token_type_ids _UpperCamelCase : str = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : str = intermediate_size _UpperCamelCase : Optional[Any] = hidden_act _UpperCamelCase : Optional[int] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : Union[str, Any] = type_vocab_size _UpperCamelCase : Optional[Any] = type_sequence_label_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : Tuple = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : Union[str, Any] = scope _UpperCamelCase : Optional[int] = range_bbox def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCamelCase : Union[str, Any] = bbox[i, j, 3] _UpperCamelCase : Union[str, Any] = bbox[i, j, 1] _UpperCamelCase : str = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCamelCase : Union[str, Any] = bbox[i, j, 2] _UpperCamelCase : Dict = bbox[i, j, 0] _UpperCamelCase : Tuple = t _UpperCamelCase : str = tf.convert_to_tensor(a__ ) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase : int = None _UpperCamelCase : str = None _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase : Optional[Any] = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[str, Any] , __a : str , __a : List[Any] , __a : List[Any] , __a : Any , __a : List[Any] , __a : int , __a : List[str] ) -> Optional[Any]: _UpperCamelCase : str = TFLayoutLMModel(config=a__ ) _UpperCamelCase : List[Any] = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) _UpperCamelCase : Optional[int] = model(a__ , a__ , token_type_ids=a__ ) _UpperCamelCase : List[str] = model(a__ , a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Optional[Any] , __a : Dict , __a : Dict , __a : List[Any] , __a : Tuple , __a : Any , __a : int , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : List[Any] = TFLayoutLMForMaskedLM(config=a__ ) _UpperCamelCase : Optional[int] = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Tuple , __a : Union[str, Any] , __a : str , __a : List[Any] , __a : Any , __a : Tuple , __a : str , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : Tuple = self.num_labels _UpperCamelCase : List[Any] = TFLayoutLMForSequenceClassification(config=a__ ) _UpperCamelCase : str = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[int] , __a : Any , __a : int , __a : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : Optional[Any] , __a : Tuple ) -> List[str]: _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Tuple = TFLayoutLMForTokenClassification(config=a__ ) _UpperCamelCase : Tuple = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : str , __a : Optional[Any] , __a : Tuple , __a : Optional[Any] , __a : Union[str, Any] , __a : int , __a : Union[str, Any] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = TFLayoutLMForQuestionAnswering(config=a__ ) _UpperCamelCase : Tuple = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : int = config_and_inputs _UpperCamelCase : Dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ :List[Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :int = True SCREAMING_SNAKE_CASE__ :List[str] = 10 def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: _UpperCamelCase : List[str] = TFLayoutLMModelTester(self ) _UpperCamelCase : Union[str, Any] = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Union[str, Any] = TFLayoutLMModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: pass def lowercase__ ( ) -> Dict: """simple docstring""" _UpperCamelCase : int = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _UpperCamelCase : Optional[Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _UpperCamelCase : str = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _UpperCamelCase : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _UpperCamelCase : Optional[int] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: _UpperCamelCase : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase : Union[str, Any] = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the sequence output on [0, :3, :3] _UpperCamelCase : Any = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-3 ) ) # test the pooled output on [1, :3] _UpperCamelCase : List[Any] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , a__ , atol=1e-3 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Any = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase : Optional[int] = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _UpperCamelCase : Dict = outputs.loss _UpperCamelCase : Optional[Any] = (2,) self.assertEqual(loss.shape , a__ ) # test the shape of the logits _UpperCamelCase : List[str] = outputs.logits _UpperCamelCase : Optional[int] = (2, 2) self.assertEqual(logits.shape , a__ ) @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Dict = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase : List[Any] = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) # test the shape of the logits _UpperCamelCase : int = outputs.logits _UpperCamelCase : Any = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , a__ ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: _UpperCamelCase : Dict = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _UpperCamelCase : Optional[Any] = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the shape of the logits _UpperCamelCase : Optional[Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , a__ ) self.assertEqual(outputs.end_logits.shape , a__ )
354
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=8 ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCamelCase : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , __a : UNetaDConditionModel , __a : DDPMScheduler , __a : VQModel , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) _UpperCamelCase : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[int] , __a : int , __a : List[str] , __a : Optional[int] , __a : Tuple , __a : List[str] ) -> List[Any]: if latents is None: _UpperCamelCase : List[str] = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _UpperCamelCase : Dict = latents.to(UpperCamelCase_ ) _UpperCamelCase : List[str] = latents * scheduler.init_noise_sigma return latents def __SCREAMING_SNAKE_CASE ( self : int , __a : List[str]=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCamelCase : int = torch.device(F'''cuda:{gpu_id}''' ) _UpperCamelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[str]=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _UpperCamelCase : str = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCamelCase : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCamelCase, _UpperCamelCase : List[Any] = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. _UpperCamelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self : List[str] , __a : Union[torch.FloatTensor, List[torch.FloatTensor]] , __a : Union[torch.FloatTensor, List[torch.FloatTensor]] , __a : torch.FloatTensor , __a : int = 512 , __a : int = 512 , __a : int = 100 , __a : float = 4.0 , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , ) -> str: _UpperCamelCase : Dict = self._execution_device _UpperCamelCase : Union[str, Any] = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _UpperCamelCase : Tuple = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _UpperCamelCase : Optional[int] = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _UpperCamelCase : Any = torch.cat(UpperCamelCase_ , dim=0 ) _UpperCamelCase : int = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _UpperCamelCase : Any = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) _UpperCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) _UpperCamelCase : Optional[int] = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) _UpperCamelCase : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) _UpperCamelCase : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) _UpperCamelCase : Optional[Any] = self.scheduler.timesteps _UpperCamelCase : Optional[int] = self.movq.config.latent_channels _UpperCamelCase, _UpperCamelCase : Tuple = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent _UpperCamelCase : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance _UpperCamelCase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCamelCase : List[str] = {"image_embeds": image_embeds, "hint": hint} _UpperCamelCase : Union[str, Any] = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: _UpperCamelCase, _UpperCamelCase : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCamelCase, _UpperCamelCase : Optional[Any] = noise_pred.chunk(2 ) _UpperCamelCase, _UpperCamelCase : List[Any] = variance_pred.chunk(2 ) _UpperCamelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCamelCase : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCamelCase, _UpperCamelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase : Any = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing _UpperCamelCase : str = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _UpperCamelCase : Any = image * 0.5 + 0.5 _UpperCamelCase : Any = image.clamp(0 , 1 ) _UpperCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCamelCase : Union[str, Any] = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
355
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
310
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowerCamelCase__ = pd.read_csv("sample_data.csv", header=None) lowerCamelCase__ = df.shape[:1][0] # If you're using some other dataset input the target column lowerCamelCase__ = df.iloc[:, 1:2] lowerCamelCase__ = actual_data.values.reshape(len_data, 1) lowerCamelCase__ = MinMaxScaler().fit_transform(actual_data) lowerCamelCase__ = 10 lowerCamelCase__ = 5 lowerCamelCase__ = 20 lowerCamelCase__ = len_data - periods * look_back lowerCamelCase__ = actual_data[:division] lowerCamelCase__ = actual_data[division - look_back :] lowerCamelCase__ = [], [] lowerCamelCase__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowerCamelCase__ = np.array(train_x) lowerCamelCase__ = np.array(test_x) lowerCamelCase__ = np.array([list(i.ravel()) for i in train_y]) lowerCamelCase__ = np.array([list(i.ravel()) for i in test_y]) lowerCamelCase__ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") lowerCamelCase__ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) lowerCamelCase__ = model.predict(x_test)
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = IFInpaintingPipeline SCREAMING_SNAKE_CASE__ :Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ :Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ :Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: return self._get_dummy_components() def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Union[str, Any] , __a : int=0 ) -> Dict: if str(_A ).startswith("mps" ): _UpperCamelCase : Any = torch.manual_seed(_A ) else: _UpperCamelCase : Any = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) _UpperCamelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) _UpperCamelCase : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> int: self._test_save_load_local() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
357
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowerCamelCase__ = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowerCamelCase__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowerCamelCase__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
310
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Any , *__a : Tuple , **__a : Union[str, Any] ) -> Optional[int]: warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
358
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl" def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Union[str, Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
310
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Optional[int] , **__a : Optional[int] ) -> Optional[int]: super().__init__(**A__ ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , "vision" ) self.check_model_type(A__ ) def __call__( self : Union[str, Any] , __a : List[str] , __a : Dict = None , **__a : Optional[Any] , ) -> Optional[int]: if "text_queries" in kwargs: _UpperCamelCase : Tuple = kwargs.pop("text_queries" ) if isinstance(A__ , (str, Image.Image) ): _UpperCamelCase : Any = {"image": image, "candidate_labels": candidate_labels} else: _UpperCamelCase : Optional[int] = image _UpperCamelCase : Tuple = super().__call__(A__ , **A__ ) return results def __SCREAMING_SNAKE_CASE ( self : List[str] , **__a : Tuple ) -> List[str]: _UpperCamelCase : Optional[int] = {} if "threshold" in kwargs: _UpperCamelCase : str = kwargs["threshold"] if "top_k" in kwargs: _UpperCamelCase : Dict = kwargs["top_k"] return {}, {}, postprocess_params def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = load_image(inputs["image"] ) _UpperCamelCase : List[str] = inputs["candidate_labels"] if isinstance(A__ , A__ ): _UpperCamelCase : Any = candidate_labels.split("," ) _UpperCamelCase : str = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(A__ ): _UpperCamelCase : Tuple = self.tokenizer(A__ , return_tensors=self.framework ) _UpperCamelCase : Dict = self.image_processor(A__ , return_tensors=self.framework ) yield { "is_last": i == len(A__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] ) -> Optional[int]: _UpperCamelCase : Dict = model_inputs.pop("target_size" ) _UpperCamelCase : List[str] = model_inputs.pop("candidate_label" ) _UpperCamelCase : Tuple = model_inputs.pop("is_last" ) _UpperCamelCase : Dict = self.model(**A__ ) _UpperCamelCase : Optional[int] = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def __SCREAMING_SNAKE_CASE ( self : Any , __a : Any , __a : str=0.1 , __a : List[str]=None ) -> Tuple: _UpperCamelCase : List[Any] = [] for model_output in model_outputs: _UpperCamelCase : List[str] = model_output["candidate_label"] _UpperCamelCase : Any = BaseModelOutput(A__ ) _UpperCamelCase : int = self.image_processor.post_process_object_detection( outputs=A__ , threshold=A__ , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): _UpperCamelCase : List[str] = outputs["scores"][index].item() _UpperCamelCase : List[str] = self._get_bounding_box(outputs["boxes"][index][0] ) _UpperCamelCase : str = {"score": score, "label": label, "box": box} results.append(A__ ) _UpperCamelCase : Optional[Any] = sorted(A__ , key=lambda __a : x["score"] , reverse=A__ ) if top_k: _UpperCamelCase : Dict = results[:top_k] return results def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Union[str, Any] ) -> str: if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Dict = box.int().tolist() _UpperCamelCase : int = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
359
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( *__a : int , **__a : int ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> Optional[Any]: _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Union[str, Any] ) -> int: _UpperCamelCase : Any = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets _UpperCamelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _UpperCamelCase : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase : List[Any] = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[str] = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = "facebook/detr-resnet-50" _UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Dict = "facebook/detr-resnet-50" _UpperCamelCase : Optional[Any] = pipeline("object-detection" , model=__a ) _UpperCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase : Tuple = 0.99_85 _UpperCamelCase : List[Any] = "facebook/detr-resnet-50" _UpperCamelCase : List[str] = pipeline("object-detection" , model=__a ) _UpperCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase : int = 0.99_93 _UpperCamelCase : str = pipeline("object-detection" , model=__a , threshold=__a ) _UpperCamelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
310
0
import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ) -> str: """simple docstring""" _UpperCamelCase : Union[str, Any] = True while ask_again: _UpperCamelCase : Union[str, Any] = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_=[] ,lowercase_=None ,lowercase_=0 ) -> Any: """simple docstring""" _UpperCamelCase : Any = BulletMenu(lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Tuple = int(lowercase_ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Any = int(lowercase_ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Union[str, Any] = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = int(lowercase_ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Optional[Any] = int(lowercase_ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class __SCREAMING_SNAKE_CASE ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Dict , __a : Tuple , __a : List[Any] , __a : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Union[str, Any] = super()._format_usage(a__ , a__ , a__ , a__ ) _UpperCamelCase : Optional[Any] = usage.replace("<command> [<args>] " , "" ) return usage
360
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {"UserAgent": UserAgent().random} def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : str = script.contents[0] _UpperCamelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : str ) -> Tuple: _UpperCamelCase : List[str] = F'''https://www.instagram.com/{username}/''' _UpperCamelCase : Optional[Any] = self.get_json() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> dict: _UpperCamelCase : int = requests.get(self.url , headers=__a ).text _UpperCamelCase : Union[str, Any] = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return self.user_data["username"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["full_name"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["biography"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["external_url"] @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: return self.user_data["is_verified"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def lowercase__ ( lowercase_ = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCamelCase : Union[str, Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
310
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowerCamelCase__ = "base_with_context" def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) _UpperCamelCase : Dict = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=lowercase_ ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCamelCase : str = weights[F'''layers_{lyr_num}'''] _UpperCamelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _UpperCamelCase : int = ly_weight['''attention'''] _UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _UpperCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _UpperCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _UpperCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _UpperCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _UpperCamelCase : str = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def lowercase__ ( lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) _UpperCamelCase : Dict = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=lowercase_ ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCamelCase : int = weights[F'''layers_{lyr_num}'''] _UpperCamelCase : List[Any] = ly_weight['''attention'''] _UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _UpperCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _UpperCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _UpperCamelCase : str = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _UpperCamelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _UpperCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _UpperCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _UpperCamelCase : Any = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) _UpperCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) _UpperCamelCase : List[str] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) ,requires_grad=lowercase_ ) _UpperCamelCase : List[str] = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _UpperCamelCase : Optional[Any] = weights[F'''layers_{lyr_num}'''] _UpperCamelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) _UpperCamelCase : int = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) _UpperCamelCase : Union[str, Any] = ly_weight['''self_attention'''] _UpperCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _UpperCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _UpperCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _UpperCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _UpperCamelCase : Dict = ly_weight['''MultiHeadDotProductAttention_0'''] _UpperCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _UpperCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _UpperCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _UpperCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _UpperCamelCase : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) _UpperCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _UpperCamelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) _UpperCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _UpperCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _UpperCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _UpperCamelCase : List[str] = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) _UpperCamelCase : int = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _UpperCamelCase : Dict = jnp.tree_util.tree_map(onp.array ,lowercase_ ) _UpperCamelCase : int = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] _UpperCamelCase : Any = os.path.join(args.checkpoint_path ,".." ,"config.gin" ) _UpperCamelCase : str = inference.parse_training_gin_file(lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = inference.InferenceModel(args.checkpoint_path ,lowercase_ ) _UpperCamelCase : List[str] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ,variance_type="fixed_large" ) _UpperCamelCase : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="gated-gelu" ,) _UpperCamelCase : Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length["targets_context"] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj="gated-gelu" ,) _UpperCamelCase : List[Any] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length["targets_context"] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,) _UpperCamelCase : Optional[Any] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] ,lowercase_ ) _UpperCamelCase : Dict = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] ,lowercase_ ) _UpperCamelCase : int = load_decoder(ta_checkpoint["target"]["decoder"] ,lowercase_ ) _UpperCamelCase : Optional[Any] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) _UpperCamelCase : Optional[Any] = SpectrogramDiffusionPipeline( notes_encoder=lowercase_ ,continuous_encoder=lowercase_ ,decoder=lowercase_ ,scheduler=lowercase_ ,melgan=lowercase_ ,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) lowerCamelCase__ = parser.parse_args() main(args)
361
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
310
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=1_024 ,lowercase_=1_024 ,lowercase_=False ,**lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained(__snake_case ) _UpperCamelCase : str = SeqaSeqDataset(__snake_case ,__snake_case ,__snake_case ,__snake_case ,type_path="train" ,**__snake_case ) _UpperCamelCase : List[str] = tok.pad_token_id def get_lens(lowercase_ ): _UpperCamelCase : Optional[int] = tqdm( DataLoader(__snake_case ,batch_size=512 ,num_workers=8 ,shuffle=__snake_case ,collate_fn=ds.collate_fn ) ,desc=str(ds.len_file ) ,) _UpperCamelCase : str = [] for batch in dl: _UpperCamelCase : Union[str, Any] = batch["input_ids"].ne(__snake_case ).sum(1 ).tolist() _UpperCamelCase : List[str] = batch["labels"].ne(__snake_case ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__snake_case ,__snake_case ): max_lens.append(max(__snake_case ,__snake_case ) ) else: max_lens.extend(__snake_case ) return max_lens _UpperCamelCase : Dict = get_lens(__snake_case ) _UpperCamelCase : Optional[Any] = SeqaSeqDataset(__snake_case ,__snake_case ,__snake_case ,__snake_case ,type_path="val" ,**__snake_case ) _UpperCamelCase : Dict = get_lens(__snake_case ) pickle_save(__snake_case ,train_ds.len_file ) pickle_save(__snake_case ,val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
362
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ) if weight_type is not None: _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ).shape else: _UpperCamelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": _UpperCamelCase : int = value elif weight_type == "weight_v": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias": _UpperCamelCase : int = value else: _UpperCamelCase : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = fairseq_model.state_dict() _UpperCamelCase : Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,hf_model.config.feat_extract_norm == "group" ,) _UpperCamelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : Dict = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase : Any = mapped_key.replace("*" ,lowercase_ ) if "weight_g" in name: _UpperCamelCase : str = "weight_g" elif "weight_v" in name: _UpperCamelCase : Any = "weight_v" elif "weight" in name: _UpperCamelCase : List[str] = "weight" elif "bias" in name: _UpperCamelCase : List[Any] = "bias" else: _UpperCamelCase : str = None set_recursively(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Any = full_name.split("conv_layers." )[-1] _UpperCamelCase : Optional[Any] = name.split("." ) _UpperCamelCase : Union[str, Any] = int(items[0] ) _UpperCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = SEWConfig() if is_finetuned: _UpperCamelCase : Dict = model.wav_encoder.wav_model.cfg else: _UpperCamelCase : List[Any] = model.cfg _UpperCamelCase : Any = fs_config.conv_bias _UpperCamelCase : str = eval(fs_config.conv_feature_layers ) _UpperCamelCase : Any = [x[0] for x in conv_layers] _UpperCamelCase : List[Any] = [x[1] for x in conv_layers] _UpperCamelCase : Union[str, Any] = [x[2] for x in conv_layers] _UpperCamelCase : str = "gelu" _UpperCamelCase : List[str] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" _UpperCamelCase : Optional[int] = 0.0 _UpperCamelCase : Dict = fs_config.activation_fn.name _UpperCamelCase : Any = fs_config.encoder_embed_dim _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = fs_config.encoder_ffn_embed_dim _UpperCamelCase : int = 1e-5 _UpperCamelCase : Optional[int] = fs_config.encoder_layerdrop _UpperCamelCase : str = fs_config.encoder_attention_heads _UpperCamelCase : Tuple = fs_config.conv_pos_groups _UpperCamelCase : List[str] = fs_config.conv_pos _UpperCamelCase : Optional[int] = len(lowercase_ ) _UpperCamelCase : Union[str, Any] = fs_config.encoder_layers _UpperCamelCase : Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase : List[str] = model.cfg _UpperCamelCase : List[str] = fs_config.final_dropout _UpperCamelCase : Optional[Any] = fs_config.layerdrop _UpperCamelCase : int = fs_config.activation_dropout _UpperCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase : int = fs_config.attention_dropout _UpperCamelCase : int = fs_config.dropout_input _UpperCamelCase : List[Any] = fs_config.dropout _UpperCamelCase : List[Any] = fs_config.mask_channel_length _UpperCamelCase : List[str] = fs_config.mask_channel_prob _UpperCamelCase : Optional[Any] = fs_config.mask_length _UpperCamelCase : Optional[int] = fs_config.mask_prob _UpperCamelCase : List[str] = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=True ) -> str: """simple docstring""" if is_finetuned: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase : str = SEWConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = convert_config(model[0] ,lowercase_ ) _UpperCamelCase : List[str] = model[0].eval() _UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=lowercase_ ,return_attention_mask=lowercase_ ,) if is_finetuned: if dict_path: _UpperCamelCase : Union[str, Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : List[str] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Any = target_dict.pad_index _UpperCamelCase : List[Any] = target_dict.bos_index _UpperCamelCase : List[str] = target_dict.eos_index _UpperCamelCase : Optional[Any] = len(target_dict.symbols ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ ,exist_ok=lowercase_ ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,lowercase_ ) _UpperCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase_ ,) _UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = SEWForCTC(lowercase_ ) else: _UpperCamelCase : int = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ ,lowercase_ ,lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
310
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __a : str , __a : Union[str, Any]=None , __a : Dict=None , __a : Optional[int]=None , __a : Dict="resnet50" , __a : Optional[int]=3 , __a : Optional[Any]=32 , __a : List[Any]=3 , __a : List[str]=True , __a : List[Any]=True , ) -> Any: _UpperCamelCase : str = parent _UpperCamelCase : Optional[int] = out_indices if out_indices is not None else [4] _UpperCamelCase : List[Any] = stage_names _UpperCamelCase : Optional[Any] = out_features _UpperCamelCase : Tuple = backbone _UpperCamelCase : List[str] = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : Tuple = use_pretrained_backbone _UpperCamelCase : int = is_training def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: _UpperCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : List[str] = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : str ) -> Any: _UpperCamelCase : str = TimmBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCamelCase, _UpperCamelCase : str = config_and_inputs _UpperCamelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class __SCREAMING_SNAKE_CASE ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :str = {"feature-extraction": TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ :Union[str, Any] = False SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :Tuple = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: _UpperCamelCase : str = TimmBackboneModelTester(self ) _UpperCamelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: _UpperCamelCase : Any = "resnet18" _UpperCamelCase : str = "microsoft/resnet-18" _UpperCamelCase : int = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ ) _UpperCamelCase : Union[str, Any] = AutoBackbone.from_pretrained(UpperCamelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _UpperCamelCase : List[str] = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ , out_indices=[1, 2, 3] ) _UpperCamelCase : Any = AutoBackbone.from_pretrained(UpperCamelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: pass @unittest.skip("Safetensors is not supported by timm." ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : str = model_class(UpperCamelCase__ ) _UpperCamelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : str = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase, _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : str = True _UpperCamelCase : List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality _UpperCamelCase : int = self.all_model_classes[0] _UpperCamelCase : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) _UpperCamelCase : Any = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) _UpperCamelCase : Union[str, Any] = model(**UpperCamelCase__ ) _UpperCamelCase : List[str] = outputs[0][-1] # Encoder-/Decoder-only models _UpperCamelCase : Union[str, Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _UpperCamelCase : Optional[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase, _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCamelCase : Dict = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _UpperCamelCase : List[Any] = copy.deepcopy(UpperCamelCase__ ) _UpperCamelCase : Tuple = None _UpperCamelCase : Optional[int] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCamelCase : Any = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _UpperCamelCase : Union[str, Any] = copy.deepcopy(UpperCamelCase__ ) _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCamelCase : Any = model(**UpperCamelCase__ )
363
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : int = prime_factors(lowercase_ ) if is_square_free(lowercase_ ): return -1 if len(lowercase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) for i in range(n - 1 ): for j in range(i + 1 ,SCREAMING_SNAKE_CASE_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) <= 1: return arr, 0 _UpperCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 _UpperCamelCase : int = arr[0:mid] _UpperCamelCase : Dict = arr[mid:] _UpperCamelCase, _UpperCamelCase : Tuple = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase, _UpperCamelCase : int = _count_cross_inversions(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : int = 0 while i < len(SCREAMING_SNAKE_CASE_ ) and j < len(SCREAMING_SNAKE_CASE_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase : int = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCamelCase : List[str] = count_inversions_bf(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase, _UpperCamelCase : Tuple = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " ,SCREAMING_SNAKE_CASE_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCamelCase : Dict = count_inversions_bf(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase, _UpperCamelCase : Any = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " ,SCREAMING_SNAKE_CASE_ ) # an empty list should also have zero inversions _UpperCamelCase : List[Any] = [] _UpperCamelCase : List[str] = count_inversions_bf(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase, _UpperCamelCase : Optional[int] = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " ,SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
364
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = GPTaTokenizer SCREAMING_SNAKE_CASE__ :Tuple = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :int = {"add_prefix_space": True} SCREAMING_SNAKE_CASE__ :Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCamelCase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : str = {"unk_token": "<unk>"} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any , **__a : Optional[int] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> Tuple: _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Dict = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : Optional[Any] = "lower newer" _UpperCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : Any = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : str = tokens + [tokenizer.unk_token] _UpperCamelCase : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: if not self.test_rust_tokenizer: return _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = "lower newer" # Testing tokenization _UpperCamelCase : str = tokenizer.tokenize(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _UpperCamelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _UpperCamelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token _UpperCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _UpperCamelCase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : int , **__a : List[Any] ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input _UpperCamelCase : Optional[int] = "This is a simple input" _UpperCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Dict = ("This is a simple input", "This is a pair") _UpperCamelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCamelCase : Union[str, Any] = "This is a simple input" _UpperCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] _UpperCamelCase : str = ("This is a simple input", "This is a pair") _UpperCamelCase : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCamelCase : Union[str, Any] = tokenizer.pad_token_id _UpperCamelCase : str = tokenizer(__a , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCamelCase : Tuple = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) _UpperCamelCase : str = tokenizer(*__a , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCamelCase : Optional[int] = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: _UpperCamelCase : Any = "$$$" _UpperCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) _UpperCamelCase : int = "This is a simple input" _UpperCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Union[str, Any] = tokenizer.bos_token_id _UpperCamelCase : str = tokenizer(__a ) _UpperCamelCase : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCamelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _UpperCamelCase : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _UpperCamelCase : Optional[Any] = [self.get_tokenizer(do_lower_case=__a , add_bos_token=__a )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "Encode this." _UpperCamelCase : List[str] = "This one too please." _UpperCamelCase : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) encoded_sequence += tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer.encode_plus( __a , __a , add_special_tokens=__a , return_special_tokens_mask=__a , ) _UpperCamelCase : str = encoded_sequence_dict["input_ids"] _UpperCamelCase : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__a ) , len(__a ) ) _UpperCamelCase : Union[str, Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__a ) ] _UpperCamelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__a , __a ) @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> str: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Any = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) _UpperCamelCase : str = AutoTokenizer.from_pretrained("./test_opt" ) _UpperCamelCase : Optional[Any] = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Union[str, Any] = tokenizer.encode( __a , ) # Same as above self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[str] = "bos" _UpperCamelCase : Tuple = tokenizer.get_vocab()["bos"] _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : List[Any] = tokenizer.encode( __a , ) # We changed the bos token self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _UpperCamelCase : Tuple = tokenizer.encode( __a , ) self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] )
310
0
"""simple docstring""" from math import factorial lowerCamelCase__ = {str(d): factorial(d) for d in range(10)} def lowercase__ ( lowercase_ ) -> int: """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(snake_case__ ) ) def lowercase__ ( ) -> int: """simple docstring""" _UpperCamelCase : int = 7 * factorial(9 ) + 1 return sum(i for i in range(3 ,snake_case__ ) if sum_of_digit_factorial(snake_case__ ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
365
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : Union[str, Any] = load_tool("text-question-answering" , remote=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Dict = self.tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.remote_tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Dict = self.tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[Any] = self.remote_tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" )
310
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowerCamelCase__ = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: _UpperCamelCase : Tuple = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) _UpperCamelCase : Optional[int] = self.transformer_dir shutil.copy( os.path.join(__a , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: _UpperCamelCase : str = "src/transformers" shutil.rmtree(self.transformer_dir ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Optional[Any] , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _UpperCamelCase : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _UpperCamelCase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _UpperCamelCase : List[str] = black.format_str(__a , mode=__a ) _UpperCamelCase : Dict = os.path.join(self.transformer_dir , "new_code.py" ) with open(__a , "w" , newline="\n" ) as f: f.write(__a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__a ) with open(__a , "r" ) as f: self.assertTrue(f.read() , __a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , __a , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , __a ) , ) # Copy consistency with a really long name _UpperCamelCase : str = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("Bert" , __a , __a ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , __a , overwrite_result=re.sub("Bert" , "TestModel" , __a ) , ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict: _UpperCamelCase : Union[str, Any] = check_copies.LOCALIZED_READMES["README_zh-hans.md"] _UpperCamelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) _UpperCamelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _UpperCamelCase : List[str] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) _UpperCamelCase, _UpperCamelCase : List[str] = check_copies.convert_to_localized_md( __a , __a , localized_readme["format_model_list"] ) self.assertFalse(__a ) self.assertEqual(__a , __a ) _UpperCamelCase, _UpperCamelCase : List[Any] = check_copies.convert_to_localized_md( __a , __a , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__a ) _UpperCamelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) _UpperCamelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _UpperCamelCase : int = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _UpperCamelCase, _UpperCamelCase : Optional[Any] = check_copies.convert_to_localized_md( __a , __a , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(__a , __a )
366
"""simple docstring""" lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [False] * len(lowercase_ ) _UpperCamelCase : Dict = [s] _UpperCamelCase : List[str] = True while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase_ ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = [-1] * (len(lowercase_ )) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : int = float("Inf" ) _UpperCamelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : List[Any] = min(lowercase_ ,graph[parent[s]][s] ) _UpperCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _UpperCamelCase : Union[str, Any] = sink while v != source: _UpperCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Dict = parent[v] for i in range(len(lowercase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
310
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : str = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> str: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : List[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : Union[str, Any] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : str = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Tuple = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
367
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : int = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : str = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : int = do_center_crop _UpperCamelCase : int = crop_size _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Dict = do_rescale _UpperCamelCase : Any = rescale_factor _UpperCamelCase : Any = offset _UpperCamelCase : Union[str, Any] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: _UpperCamelCase : str = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: _UpperCamelCase : Any = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> Optional[Any]: _UpperCamelCase : Any = image.astype(np.floataa ) if offset: _UpperCamelCase : Dict = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCamelCase : Optional[Any] = to_numpy_array(__a ) if do_resize: _UpperCamelCase : Any = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: _UpperCamelCase : Dict = self.center_crop(__a , size=__a ) if do_rescale: _UpperCamelCase : Union[str, Any] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: _UpperCamelCase : int = self.normalize(image=__a , mean=__a , std=__a ) _UpperCamelCase : str = to_channel_dimension_format(__a , __a ) return image def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: _UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = offset if offset is not None else self.offset _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(__a , param_name="crop_size" ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Union[str, Any] = make_batched(__a ) _UpperCamelCase : Optional[Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase : List[Any] = {"pixel_values": videos} return BatchFeature(data=__a , tensor_type=__a )
310
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCamelCase__ = True except ImportError: lowerCamelCase__ = False try: from torch.hub import _get_torch_home lowerCamelCase__ = _get_torch_home() except ImportError: lowerCamelCase__ = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) lowerCamelCase__ = os.path.join(torch_cache_home, "transformers") lowerCamelCase__ = "https://cdn.huggingface.co" lowerCamelCase__ = "https://s3.amazonaws.com/models.huggingface.co/bert" lowerCamelCase__ = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) lowerCamelCase__ = os.path.join(PATH, "config.yaml") lowerCamelCase__ = os.path.join(PATH, "attributes.txt") lowerCamelCase__ = os.path.join(PATH, "objects.txt") lowerCamelCase__ = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) lowerCamelCase__ = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) lowerCamelCase__ = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) lowerCamelCase__ = "pytorch_model.bin" lowerCamelCase__ = "config.yaml" def lowercase__ ( lowercase_=OBJECTS ,lowercase_=ATTRIBUTES ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _UpperCamelCase : Any = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = OrderedDict() with open(lowercase_ ,"rb" ) as f: _UpperCamelCase : List[str] = pkl.load(lowercase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _UpperCamelCase : List[str] = ckp.pop(lowercase_ ) if isinstance(lowercase_ ,np.ndarray ): _UpperCamelCase : List[Any] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ ,torch.tensor ), type(lowercase_ ) _UpperCamelCase : Optional[Any] = v return r class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = {} def __init__( self : str , __a : dict , __a : str = "root" , __a : Any=0 ) -> Any: _UpperCamelCase : Optional[Any] = name _UpperCamelCase : Optional[Any] = level _UpperCamelCase : Union[str, Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _UpperCamelCase : Optional[int] = copy.deepcopy(__a ) _UpperCamelCase : Dict = copy.deepcopy(__a ) if isinstance(__a , __a ): _UpperCamelCase : Union[str, Any] = Config(__a , name=__a , level=level + 1 ) _UpperCamelCase : Optional[Any] = v setattr(self , __a , __a ) _UpperCamelCase : Optional[Any] = d def __repr__( self : List[str] ) -> List[Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : Dict , __a : Union[str, Any] , __a : Optional[int] ) -> int: _UpperCamelCase : Any = val _UpperCamelCase : Optional[Any] = val _UpperCamelCase : Dict = key.split("." ) _UpperCamelCase : int = len(__a ) - 1 _UpperCamelCase : List[str] = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: _UpperCamelCase : str = val else: _UpperCamelCase : List[str] = pointer[l] def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._pointer def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Tuple , __a : List[str] ) -> Dict: with open(F'''{file_name}''' , "w" ) as stream: dump(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : Dict ) -> List[Any]: with open(F'''{file_name}''' , "w" ) as stream: json.dump(__a , __a ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Union[str, Any] ) -> Optional[int]: with open(__a ) as stream: _UpperCamelCase : int = load(__a , Loader=__a ) return data def __str__( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = " " if self._name != "root": _UpperCamelCase : Dict = F'''{t * (self._level-1)}{self._name}:\n''' else: _UpperCamelCase : Any = "" _UpperCamelCase : Any = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n''' _UpperCamelCase : Optional[Any] = level return r[:-1] @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict , __a : str , **__a : str ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : int = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __a : str , **__a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Tuple = kwargs.pop("cache_dir" , __a ) _UpperCamelCase : Optional[int] = kwargs.pop("force_download" , __a ) _UpperCamelCase : str = kwargs.pop("resume_download" , __a ) _UpperCamelCase : Any = kwargs.pop("proxies" , __a ) _UpperCamelCase : List[Any] = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): _UpperCamelCase : Optional[Any] = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): _UpperCamelCase : Optional[int] = pretrained_model_name_or_path else: _UpperCamelCase : int = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached _UpperCamelCase : Optional[int] = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _UpperCamelCase : List[Any] = Config.load_yaml(__a ) except EnvironmentError: _UpperCamelCase : Union[str, Any] = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : str = torch.load("dump.pt" ,map_location=in_tensor.device ) _UpperCamelCase : str = in_tensor.numpy() _UpperCamelCase : Union[str, Any] = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ), ( F'''{sum([1 for x in np.isclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Dict = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=True ) -> str: """simple docstring""" _UpperCamelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _UpperCamelCase : List[str] = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=0 ,lowercase_=None ,) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ ,lowercase_ ): ua += "; " + "; ".join("{}/{}".format(lowercase_ ,lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ ,lowercase_ ): ua += "; " + user_agent _UpperCamelCase : Any = {"user-agent": ua} if resume_size > 0: _UpperCamelCase : str = "bytes=%d-" % (resume_size,) _UpperCamelCase : str = requests.get(lowercase_ ,stream=lowercase_ ,proxies=lowercase_ ,headers=lowercase_ ) if response.status_code == 416: # Range not satisfiable return _UpperCamelCase : List[str] = response.headers.get("Content-Length" ) _UpperCamelCase : Union[str, Any] = resume_size + int(lowercase_ ) if content_length is not None else None _UpperCamelCase : Optional[int] = tqdm( unit="B" ,unit_scale=lowercase_ ,total=lowercase_ ,initial=lowercase_ ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=10 ,lowercase_=False ,lowercase_=None ,lowercase_=False ,) -> Tuple: """simple docstring""" if cache_dir is None: _UpperCamelCase : str = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Dict = str(lowercase_ ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) _UpperCamelCase : Dict = None if not local_files_only: try: _UpperCamelCase : List[Any] = requests.head(lowercase_ ,allow_redirects=lowercase_ ,proxies=lowercase_ ,timeout=lowercase_ ) if response.status_code == 200: _UpperCamelCase : str = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _UpperCamelCase : int = url_to_filename(lowercase_ ,lowercase_ ) # get cache path to put the file _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: _UpperCamelCase : Optional[int] = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _UpperCamelCase : Dict = cache_path + ".lock" with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _UpperCamelCase : List[str] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(lowercase_ ,"a+b" ) as f: yield f _UpperCamelCase : Union[str, Any] = _resumable_file_manager if os.path.exists(lowercase_ ): _UpperCamelCase : str = os.stat(lowercase_ ).st_size else: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Tuple = partial(tempfile.NamedTemporaryFile ,dir=lowercase_ ,delete=lowercase_ ) _UpperCamelCase : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,lowercase_ ,temp_file.name ,) http_get( lowercase_ ,lowercase_ ,proxies=lowercase_ ,resume_size=lowercase_ ,user_agent=lowercase_ ,) os.replace(temp_file.name ,lowercase_ ) _UpperCamelCase : Optional[int] = {"url": url, "etag": etag} _UpperCamelCase : List[str] = cache_path + ".json" with open(lowercase_ ,"w" ) as meta_file: json.dump(lowercase_ ,lowercase_ ) return cache_path def lowercase__ ( lowercase_ ,lowercase_=None ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = url.encode("utf-8" ) _UpperCamelCase : List[str] = shaaaa(lowercase_ ) _UpperCamelCase : List[str] = url_hash.hexdigest() if etag: _UpperCamelCase : Optional[Any] = etag.encode("utf-8" ) _UpperCamelCase : Optional[Any] = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=False ,lowercase_=False ,) -> str: """simple docstring""" if cache_dir is None: _UpperCamelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) _UpperCamelCase : Union[str, Any] = get_from_cache( lowercase_ ,cache_dir=lowercase_ ,force_download=lowercase_ ,proxies=lowercase_ ,resume_download=lowercase_ ,user_agent=lowercase_ ,local_files_only=lowercase_ ,) elif os.path.exists(lowercase_ ): # File, and it exists. _UpperCamelCase : List[str] = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(lowercase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _UpperCamelCase, _UpperCamelCase : Any = os.path.split(lowercase_ ) _UpperCamelCase : Optional[int] = output_file.replace("." ,"-" ) + "-extracted" _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _UpperCamelCase : Optional[int] = output_path + ".lock" with FileLock(lowercase_ ): shutil.rmtree(lowercase_ ,ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ ,"r" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): _UpperCamelCase : int = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(lowercase_ ) ) return output_path_extracted return output_path def lowercase__ ( lowercase_ ,lowercase_="," ) -> Optional[int]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: _UpperCamelCase : Tuple = eval(f.read() ) else: _UpperCamelCase : str = requests.get(lowercase_ ) try: _UpperCamelCase : Optional[int] = requests.json() except Exception: _UpperCamelCase : Union[str, Any] = req.content.decode() assert data is not None, "could not connect" try: _UpperCamelCase : List[Any] = eval(lowercase_ ) except Exception: _UpperCamelCase : int = data.split("\n" ) req.close() return data def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[Any] = requests.get(lowercase_ ) _UpperCamelCase : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ ,"rb" ) as stream: _UpperCamelCase : Union[str, Any] = pkl.load(lowercase_ ) _UpperCamelCase : Union[str, Any] = weights.pop("model" ) _UpperCamelCase : Optional[int] = {} for k, v in model.items(): _UpperCamelCase : str = torch.from_numpy(lowercase_ ) if "running_var" in k: _UpperCamelCase : List[Any] = torch.tensor([0] ) _UpperCamelCase : str = k.replace("running_var" ,"num_batches_tracked" ) _UpperCamelCase : Any = zero return new def lowercase__ ( ) -> Dict: """simple docstring""" print(F'''{os.path.abspath(os.path.join(lowercase_ ,os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( lowercase_ ,lowercase_="RGB" ) -> int: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): _UpperCamelCase : Optional[Any] = cva.imread(lowercase_ ) else: _UpperCamelCase : Optional[int] = get_image_from_url(lowercase_ ) assert img is not None, F'''could not connect to: {im}''' _UpperCamelCase : Optional[int] = cva.cvtColor(lowercase_ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": _UpperCamelCase : List[Any] = img[:, :, ::-1] return img def lowercase__ ( lowercase_ ,lowercase_=1 ) -> List[Any]: """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(lowercase_ ) ,lowercase_ ))
310
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> list: """simple docstring""" def merge(lowercase_ ,lowercase_ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCAmelCase_ ) <= 1: return collection _UpperCamelCase : List[str] = len(lowerCAmelCase_ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
369
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' @register_to_config def __init__( self : List[str] , *, __a : int = 4 , __a : int = 768 , __a : int , __a : Optional[Any] , ) -> List[Any]: super().__init__() _UpperCamelCase : List[Any] = nn.Parameter(torch.zeros(UpperCamelCase__ ) ) # parameters for additional clip time embeddings _UpperCamelCase : Any = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) _UpperCamelCase : Optional[int] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) # parameters for encoder hidden states _UpperCamelCase : List[str] = clip_extra_context_tokens _UpperCamelCase : Optional[Any] = nn.Linear( UpperCamelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) _UpperCamelCase : str = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) _UpperCamelCase : str = nn.LayerNorm(UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , *, __a : Union[str, Any] , __a : List[str] , __a : Any , __a : List[str] ) -> Optional[Any]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _UpperCamelCase : Dict = image_embeddings.shape[0] _UpperCamelCase : Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _UpperCamelCase : int = classifier_free_guidance_embeddings.expand( UpperCamelCase__ , -1 ) _UpperCamelCase : List[str] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _UpperCamelCase : List[Any] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _UpperCamelCase : Dict = self.embedding_proj(UpperCamelCase__ ) _UpperCamelCase : Tuple = self.clip_image_embeddings_project_to_time_embeddings(UpperCamelCase__ ) _UpperCamelCase : int = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _UpperCamelCase : Union[str, Any] = self.clip_extra_context_tokens_proj(UpperCamelCase__ ) _UpperCamelCase : Optional[Any] = clip_extra_context_tokens.reshape(UpperCamelCase__ , -1 , self.clip_extra_context_tokens ) _UpperCamelCase : Dict = clip_extra_context_tokens.permute(0 , 2 , 1 ) _UpperCamelCase : Dict = self.encoder_hidden_states_proj(UpperCamelCase__ ) _UpperCamelCase : Dict = self.text_encoder_hidden_states_norm(UpperCamelCase__ ) _UpperCamelCase : Tuple = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
370
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva lowerCamelCase__ = '''''' lowerCamelCase__ = '''''' lowerCamelCase__ = '''''' lowerCamelCase__ = 1 # (0 is vertical, 1 is horizontal) def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase : str = get_dataset(__lowerCAmelCase ,__lowerCAmelCase ) print("Processing..." ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Tuple = update_image_and_anno(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _UpperCamelCase : Optional[Any] = random_chars(32 ) _UpperCamelCase : Optional[Any] = paths[index].split(os.sep )[-1].rsplit("." ,1 )[0] _UpperCamelCase : int = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' ,__lowerCAmelCase ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) _UpperCamelCase : Optional[int] = [] for anno in new_annos[index]: _UpperCamelCase : Any = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(F'''/{file_root}.txt''' ,"w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = [] _UpperCamelCase : str = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase ,"*.txt" ) ): _UpperCamelCase : List[Any] = label_file.split(os.sep )[-1].rsplit("." ,1 )[0] with open(__lowerCAmelCase ) as in_file: _UpperCamelCase : Any = in_file.readlines() _UpperCamelCase : int = os.path.join(__lowerCAmelCase ,F'''{label_name}.jpg''' ) _UpperCamelCase : Optional[Any] = [] for obj_list in obj_lists: _UpperCamelCase : List[str] = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : Optional[int] = [] for idx in range(len(__lowerCAmelCase ) ): _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = img_list[idx] path_list.append(__lowerCAmelCase ) _UpperCamelCase : Dict = anno_list[idx] _UpperCamelCase : Union[str, Any] = cva.imread(__lowerCAmelCase ) if flip_type == 1: _UpperCamelCase : Tuple = cva.flip(__lowerCAmelCase ,__lowerCAmelCase ) for bbox in img_annos: _UpperCamelCase : Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _UpperCamelCase : Dict = cva.flip(__lowerCAmelCase ,__lowerCAmelCase ) for bbox in img_annos: _UpperCamelCase : Any = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def lowercase__ ( lowercase_ = 32 ) -> Union[str, Any]: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _UpperCamelCase : List[Any] = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
371
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __a : Dict , __a : Optional[Any]=None , __a : Tuple=None , __a : str=None , __a : Dict="resnet50" , __a : List[str]=3 , __a : Any=32 , __a : Dict=3 , __a : str=True , __a : Tuple=True , ) -> Any: _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = out_indices if out_indices is not None else [4] _UpperCamelCase : Optional[Any] = stage_names _UpperCamelCase : Dict = out_features _UpperCamelCase : Optional[Any] = backbone _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Optional[int] = num_channels _UpperCamelCase : str = use_pretrained_backbone _UpperCamelCase : List[Any] = is_training def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Tuple = self.get_config() return config, pixel_values def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Any , __a : Optional[Any] ) -> List[str]: _UpperCamelCase : Tuple = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : List[str] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: _UpperCamelCase : Any = self.prepare_config_and_inputs() _UpperCamelCase : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :Dict = {"feature-extraction": TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ :List[str] = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :List[str] = False SCREAMING_SNAKE_CASE__ :Dict = False def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Dict = TimmBackboneModelTester(self ) _UpperCamelCase : List[Any] = ConfigTester(self , config_class=__a , has_text_modality=__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Union[str, Any] = "resnet18" _UpperCamelCase : Optional[int] = "microsoft/resnet-18" _UpperCamelCase : Optional[int] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) _UpperCamelCase : str = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _UpperCamelCase : Optional[Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) _UpperCamelCase : List[str] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: pass @unittest.skip("Safetensors is not supported by timm." ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[str] = model_class(__a ) _UpperCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Dict = [*signature.parameters.keys()] _UpperCamelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = True _UpperCamelCase : int = self.has_attentions # no need to test all models as different heads yield the same functionality _UpperCamelCase : str = self.all_model_classes[0] _UpperCamelCase : str = model_class(__a ) model.to(__a ) _UpperCamelCase : int = self._prepare_for_class(__a , __a ) _UpperCamelCase : Optional[Any] = model(**__a ) _UpperCamelCase : Union[str, Any] = outputs[0][-1] # Encoder-/Decoder-only models _UpperCamelCase : Tuple = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _UpperCamelCase : Any = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(__a ) model.to(__a ) model.eval() _UpperCamelCase : Dict = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _UpperCamelCase : List[str] = copy.deepcopy(__a ) _UpperCamelCase : Dict = None _UpperCamelCase : Dict = model_class(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _UpperCamelCase : Dict = copy.deepcopy(__a ) _UpperCamelCase : int = False _UpperCamelCase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(**__a )
350
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
310
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE__ :Dict = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Optional[Any] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output _UpperCamelCase : int = text_generator("This is a test" , do_sample=__a ) self.assertEqual( __a , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) _UpperCamelCase : List[Any] = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( __a , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) _UpperCamelCase : int = text_generator("This is a test" , do_sample=__a , num_return_sequences=2 , return_tensors=__a ) self.assertEqual( __a , [ {"generated_token_ids": ANY(__a )}, {"generated_token_ids": ANY(__a )}, ] , ) _UpperCamelCase : int = text_generator.model.config.eos_token_id _UpperCamelCase : int = "<pad>" _UpperCamelCase : List[str] = text_generator( ["This is a test", "This is a second test"] , do_sample=__a , num_return_sequences=2 , batch_size=2 , return_tensors=__a , ) self.assertEqual( __a , [ [ {"generated_token_ids": ANY(__a )}, {"generated_token_ids": ANY(__a )}, ], [ {"generated_token_ids": ANY(__a )}, {"generated_token_ids": ANY(__a )}, ], ] , ) @require_tf def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase : Optional[int] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output _UpperCamelCase : Dict = text_generator("This is a test" , do_sample=__a ) self.assertEqual( __a , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) _UpperCamelCase : Optional[int] = text_generator(["This is a test", "This is a second test"] , do_sample=__a ) self.assertEqual( __a , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str] , __a : Tuple , __a : List[str] ) -> Dict: _UpperCamelCase : Optional[Any] = TextGenerationPipeline(model=__a , tokenizer=__a ) return text_generator, ["This is a test", "Another test"] def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: _UpperCamelCase : Optional[int] = "Hello I believe in" _UpperCamelCase : List[str] = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = text_generator(__a ) self.assertEqual( __a , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) _UpperCamelCase : Union[str, Any] = text_generator(__a , stop_sequence=" fe" ) self.assertEqual(__a , [{"generated_text": "Hello I believe in fe"}] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : str , __a : Any ) -> Union[str, Any]: _UpperCamelCase : List[Any] = text_generator.model _UpperCamelCase : Any = text_generator.tokenizer _UpperCamelCase : Optional[Any] = text_generator("This is a test" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _UpperCamelCase : int = text_generator("This is a test" , return_full_text=__a ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _UpperCamelCase : Union[str, Any] = pipeline(task="text-generation" , model=__a , tokenizer=__a , return_full_text=__a ) _UpperCamelCase : int = text_generator("This is a test" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _UpperCamelCase : int = text_generator("This is a test" , return_full_text=__a ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _UpperCamelCase : Optional[int] = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCamelCase : Any = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=__a ) self.assertEqual( __a , [ [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], [{"generated_text": ANY(__a )}, {"generated_text": ANY(__a )}], ] , ) with self.assertRaises(__a ): _UpperCamelCase : Optional[int] = text_generator("test" , return_full_text=__a , return_text=__a ) with self.assertRaises(__a ): _UpperCamelCase : Tuple = text_generator("test" , return_full_text=__a , return_tensors=__a ) with self.assertRaises(__a ): _UpperCamelCase : int = text_generator("test" , return_text=__a , return_tensors=__a ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCamelCase : Union[str, Any] = text_generator("" ) self.assertEqual(__a , [{"generated_text": ANY(__a )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCamelCase : Union[str, Any] = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCamelCase : int = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500 , max_new_tokens=20 ) _UpperCamelCase : Optional[int] = text_generator("This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__a ): text_generator( "This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: import torch # Classic `model_kwargs` _UpperCamelCase : Any = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase : List[Any] = pipe("This is a test" ) self.assertEqual( __a , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCamelCase : int = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCamelCase : List[Any] = pipe("This is a test" ) self.assertEqual( __a , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCamelCase : Any = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCamelCase : Optional[Any] = pipe("This is a test" ) self.assertEqual( __a , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: import torch _UpperCamelCase : List[str] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch _UpperCamelCase : List[Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=__a , top_p=0.5 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: _UpperCamelCase : int = "Hello world" _UpperCamelCase : Optional[Any] = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": _UpperCamelCase : Tuple = logging.get_logger("transformers.generation.tf_utils" ) else: _UpperCamelCase : List[str] = logging.get_logger("transformers.generation.utils" ) _UpperCamelCase : Tuple = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__a ) as cl: _UpperCamelCase : Any = text_generator(__a , max_length=10 , max_new_tokens=1 ) self.assertIn(__a , cl.out ) # The user only sets one -> no warning with CaptureLogger(__a ) as cl: _UpperCamelCase : List[str] = text_generator(__a , max_new_tokens=1 ) self.assertNotIn(__a , cl.out ) with CaptureLogger(__a ) as cl: _UpperCamelCase : Optional[Any] = text_generator(__a , max_length=10 ) self.assertNotIn(__a , cl.out )
351
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
0
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Union[str, Any]=None , **__a : Union[str, Any] ) -> Optional[Any]: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) _UpperCamelCase : Dict = model _UpperCamelCase : Tuple = kwargs.get("model_save_dir" , __a ) _UpperCamelCase : Optional[int] = kwargs.get("latest_model_name" , __a ) def __call__( self : Optional[Any] , **__a : Dict ) -> Tuple: _UpperCamelCase : str = {k: np.array(__a ) for k, v in kwargs.items()} return self.model.run(__a , __a ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Union[str, Path] , __a : str=None , __a : Optional[Any]=None ) -> List[Any]: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) _UpperCamelCase : Any = "CPUExecutionProvider" return ort.InferenceSession(__a , providers=[provider] , sess_options=__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Union[str, Path] , __a : Optional[str] = None , **__a : Optional[int] ) -> str: _UpperCamelCase : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME _UpperCamelCase : Dict = self.model_save_dir.joinpath(self.latest_model_name ) _UpperCamelCase : Tuple = Path(__a ).joinpath(__a ) try: shutil.copyfile(__a , __a ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _UpperCamelCase : Any = self.model_save_dir.joinpath(__a ) if src_path.exists(): _UpperCamelCase : int = Path(__a ).joinpath(__a ) try: shutil.copyfile(__a , __a ) except shutil.SameFileError: pass def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, os.PathLike] , **__a : Optional[int] , ) -> Tuple: if os.path.isfile(__a ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(__a , exist_ok=__a ) # saving model weights/files self._save_pretrained(__a , **__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] , __a : Union[str, Path] , __a : Optional[Union[bool, str, None]] = None , __a : Optional[Union[str, None]] = None , __a : bool = False , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional["ort.SessionOptions"] = None , **__a : Tuple , ) -> Any: _UpperCamelCase : int = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__a ): _UpperCamelCase : Dict = OnnxRuntimeModel.load_model( os.path.join(__a , __a ) , provider=__a , sess_options=__a ) _UpperCamelCase : Any = Path(__a ) # load model from hub else: # download model _UpperCamelCase : List[str] = hf_hub_download( repo_id=__a , filename=__a , use_auth_token=__a , revision=__a , cache_dir=__a , force_download=__a , ) _UpperCamelCase : Optional[int] = Path(__a ).parent _UpperCamelCase : str = Path(__a ).name _UpperCamelCase : Optional[int] = OnnxRuntimeModel.load_model(__a , provider=__a , sess_options=__a ) return cls(model=__a , **__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : int , __a : Union[str, Path] , __a : bool = True , __a : Optional[str] = None , __a : Optional[str] = None , **__a : Union[str, Any] , ) -> Union[str, Any]: _UpperCamelCase : List[str] = None if len(str(__a ).split("@" ) ) == 2: _UpperCamelCase : Optional[int] = model_id.split("@" ) return cls._from_pretrained( model_id=__a , revision=__a , cache_dir=__a , force_download=__a , use_auth_token=__a , **__a , )
352
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ) -> int: """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(lowercase_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(lowercase_ ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a ) }
310
0
"""simple docstring""" import random class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( __a : str ) -> tuple[list[int], list[int]]: _UpperCamelCase : List[Any] = [ord(__a ) for i in text] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = [] for i in plain: _UpperCamelCase : List[str] = random.randint(1 , 300 ) _UpperCamelCase : List[str] = (i + k) * k cipher.append(__a ) key.append(__a ) return cipher, key @staticmethod def __SCREAMING_SNAKE_CASE ( __a : list[int] , __a : list[int] ) -> str: _UpperCamelCase : int = [] for i in range(len(__a ) ): _UpperCamelCase : Tuple = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(__a ) ) return "".join(__a ) if __name__ == "__main__": lowerCamelCase__ , lowerCamelCase__ = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
354
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = ["image_processor"] SCREAMING_SNAKE_CASE__ :Optional[int] = "SamImageProcessor" def __init__( self : Dict , __a : str ) -> Dict: super().__init__(__a ) _UpperCamelCase : int = self.image_processor _UpperCamelCase : str = -10 _UpperCamelCase : int = self.image_processor.size["longest_edge"] def __call__( self : Optional[Any] , __a : int=None , __a : Union[str, Any]=None , __a : Any=None , __a : Tuple=None , __a : Optional[Union[str, TensorType]] = None , **__a : Optional[int] , ) -> BatchEncoding: _UpperCamelCase : List[Any] = self.image_processor( __a , return_tensors=__a , **__a , ) # pop arguments that are not used in the foward but used nevertheless _UpperCamelCase : Any = encoding_image_processor["original_sizes"] if hasattr(__a , "numpy" ): # Checks if Torch or TF tensor _UpperCamelCase : Union[str, Any] = original_sizes.numpy() _UpperCamelCase : Optional[Any] = self._check_and_preprocess_points( input_points=__a , input_labels=__a , input_boxes=__a , ) _UpperCamelCase : Tuple = self._normalize_and_convert( __a , __a , input_points=__a , input_labels=__a , input_boxes=__a , return_tensors=__a , ) return encoding_image_processor def __SCREAMING_SNAKE_CASE ( self : str , __a : List[Any] , __a : Optional[int] , __a : int=None , __a : Union[str, Any]=None , __a : List[Any]=None , __a : List[str]="pt" , ) -> List[str]: if input_points is not None: if len(__a ) != len(__a ): _UpperCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , __a , original_sizes[0] ) for point in input_points ] else: _UpperCamelCase : Optional[Any] = [ self._normalize_coordinates(self.target_size , __a , __a ) for point, original_size in zip(__a , __a ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _UpperCamelCase : Union[str, Any] = self._pad_points_and_labels(__a , __a ) _UpperCamelCase : List[Any] = np.array(__a ) if input_labels is not None: _UpperCamelCase : Dict = np.array(__a ) if input_boxes is not None: if len(__a ) != len(__a ): _UpperCamelCase : str = [ self._normalize_coordinates(self.target_size , __a , original_sizes[0] , is_bounding_box=__a ) for box in input_boxes ] else: _UpperCamelCase : Dict = [ self._normalize_coordinates(self.target_size , __a , __a , is_bounding_box=__a ) for box, original_size in zip(__a , __a ) ] _UpperCamelCase : Any = np.array(__a ) if input_boxes is not None: if return_tensors == "pt": _UpperCamelCase : Any = torch.from_numpy(__a ) # boxes batch size of 1 by default _UpperCamelCase : Tuple = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _UpperCamelCase : str = tf.convert_to_tensor(__a ) # boxes batch size of 1 by default _UpperCamelCase : int = tf.expand_dims(__a , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _UpperCamelCase : List[Any] = torch.from_numpy(__a ) # point batch size of 1 by default _UpperCamelCase : List[str] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _UpperCamelCase : List[Any] = tf.convert_to_tensor(__a ) # point batch size of 1 by default _UpperCamelCase : int = tf.expand_dims(__a , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _UpperCamelCase : List[Any] = torch.from_numpy(__a ) # point batch size of 1 by default _UpperCamelCase : Tuple = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _UpperCamelCase : Optional[int] = tf.convert_to_tensor(__a ) # point batch size of 1 by default _UpperCamelCase : Any = tf.expand_dims(__a , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def __SCREAMING_SNAKE_CASE ( self : Any , __a : Any , __a : Optional[Any] ) -> List[str]: _UpperCamelCase : Optional[Any] = max([point.shape[0] for point in input_points] ) _UpperCamelCase : int = [] for i, point in enumerate(__a ): if point.shape[0] != expected_nb_points: _UpperCamelCase : Optional[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _UpperCamelCase : List[str] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(__a ) _UpperCamelCase : Any = processed_input_points return input_points, input_labels def __SCREAMING_SNAKE_CASE ( self : int , __a : int , __a : np.ndarray , __a : int , __a : Tuple=False ) -> np.ndarray: _UpperCamelCase : str = original_size _UpperCamelCase : List[str] = self.image_processor._get_preprocess_shape(__a , longest_edge=__a ) _UpperCamelCase : Optional[Any] = deepcopy(__a ).astype(__a ) if is_bounding_box: _UpperCamelCase : str = coords.reshape(-1 , 2 , 2 ) _UpperCamelCase : List[str] = coords[..., 0] * (new_w / old_w) _UpperCamelCase : List[Any] = coords[..., 1] * (new_h / old_h) if is_bounding_box: _UpperCamelCase : Dict = coords.reshape(-1 , 4 ) return coords def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int=None , __a : Tuple=None , __a : str=None , ) -> Any: if input_points is not None: if hasattr(__a , "numpy" ): # Checks for TF or Torch tensor _UpperCamelCase : int = input_points.numpy().tolist() if not isinstance(__a , __a ) or not isinstance(input_points[0] , __a ): raise ValueError("Input points must be a list of list of floating points." ) _UpperCamelCase : Optional[int] = [np.array(__a ) for input_point in input_points] else: _UpperCamelCase : Optional[Any] = None if input_labels is not None: if hasattr(__a , "numpy" ): _UpperCamelCase : str = input_labels.numpy().tolist() if not isinstance(__a , __a ) or not isinstance(input_labels[0] , __a ): raise ValueError("Input labels must be a list of list integers." ) _UpperCamelCase : Optional[Any] = [np.array(__a ) for label in input_labels] else: _UpperCamelCase : List[Any] = None if input_boxes is not None: if hasattr(__a , "numpy" ): _UpperCamelCase : List[Any] = input_boxes.numpy().tolist() if ( not isinstance(__a , __a ) or not isinstance(input_boxes[0] , __a ) or not isinstance(input_boxes[0][0] , __a ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _UpperCamelCase : Optional[int] = [np.array(__a ).astype(np.floataa ) for box in input_boxes] else: _UpperCamelCase : Dict = None return input_points, input_labels, input_boxes @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: _UpperCamelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple , *__a : Optional[Any] , **__a : List[str] ) -> Optional[Any]: return self.image_processor.post_process_masks(*__a , **__a )
355
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
310
0
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ) -> str: """simple docstring""" raise RuntimeError("CUDA out of memory." ) class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ) -> List[str]: super().__init__() _UpperCamelCase : List[str] = nn.Linear(3 , 4 ) _UpperCamelCase : int = nn.BatchNormad(4 ) _UpperCamelCase : Dict = nn.Linear(4 , 5 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> Optional[Any]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: _UpperCamelCase : List[str] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__a : List[str] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [128, 64, 32, 16, 8] ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__a : List[Any] , __a : Optional[Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _UpperCamelCase : Tuple = mock_training_loop_function("hello" ) self.assertListEqual(__a , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Tuple ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__a : Tuple ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__a : Optional[Any] , __a : Optional[int] , __a : Union[str, Any] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__a : int ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: _UpperCamelCase : List[str] = torch.cuda.memory_allocated() _UpperCamelCase : Dict = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) _UpperCamelCase : Union[str, Any] = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = BioGptTokenizer SCREAMING_SNAKE_CASE__ :Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _UpperCamelCase : List[Any] = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : Union[str, Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[str] ) -> List[Any]: _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : Any = BioGptTokenizer(self.vocab_file , self.merges_file ) _UpperCamelCase : Dict = "lower" _UpperCamelCase : Optional[Any] = ["low", "er</w>"] _UpperCamelCase : List[Any] = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Dict = tokens + ["<unk>"] _UpperCamelCase : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: _UpperCamelCase : Optional[int] = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) _UpperCamelCase : Any = tokenizer.encode("sequence builders" , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
357
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowerCamelCase__ = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowerCamelCase__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowerCamelCase__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
310
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase__ = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
358
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl" def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Union[str, Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
310
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase__ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __a : str , __a : List[Any]=16 , __a : Optional[Any]=13 , __a : Union[str, Any]=7 , __a : Optional[int]=14 , __a : int=10 , __a : Optional[int]=19 , __a : str=5 , __a : Dict=4 , __a : str=True , __a : List[str]=16 , __a : List[Any]=2 , __a : Dict=4 , __a : Optional[int]=4 , __a : Tuple="gelu" , __a : Any=0.1 , __a : Tuple=0.1 , __a : List[Any]=[1, 2, 3, 4, 5] , __a : int=25 , __a : List[Any]=5 , ) -> Any: _UpperCamelCase : str = d_model _UpperCamelCase : Dict = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Optional[int] = prediction_length _UpperCamelCase : Any = context_length _UpperCamelCase : Any = cardinality _UpperCamelCase : List[Any] = num_time_features _UpperCamelCase : List[str] = lags_sequence _UpperCamelCase : Union[str, Any] = embedding_dimension _UpperCamelCase : Tuple = is_training _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : int = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = context_length _UpperCamelCase : Any = prediction_length + label_length _UpperCamelCase : Tuple = label_length _UpperCamelCase : Any = moving_average _UpperCamelCase : Union[str, Any] = autocorrelation_factor def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Dict ) -> Tuple: _UpperCamelCase : Any = config.context_length + max(config.lags_sequence ) _UpperCamelCase : List[str] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _UpperCamelCase : Any = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _UpperCamelCase : Any = floats_tensor([self.batch_size, _past_length] ) _UpperCamelCase : Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _UpperCamelCase : int = floats_tensor([self.batch_size, config.prediction_length] ) _UpperCamelCase : str = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase : List[str] = self.get_config() _UpperCamelCase : int = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: _UpperCamelCase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict , __a : Dict ) -> Optional[Any]: _UpperCamelCase : Any = AutoformerModel(config=__a ).to(__a ).eval() _UpperCamelCase : List[Any] = model(**__a ) _UpperCamelCase : Tuple = outputs.encoder_last_hidden_state _UpperCamelCase : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase : Union[str, Any] = model.get_encoder() encoder.save_pretrained(__a ) _UpperCamelCase : int = AutoformerEncoder.from_pretrained(__a ).to(__a ) _UpperCamelCase : int = model.create_network_inputs(**__a ) _UpperCamelCase : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _UpperCamelCase : List[str] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCamelCase : Tuple = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _UpperCamelCase : Optional[int] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _UpperCamelCase : Dict = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCamelCase : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCamelCase : List[str] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) _UpperCamelCase : str = AutoformerDecoder.from_pretrained(__a ).to(__a ) _UpperCamelCase : Tuple = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :str = {"feature-extraction": AutoformerModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :List[str] = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: _UpperCamelCase : Optional[Any] = AutoformerModelTester(self ) _UpperCamelCase : Union[str, Any] = ConfigTester(self , config_class=__a , has_text_modality=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCamelCase : List[str] = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) _UpperCamelCase : int = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["missing_keys"] , [] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="Model has no tokens embeddings" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: _UpperCamelCase : Any = inspect.signature(getattr(__a , "forward" ) ) # The main input is the name of the argument after `self` _UpperCamelCase : List[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Any = [*signature.parameters.keys()] _UpperCamelCase : int = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[Any] = getattr(self.model_tester , "seq_length" , __a ) _UpperCamelCase : List[str] = getattr(self.model_tester , "decoder_seq_length" , __a ) _UpperCamelCase : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , __a ) _UpperCamelCase : str = getattr(self.model_tester , "d_model" , __a ) _UpperCamelCase : List[str] = getattr(self.model_tester , "num_attention_heads" , __a ) _UpperCamelCase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = True _UpperCamelCase : List[Any] = False _UpperCamelCase : Any = True _UpperCamelCase : Dict = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase : Dict = True _UpperCamelCase : Any = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : Tuple = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : List[Any] = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCamelCase : Optional[Any] = len(__a ) _UpperCamelCase : List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions _UpperCamelCase : str = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCamelCase : Any = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCamelCase : List[Any] = True _UpperCamelCase : Any = True _UpperCamelCase : Union[str, Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) _UpperCamelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_retain_grad_hidden_states_attentions() def lowercase__ ( lowercase_="train-batch.pt" ) -> str: """simple docstring""" _UpperCamelCase : Any = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" ,filename=lowercase_ ,repo_type="dataset" ) _UpperCamelCase : Tuple = torch.load(lowercase_ ,map_location=lowercase_ ) return batch @require_torch @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) _UpperCamelCase : List[str] = prepare_batch() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] _UpperCamelCase : Optional[int] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : List[str] = torch.tensor( [[0.35_93, -1.33_98, 0.63_30], [0.22_79, 1.53_96, -0.17_92], [0.04_50, 1.32_25, -0.23_35]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: _UpperCamelCase : int = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) _UpperCamelCase : int = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCamelCase : Tuple = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state _UpperCamelCase : Optional[Any] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : Union[str, Any] = torch.tensor( [[-0.07_34, -0.90_36, 0.83_58], [4.71_86, 2.41_13, 1.95_81], [1.79_53, 2.35_58, 1.29_70]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: _UpperCamelCase : str = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) _UpperCamelCase : Tuple = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCamelCase : List[Any] = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) _UpperCamelCase : List[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) _UpperCamelCase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) _UpperCamelCase : Tuple = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1e-1 ) )
359
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( *__a : int , **__a : int ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> Optional[Any]: _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Union[str, Any] ) -> int: _UpperCamelCase : Any = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets _UpperCamelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _UpperCamelCase : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase : List[Any] = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[str] = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = "facebook/detr-resnet-50" _UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Dict = "facebook/detr-resnet-50" _UpperCamelCase : Optional[Any] = pipeline("object-detection" , model=__a ) _UpperCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase : Tuple = 0.99_85 _UpperCamelCase : List[Any] = "facebook/detr-resnet-50" _UpperCamelCase : List[str] = pipeline("object-detection" , model=__a ) _UpperCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase : int = 0.99_93 _UpperCamelCase : str = pipeline("object-detection" , model=__a , threshold=__a ) _UpperCamelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
310
0
def lowercase__ ( lowercase_ ) -> str: """simple docstring""" return "".join(chr(ord(lowercase_ ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
360
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {"UserAgent": UserAgent().random} def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : str = script.contents[0] _UpperCamelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : str ) -> Tuple: _UpperCamelCase : List[str] = F'''https://www.instagram.com/{username}/''' _UpperCamelCase : Optional[Any] = self.get_json() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> dict: _UpperCamelCase : int = requests.get(self.url , headers=__a ).text _UpperCamelCase : Union[str, Any] = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return self.user_data["username"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["full_name"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["biography"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["external_url"] @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: return self.user_data["is_verified"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def lowercase__ ( lowercase_ = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCamelCase : Union[str, Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
310
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ["pixel_values"] def __init__( self : Any , __a : bool = True , __a : Optional[Dict[str, int]] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : Dict[str, int] = None , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[int] = get_size_dict(__a ) _UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[int] = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) _UpperCamelCase : List[str] = do_resize _UpperCamelCase : Union[str, Any] = do_rescale _UpperCamelCase : List[Any] = do_normalize _UpperCamelCase : int = do_center_crop _UpperCamelCase : str = crop_size _UpperCamelCase : List[str] = size _UpperCamelCase : Tuple = resample _UpperCamelCase : int = rescale_factor _UpperCamelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ) -> np.ndarray: _UpperCamelCase : Union[str, Any] = get_size_dict(__a ) if "shortest_edge" in size: _UpperCamelCase : int = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase : str = (size["height"], size["width"]) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple ) -> np.ndarray: return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : ImageInput , __a : Optional[bool] = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : Optional[Any] , ) -> BatchFeature: _UpperCamelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : Dict = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Dict = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : int = image_std if image_std is not None else self.image_std _UpperCamelCase : Optional[Any] = size if size is not None else self.size _UpperCamelCase : str = get_size_dict(__a ) if not is_batched(__a ): _UpperCamelCase : Any = [images] if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. _UpperCamelCase : int = [to_numpy_array(__a ) for image in images] if do_resize: _UpperCamelCase : Optional[Any] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _UpperCamelCase : Any = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _UpperCamelCase : Union[str, Any] = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _UpperCamelCase : Tuple = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _UpperCamelCase : Any = [to_channel_dimension_format(__a , __a ) for image in images] _UpperCamelCase : int = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
361
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
310
0
"""simple docstring""" import sys from pathlib import Path lowerCamelCase__ = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowerCamelCase__ = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} lowerCamelCase__ = "zero2" lowerCamelCase__ = "zero3" lowerCamelCase__ = [ZEROa, ZEROa] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : List[str] = parameterized.to_safe_name("_".join(str(lowercase_ ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test lowerCamelCase__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @parameterized.expand(__a , name_func=__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[str, Any] , __a : Optional[Any] ) -> str: self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : Tuple , __a : Optional[Any] ) -> Optional[Any]: self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @parameterized.expand(__a , name_func=__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any , __a : List[Any] ) -> Optional[Any]: self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[Any] , __a : int ) -> Tuple: self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : int ) -> Dict: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : str , __a : int = 10 , __a : bool = True , __a : bool = True , __a : bool = True , ) -> int: _UpperCamelCase : Tuple = models[model] _UpperCamelCase : Optional[Any] = self.run_trainer( stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , ) self.do_checks(__a ) return output_dir def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : str , __a : str , __a : int = 10 , __a : int = 1 , __a : bool = True , __a : bool = True , ) -> str: _UpperCamelCase : Union[str, Any] = self.get_auto_remove_tmp_dir("./xxx" , after=__a ) _UpperCamelCase : Optional[Any] = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__a )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _UpperCamelCase : Dict = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _UpperCamelCase : Any = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _UpperCamelCase : Dict = self.get_launcher(__a ) _UpperCamelCase : int = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__a , env=self.get_env() ) return output_dir def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Dict=False ) -> Dict: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _UpperCamelCase : int = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
362
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ) if weight_type is not None: _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ).shape else: _UpperCamelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": _UpperCamelCase : int = value elif weight_type == "weight_v": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias": _UpperCamelCase : int = value else: _UpperCamelCase : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = fairseq_model.state_dict() _UpperCamelCase : Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,hf_model.config.feat_extract_norm == "group" ,) _UpperCamelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : Dict = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase : Any = mapped_key.replace("*" ,lowercase_ ) if "weight_g" in name: _UpperCamelCase : str = "weight_g" elif "weight_v" in name: _UpperCamelCase : Any = "weight_v" elif "weight" in name: _UpperCamelCase : List[str] = "weight" elif "bias" in name: _UpperCamelCase : List[Any] = "bias" else: _UpperCamelCase : str = None set_recursively(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Any = full_name.split("conv_layers." )[-1] _UpperCamelCase : Optional[Any] = name.split("." ) _UpperCamelCase : Union[str, Any] = int(items[0] ) _UpperCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = SEWConfig() if is_finetuned: _UpperCamelCase : Dict = model.wav_encoder.wav_model.cfg else: _UpperCamelCase : List[Any] = model.cfg _UpperCamelCase : Any = fs_config.conv_bias _UpperCamelCase : str = eval(fs_config.conv_feature_layers ) _UpperCamelCase : Any = [x[0] for x in conv_layers] _UpperCamelCase : List[Any] = [x[1] for x in conv_layers] _UpperCamelCase : Union[str, Any] = [x[2] for x in conv_layers] _UpperCamelCase : str = "gelu" _UpperCamelCase : List[str] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" _UpperCamelCase : Optional[int] = 0.0 _UpperCamelCase : Dict = fs_config.activation_fn.name _UpperCamelCase : Any = fs_config.encoder_embed_dim _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = fs_config.encoder_ffn_embed_dim _UpperCamelCase : int = 1e-5 _UpperCamelCase : Optional[int] = fs_config.encoder_layerdrop _UpperCamelCase : str = fs_config.encoder_attention_heads _UpperCamelCase : Tuple = fs_config.conv_pos_groups _UpperCamelCase : List[str] = fs_config.conv_pos _UpperCamelCase : Optional[int] = len(lowercase_ ) _UpperCamelCase : Union[str, Any] = fs_config.encoder_layers _UpperCamelCase : Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase : List[str] = model.cfg _UpperCamelCase : List[str] = fs_config.final_dropout _UpperCamelCase : Optional[Any] = fs_config.layerdrop _UpperCamelCase : int = fs_config.activation_dropout _UpperCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase : int = fs_config.attention_dropout _UpperCamelCase : int = fs_config.dropout_input _UpperCamelCase : List[Any] = fs_config.dropout _UpperCamelCase : List[Any] = fs_config.mask_channel_length _UpperCamelCase : List[str] = fs_config.mask_channel_prob _UpperCamelCase : Optional[Any] = fs_config.mask_length _UpperCamelCase : Optional[int] = fs_config.mask_prob _UpperCamelCase : List[str] = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=True ) -> str: """simple docstring""" if is_finetuned: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase : str = SEWConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = convert_config(model[0] ,lowercase_ ) _UpperCamelCase : List[str] = model[0].eval() _UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=lowercase_ ,return_attention_mask=lowercase_ ,) if is_finetuned: if dict_path: _UpperCamelCase : Union[str, Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : List[str] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Any = target_dict.pad_index _UpperCamelCase : List[Any] = target_dict.bos_index _UpperCamelCase : List[str] = target_dict.eos_index _UpperCamelCase : Optional[Any] = len(target_dict.symbols ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ ,exist_ok=lowercase_ ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,lowercase_ ) _UpperCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase_ ,) _UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = SEWForCTC(lowercase_ ) else: _UpperCamelCase : int = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ ,lowercase_ ,lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
310
0
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __a : list[int] ) -> None: _UpperCamelCase : List[str] = len(__a ) _UpperCamelCase : List[Any] = [0] * len_array if len_array > 0: _UpperCamelCase : Union[str, Any] = array[0] for i in range(1 , __a ): _UpperCamelCase : Tuple = self.prefix_sum[i - 1] + array[i] def __SCREAMING_SNAKE_CASE ( self : str , __a : int , __a : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int ) -> bool: _UpperCamelCase : Optional[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__a ) return False if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : int = prime_factors(lowercase_ ) if is_square_free(lowercase_ ): return -1 if len(lowercase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" if index == number_of_items: return 0 _UpperCamelCase : List[str] = 0 _UpperCamelCase : Tuple = 0 _UpperCamelCase : str = knapsack(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,index + 1 ) if weights[index] <= max_weight: _UpperCamelCase : str = values[index] + knapsack( lowercase_ ,lowercase_ ,lowercase_ ,max_weight - weights[index] ,index + 1 ) return max(lowercase_ ,lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = GPTaTokenizer SCREAMING_SNAKE_CASE__ :Tuple = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :int = {"add_prefix_space": True} SCREAMING_SNAKE_CASE__ :Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCamelCase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : str = {"unk_token": "<unk>"} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any , **__a : Optional[int] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> Tuple: _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Dict = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : Optional[Any] = "lower newer" _UpperCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : Any = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : str = tokens + [tokenizer.unk_token] _UpperCamelCase : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: if not self.test_rust_tokenizer: return _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = "lower newer" # Testing tokenization _UpperCamelCase : str = tokenizer.tokenize(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _UpperCamelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _UpperCamelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token _UpperCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _UpperCamelCase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : int , **__a : List[Any] ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input _UpperCamelCase : Optional[int] = "This is a simple input" _UpperCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Dict = ("This is a simple input", "This is a pair") _UpperCamelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCamelCase : Union[str, Any] = "This is a simple input" _UpperCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] _UpperCamelCase : str = ("This is a simple input", "This is a pair") _UpperCamelCase : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCamelCase : Union[str, Any] = tokenizer.pad_token_id _UpperCamelCase : str = tokenizer(__a , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCamelCase : Tuple = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) _UpperCamelCase : str = tokenizer(*__a , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCamelCase : Optional[int] = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: _UpperCamelCase : Any = "$$$" _UpperCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) _UpperCamelCase : int = "This is a simple input" _UpperCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Union[str, Any] = tokenizer.bos_token_id _UpperCamelCase : str = tokenizer(__a ) _UpperCamelCase : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCamelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _UpperCamelCase : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _UpperCamelCase : Optional[Any] = [self.get_tokenizer(do_lower_case=__a , add_bos_token=__a )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "Encode this." _UpperCamelCase : List[str] = "This one too please." _UpperCamelCase : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) encoded_sequence += tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer.encode_plus( __a , __a , add_special_tokens=__a , return_special_tokens_mask=__a , ) _UpperCamelCase : str = encoded_sequence_dict["input_ids"] _UpperCamelCase : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__a ) , len(__a ) ) _UpperCamelCase : Union[str, Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__a ) ] _UpperCamelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__a , __a ) @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> str: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Any = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) _UpperCamelCase : str = AutoTokenizer.from_pretrained("./test_opt" ) _UpperCamelCase : Optional[Any] = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Union[str, Any] = tokenizer.encode( __a , ) # Same as above self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[str] = "bos" _UpperCamelCase : Tuple = tokenizer.get_vocab()["bos"] _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : List[Any] = tokenizer.encode( __a , ) # We changed the bos token self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _UpperCamelCase : Tuple = tokenizer.encode( __a , ) self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] )
310
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(lowercase_ ): print(F'''{i}\t\t{d}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" for j in range(lowercase_ ): _UpperCamelCase : Tuple = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> list[float]: """simple docstring""" _UpperCamelCase : List[Any] = [float("inf" )] * vertex_count _UpperCamelCase : Any = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowercase_ ): _UpperCamelCase : Optional[int] = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: _UpperCamelCase : List[str] = distance[u] + w _UpperCamelCase : Any = check_negative_cycle(lowercase_ ,lowercase_ ,lowercase_ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = int(input("Enter number of vertices: ").strip()) lowerCamelCase__ = int(input("Enter number of edges: ").strip()) lowerCamelCase__ = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) lowerCamelCase__ = {"src": src, "dst": dest, "weight": weight} lowerCamelCase__ = int(input("\nEnter shortest path source:").strip()) lowerCamelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
365
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : Union[str, Any] = load_tool("text-question-answering" , remote=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Dict = self.tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.remote_tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Dict = self.tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[Any] = self.remote_tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" )
310
0
"""simple docstring""" import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCamelCase__ = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __a : str=False , __a : List[str]=False , __a : str=6.0 , __a : Optional[Any]=None , __a : List[str]=False , __a : Optional[Any]=False , __a : Tuple=None , __a : List[str]="fp4" , __a : List[str]=False , **__a : Dict , ) -> Optional[Any]: _UpperCamelCase : int = load_in_abit _UpperCamelCase : Tuple = load_in_abit _UpperCamelCase : Tuple = llm_inta_threshold _UpperCamelCase : Tuple = llm_inta_skip_modules _UpperCamelCase : Union[str, Any] = llm_inta_enable_fpaa_cpu_offload _UpperCamelCase : Dict = llm_inta_has_fpaa_weight _UpperCamelCase : Tuple = bnb_abit_quant_type _UpperCamelCase : Tuple = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _UpperCamelCase : Optional[Any] = torch.floataa elif isinstance(__a , __a ): _UpperCamelCase : List[str] = getattr(__a , __a ) elif isinstance(__a , torch.dtype ): _UpperCamelCase : Optional[int] = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: if not isinstance(self.llm_inta_threshold , __a ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __a ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __a ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , __a ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , __a ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , __a ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: return self.load_in_abit or self.load_in_abit def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __SCREAMING_SNAKE_CASE ( cls : int , __a : str , __a : List[Any] , **__a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Union[str, Any] = cls(**__a ) _UpperCamelCase : Optional[Any] = [] for key, value in kwargs.items(): if hasattr(__a , __a ): setattr(__a , __a , __a ) to_remove.append(__a ) for key in to_remove: kwargs.pop(__a , __a ) if return_unused_kwargs: return config, kwargs else: return config def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Union[str, os.PathLike] ) -> int: with open(__a , "w" , encoding="utf-8" ) as writer: _UpperCamelCase : int = self.to_dict() _UpperCamelCase : Optional[Any] = json.dumps(__a , indent=2 , sort_keys=__a ) + "\n" writer.write(__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict[str, Any]: _UpperCamelCase : int = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : Tuple ) -> Optional[int]: return F'''{self.__class__.__name__} {self.to_json_string()}''' def __SCREAMING_SNAKE_CASE ( self : Dict , __a : bool = True ) -> str: if use_diff is True: _UpperCamelCase : Any = self.to_diff_dict() else: _UpperCamelCase : Tuple = self.to_dict() return json.dumps(__a , indent=2 , sort_keys=__a ) + "\n" def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict[str, Any]: _UpperCamelCase : Union[str, Any] = self.to_dict() # get the default config dict _UpperCamelCase : str = BitsAndBytesConfig().to_dict() _UpperCamelCase : List[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _UpperCamelCase : List[str] = value return serializable_config_dict
366
"""simple docstring""" lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [False] * len(lowercase_ ) _UpperCamelCase : Dict = [s] _UpperCamelCase : List[str] = True while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase_ ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = [-1] * (len(lowercase_ )) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : int = float("Inf" ) _UpperCamelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : List[Any] = min(lowercase_ ,graph[parent[s]][s] ) _UpperCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _UpperCamelCase : Union[str, Any] = sink while v != source: _UpperCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Dict = parent[v] for i in range(len(lowercase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
310
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_=None ,lowercase_=None ) -> Union[str, Any]: """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase_ ) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) SCREAMING_SNAKE_CASE__ :List[int] = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) SCREAMING_SNAKE_CASE__ :List[int] = list_field( default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Use FP16 to accelerate inference."} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Benchmark training of model"} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Verbose memory tracing"} ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Trace memory line by line"} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Save result to a CSV file"} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Save all print statements in a log file"} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Whether to print environment information"} ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) SCREAMING_SNAKE_CASE__ :str = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) SCREAMING_SNAKE_CASE__ :str = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) SCREAMING_SNAKE_CASE__ :str = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) SCREAMING_SNAKE_CASE__ :str = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) SCREAMING_SNAKE_CASE__ :str = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) SCREAMING_SNAKE_CASE__ :str = field( default=F'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) SCREAMING_SNAKE_CASE__ :int = field(default=3 , metadata={"help": "Times an experiment will be run."} ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , __a , ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
367
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : int = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : str = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : int = do_center_crop _UpperCamelCase : int = crop_size _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Dict = do_rescale _UpperCamelCase : Any = rescale_factor _UpperCamelCase : Any = offset _UpperCamelCase : Union[str, Any] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: _UpperCamelCase : str = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: _UpperCamelCase : Any = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> Optional[Any]: _UpperCamelCase : Any = image.astype(np.floataa ) if offset: _UpperCamelCase : Dict = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCamelCase : Optional[Any] = to_numpy_array(__a ) if do_resize: _UpperCamelCase : Any = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: _UpperCamelCase : Dict = self.center_crop(__a , size=__a ) if do_rescale: _UpperCamelCase : Union[str, Any] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: _UpperCamelCase : int = self.normalize(image=__a , mean=__a , std=__a ) _UpperCamelCase : str = to_channel_dimension_format(__a , __a ) return image def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: _UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = offset if offset is not None else self.offset _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(__a , param_name="crop_size" ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Union[str, Any] = make_batched(__a ) _UpperCamelCase : Optional[Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase : List[Any] = {"pixel_values": videos} return BatchFeature(data=__a , tensor_type=__a )
310
0
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , *__a : Dict , __a : str=None , __a : Dict=None , **__a : int ) -> int: super().__init__(*__a , **__a ) _UpperCamelCase : Union[str, Any] = eval_examples _UpperCamelCase : Optional[int] = post_process_function def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : str=None , __a : str = "eval" ) -> Dict: _UpperCamelCase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCamelCase : List[Any] = self.get_eval_dataloader(__a ) _UpperCamelCase : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : Union[str, Any] = self.compute_metrics _UpperCamelCase : List[str] = None _UpperCamelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _UpperCamelCase : List[Any] = time.time() try: _UpperCamelCase : str = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _UpperCamelCase : List[Any] = compute_metrics _UpperCamelCase : Any = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCamelCase : Any = self.post_process_function(__a , __a , output.predictions ) _UpperCamelCase : Optional[Any] = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _UpperCamelCase : Any = metrics.pop(__a ) metrics.update(output.metrics ) else: _UpperCamelCase : Optional[int] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _UpperCamelCase : Dict = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : Optional[int] , __a : Optional[Any]=None , __a : str = "test" ) -> str: _UpperCamelCase : int = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : List[Any] = self.compute_metrics _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _UpperCamelCase : List[Any] = time.time() try: _UpperCamelCase : Dict = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _UpperCamelCase : Any = compute_metrics _UpperCamelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCamelCase : Tuple = self.post_process_function(__a , __a , output.predictions , "predict" ) _UpperCamelCase : List[Any] = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _UpperCamelCase : Tuple = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
368
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCamelCase__ = True except ImportError: lowerCamelCase__ = False try: from torch.hub import _get_torch_home lowerCamelCase__ = _get_torch_home() except ImportError: lowerCamelCase__ = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) lowerCamelCase__ = os.path.join(torch_cache_home, "transformers") lowerCamelCase__ = "https://cdn.huggingface.co" lowerCamelCase__ = "https://s3.amazonaws.com/models.huggingface.co/bert" lowerCamelCase__ = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) lowerCamelCase__ = os.path.join(PATH, "config.yaml") lowerCamelCase__ = os.path.join(PATH, "attributes.txt") lowerCamelCase__ = os.path.join(PATH, "objects.txt") lowerCamelCase__ = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) lowerCamelCase__ = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) lowerCamelCase__ = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) lowerCamelCase__ = "pytorch_model.bin" lowerCamelCase__ = "config.yaml" def lowercase__ ( lowercase_=OBJECTS ,lowercase_=ATTRIBUTES ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _UpperCamelCase : Any = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = OrderedDict() with open(lowercase_ ,"rb" ) as f: _UpperCamelCase : List[str] = pkl.load(lowercase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _UpperCamelCase : List[str] = ckp.pop(lowercase_ ) if isinstance(lowercase_ ,np.ndarray ): _UpperCamelCase : List[Any] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ ,torch.tensor ), type(lowercase_ ) _UpperCamelCase : Optional[Any] = v return r class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = {} def __init__( self : str , __a : dict , __a : str = "root" , __a : Any=0 ) -> Any: _UpperCamelCase : Optional[Any] = name _UpperCamelCase : Optional[Any] = level _UpperCamelCase : Union[str, Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _UpperCamelCase : Optional[int] = copy.deepcopy(__a ) _UpperCamelCase : Dict = copy.deepcopy(__a ) if isinstance(__a , __a ): _UpperCamelCase : Union[str, Any] = Config(__a , name=__a , level=level + 1 ) _UpperCamelCase : Optional[Any] = v setattr(self , __a , __a ) _UpperCamelCase : Optional[Any] = d def __repr__( self : List[str] ) -> List[Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : Dict , __a : Union[str, Any] , __a : Optional[int] ) -> int: _UpperCamelCase : Any = val _UpperCamelCase : Optional[Any] = val _UpperCamelCase : Dict = key.split("." ) _UpperCamelCase : int = len(__a ) - 1 _UpperCamelCase : List[str] = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: _UpperCamelCase : str = val else: _UpperCamelCase : List[str] = pointer[l] def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._pointer def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Tuple , __a : List[str] ) -> Dict: with open(F'''{file_name}''' , "w" ) as stream: dump(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : Dict ) -> List[Any]: with open(F'''{file_name}''' , "w" ) as stream: json.dump(__a , __a ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Union[str, Any] ) -> Optional[int]: with open(__a ) as stream: _UpperCamelCase : int = load(__a , Loader=__a ) return data def __str__( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = " " if self._name != "root": _UpperCamelCase : Dict = F'''{t * (self._level-1)}{self._name}:\n''' else: _UpperCamelCase : Any = "" _UpperCamelCase : Any = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n''' _UpperCamelCase : Optional[Any] = level return r[:-1] @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict , __a : str , **__a : str ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : int = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __a : str , **__a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Tuple = kwargs.pop("cache_dir" , __a ) _UpperCamelCase : Optional[int] = kwargs.pop("force_download" , __a ) _UpperCamelCase : str = kwargs.pop("resume_download" , __a ) _UpperCamelCase : Any = kwargs.pop("proxies" , __a ) _UpperCamelCase : List[Any] = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): _UpperCamelCase : Optional[Any] = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): _UpperCamelCase : Optional[int] = pretrained_model_name_or_path else: _UpperCamelCase : int = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached _UpperCamelCase : Optional[int] = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _UpperCamelCase : List[Any] = Config.load_yaml(__a ) except EnvironmentError: _UpperCamelCase : Union[str, Any] = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : str = torch.load("dump.pt" ,map_location=in_tensor.device ) _UpperCamelCase : str = in_tensor.numpy() _UpperCamelCase : Union[str, Any] = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ), ( F'''{sum([1 for x in np.isclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Dict = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=True ) -> str: """simple docstring""" _UpperCamelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _UpperCamelCase : List[str] = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=0 ,lowercase_=None ,) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ ,lowercase_ ): ua += "; " + "; ".join("{}/{}".format(lowercase_ ,lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ ,lowercase_ ): ua += "; " + user_agent _UpperCamelCase : Any = {"user-agent": ua} if resume_size > 0: _UpperCamelCase : str = "bytes=%d-" % (resume_size,) _UpperCamelCase : str = requests.get(lowercase_ ,stream=lowercase_ ,proxies=lowercase_ ,headers=lowercase_ ) if response.status_code == 416: # Range not satisfiable return _UpperCamelCase : List[str] = response.headers.get("Content-Length" ) _UpperCamelCase : Union[str, Any] = resume_size + int(lowercase_ ) if content_length is not None else None _UpperCamelCase : Optional[int] = tqdm( unit="B" ,unit_scale=lowercase_ ,total=lowercase_ ,initial=lowercase_ ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=10 ,lowercase_=False ,lowercase_=None ,lowercase_=False ,) -> Tuple: """simple docstring""" if cache_dir is None: _UpperCamelCase : str = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Dict = str(lowercase_ ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) _UpperCamelCase : Dict = None if not local_files_only: try: _UpperCamelCase : List[Any] = requests.head(lowercase_ ,allow_redirects=lowercase_ ,proxies=lowercase_ ,timeout=lowercase_ ) if response.status_code == 200: _UpperCamelCase : str = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _UpperCamelCase : int = url_to_filename(lowercase_ ,lowercase_ ) # get cache path to put the file _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: _UpperCamelCase : Optional[int] = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _UpperCamelCase : Dict = cache_path + ".lock" with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _UpperCamelCase : List[str] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(lowercase_ ,"a+b" ) as f: yield f _UpperCamelCase : Union[str, Any] = _resumable_file_manager if os.path.exists(lowercase_ ): _UpperCamelCase : str = os.stat(lowercase_ ).st_size else: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Tuple = partial(tempfile.NamedTemporaryFile ,dir=lowercase_ ,delete=lowercase_ ) _UpperCamelCase : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,lowercase_ ,temp_file.name ,) http_get( lowercase_ ,lowercase_ ,proxies=lowercase_ ,resume_size=lowercase_ ,user_agent=lowercase_ ,) os.replace(temp_file.name ,lowercase_ ) _UpperCamelCase : Optional[int] = {"url": url, "etag": etag} _UpperCamelCase : List[str] = cache_path + ".json" with open(lowercase_ ,"w" ) as meta_file: json.dump(lowercase_ ,lowercase_ ) return cache_path def lowercase__ ( lowercase_ ,lowercase_=None ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = url.encode("utf-8" ) _UpperCamelCase : List[str] = shaaaa(lowercase_ ) _UpperCamelCase : List[str] = url_hash.hexdigest() if etag: _UpperCamelCase : Optional[Any] = etag.encode("utf-8" ) _UpperCamelCase : Optional[Any] = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=False ,lowercase_=False ,) -> str: """simple docstring""" if cache_dir is None: _UpperCamelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) _UpperCamelCase : Union[str, Any] = get_from_cache( lowercase_ ,cache_dir=lowercase_ ,force_download=lowercase_ ,proxies=lowercase_ ,resume_download=lowercase_ ,user_agent=lowercase_ ,local_files_only=lowercase_ ,) elif os.path.exists(lowercase_ ): # File, and it exists. _UpperCamelCase : List[str] = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(lowercase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _UpperCamelCase, _UpperCamelCase : Any = os.path.split(lowercase_ ) _UpperCamelCase : Optional[int] = output_file.replace("." ,"-" ) + "-extracted" _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _UpperCamelCase : Optional[int] = output_path + ".lock" with FileLock(lowercase_ ): shutil.rmtree(lowercase_ ,ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ ,"r" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): _UpperCamelCase : int = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(lowercase_ ) ) return output_path_extracted return output_path def lowercase__ ( lowercase_ ,lowercase_="," ) -> Optional[int]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: _UpperCamelCase : Tuple = eval(f.read() ) else: _UpperCamelCase : str = requests.get(lowercase_ ) try: _UpperCamelCase : Optional[int] = requests.json() except Exception: _UpperCamelCase : Union[str, Any] = req.content.decode() assert data is not None, "could not connect" try: _UpperCamelCase : List[Any] = eval(lowercase_ ) except Exception: _UpperCamelCase : int = data.split("\n" ) req.close() return data def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[Any] = requests.get(lowercase_ ) _UpperCamelCase : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ ,"rb" ) as stream: _UpperCamelCase : Union[str, Any] = pkl.load(lowercase_ ) _UpperCamelCase : Union[str, Any] = weights.pop("model" ) _UpperCamelCase : Optional[int] = {} for k, v in model.items(): _UpperCamelCase : str = torch.from_numpy(lowercase_ ) if "running_var" in k: _UpperCamelCase : List[Any] = torch.tensor([0] ) _UpperCamelCase : str = k.replace("running_var" ,"num_batches_tracked" ) _UpperCamelCase : Any = zero return new def lowercase__ ( ) -> Dict: """simple docstring""" print(F'''{os.path.abspath(os.path.join(lowercase_ ,os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( lowercase_ ,lowercase_="RGB" ) -> int: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): _UpperCamelCase : Optional[Any] = cva.imread(lowercase_ ) else: _UpperCamelCase : Optional[int] = get_image_from_url(lowercase_ ) assert img is not None, F'''could not connect to: {im}''' _UpperCamelCase : Optional[int] = cva.cvtColor(lowercase_ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": _UpperCamelCase : List[Any] = img[:, :, ::-1] return img def lowercase__ ( lowercase_ ,lowercase_=1 ) -> List[Any]: """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(lowercase_ ) ,lowercase_ ))
310
0
"""simple docstring""" from __future__ import annotations lowerCamelCase__ = [] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> bool: """simple docstring""" for i in range(len(lowercase_ ) ): if board[row][i] == 1: return False for i in range(len(lowercase_ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowercase_ ,-1 ,-1 ) ,range(lowercase_ ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowercase_ ,-1 ,-1 ) ,range(lowercase_ ,len(lowercase_ ) ) ): if board[i][j] == 1: return False return True def lowercase__ ( lowercase_ ,lowercase_ ) -> bool: """simple docstring""" if row >= len(lowercase_ ): solution.append(lowercase_ ) printboard(lowercase_ ) print() return True for i in range(len(lowercase_ ) ): if is_safe(lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : Optional[int] = 1 solve(lowercase_ ,row + 1 ) _UpperCamelCase : Dict = 0 return False def lowercase__ ( lowercase_ ) -> None: """simple docstring""" for i in range(len(lowercase_ ) ): for j in range(len(lowercase_ ) ): if board[i][j] == 1: print("Q" ,end=" " ) else: print("." ,end=" " ) print() # n=int(input("The no. of queens")) lowerCamelCase__ = 8 lowerCamelCase__ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
369
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
0
def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" if not (isinstance(lowercase_ ,lowercase_ ) and isinstance(lowercase_ ,lowercase_ )): raise ValueError("longest_common_substring() takes two strings for inputs" ) _UpperCamelCase : Union[str, Any] = len(lowercase_ ) _UpperCamelCase : str = len(lowercase_ ) _UpperCamelCase : Any = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _UpperCamelCase : Tuple = 0 _UpperCamelCase : List[Any] = 0 for i in range(1 ,texta_length + 1 ): for j in range(1 ,texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _UpperCamelCase : Optional[Any] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _UpperCamelCase : str = i _UpperCamelCase : Union[str, Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> list: """simple docstring""" def merge(lowercase_ ,lowercase_ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowercase_ ) <= 1: return collection _UpperCamelCase : Optional[int] = len(lowercase_ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
371
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
0
"""simple docstring""" import math def lowercase__ ( lowercase_ ,lowercase_ ) -> float: """simple docstring""" if ( not isinstance(lowercase_ ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def lowercase__ ( lowercase_ ,lowercase_ ) -> float: """simple docstring""" if ( not isinstance(lowercase_ ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
310
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] SCREAMING_SNAKE_CASE__ :Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ :ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ :ClassVar[Any] = None SCREAMING_SNAKE_CASE__ :str = field(default="Translation" , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : Dict ) -> List[str]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[List] = None SCREAMING_SNAKE_CASE__ :Optional[int] = None SCREAMING_SNAKE_CASE__ :Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ :ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ :ClassVar[Any] = None SCREAMING_SNAKE_CASE__ :str = field(default="TranslationVariableLanguages" , init=_UpperCamelCase , repr=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None _UpperCamelCase : str = len(self.languages ) if self.languages else None def __call__( self : str ) -> Union[str, Any]: return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def __SCREAMING_SNAKE_CASE ( self : int , __a : str ) -> List[Any]: _UpperCamelCase : Optional[Any] = set(self.languages ) if self.languages and set(__a ) - lang_set: raise ValueError( F'''Some languages in example ({', '.join(sorted(set(__a ) - lang_set ) )}) are not in valid set ({', '.join(__a )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _UpperCamelCase : Any = [] for lang, text in translation_dict.items(): if isinstance(__a , __a ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _UpperCamelCase : Optional[Any] = zip(*sorted(__a ) ) return {"language": languages, "translation": translations} def __SCREAMING_SNAKE_CASE ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
351
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
0
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowercase__ ( lowercase_ ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def lowercase__ ( lowercase_ ,lowercase_ ) -> XGBClassifier: """simple docstring""" _UpperCamelCase : Optional[Any] = XGBClassifier() classifier.fit(lowercase_ ,lowercase_ ) return classifier def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = load_iris() _UpperCamelCase : Union[str, Any] = data_handling(lowercase_ ) _UpperCamelCase : Union[str, Any] = train_test_split( lowercase_ ,lowercase_ ,test_size=0.25 ) _UpperCamelCase : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data _UpperCamelCase : Optional[int] = xgboost(lowercase_ ,lowercase_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase_ ,lowercase_ ,lowercase_ ,display_labels=lowercase_ ,cmap="Blues" ,normalize="true" ,) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
353
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a ) }
310
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ) if weight_type is not None: _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ).shape else: _UpperCamelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": _UpperCamelCase : int = value elif weight_type == "weight_v": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias": _UpperCamelCase : int = value else: _UpperCamelCase : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = fairseq_model.state_dict() _UpperCamelCase : Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,hf_model.config.feat_extract_norm == "group" ,) _UpperCamelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : Dict = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase : Any = mapped_key.replace("*" ,lowercase_ ) if "weight_g" in name: _UpperCamelCase : str = "weight_g" elif "weight_v" in name: _UpperCamelCase : Any = "weight_v" elif "weight" in name: _UpperCamelCase : List[str] = "weight" elif "bias" in name: _UpperCamelCase : List[Any] = "bias" else: _UpperCamelCase : str = None set_recursively(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Any = full_name.split("conv_layers." )[-1] _UpperCamelCase : Optional[Any] = name.split("." ) _UpperCamelCase : Union[str, Any] = int(items[0] ) _UpperCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = SEWConfig() if is_finetuned: _UpperCamelCase : Dict = model.wav_encoder.wav_model.cfg else: _UpperCamelCase : List[Any] = model.cfg _UpperCamelCase : Any = fs_config.conv_bias _UpperCamelCase : str = eval(fs_config.conv_feature_layers ) _UpperCamelCase : Any = [x[0] for x in conv_layers] _UpperCamelCase : List[Any] = [x[1] for x in conv_layers] _UpperCamelCase : Union[str, Any] = [x[2] for x in conv_layers] _UpperCamelCase : str = "gelu" _UpperCamelCase : List[str] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" _UpperCamelCase : Optional[int] = 0.0 _UpperCamelCase : Dict = fs_config.activation_fn.name _UpperCamelCase : Any = fs_config.encoder_embed_dim _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = fs_config.encoder_ffn_embed_dim _UpperCamelCase : int = 1e-5 _UpperCamelCase : Optional[int] = fs_config.encoder_layerdrop _UpperCamelCase : str = fs_config.encoder_attention_heads _UpperCamelCase : Tuple = fs_config.conv_pos_groups _UpperCamelCase : List[str] = fs_config.conv_pos _UpperCamelCase : Optional[int] = len(lowercase_ ) _UpperCamelCase : Union[str, Any] = fs_config.encoder_layers _UpperCamelCase : Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase : List[str] = model.cfg _UpperCamelCase : List[str] = fs_config.final_dropout _UpperCamelCase : Optional[Any] = fs_config.layerdrop _UpperCamelCase : int = fs_config.activation_dropout _UpperCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase : int = fs_config.attention_dropout _UpperCamelCase : int = fs_config.dropout_input _UpperCamelCase : List[Any] = fs_config.dropout _UpperCamelCase : List[Any] = fs_config.mask_channel_length _UpperCamelCase : List[str] = fs_config.mask_channel_prob _UpperCamelCase : Optional[Any] = fs_config.mask_length _UpperCamelCase : Optional[int] = fs_config.mask_prob _UpperCamelCase : List[str] = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=True ) -> str: """simple docstring""" if is_finetuned: _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase : str = SEWConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = convert_config(model[0] ,lowercase_ ) _UpperCamelCase : List[str] = model[0].eval() _UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=lowercase_ ,return_attention_mask=lowercase_ ,) if is_finetuned: if dict_path: _UpperCamelCase : Union[str, Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : List[str] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Any = target_dict.pad_index _UpperCamelCase : List[Any] = target_dict.bos_index _UpperCamelCase : List[str] = target_dict.eos_index _UpperCamelCase : Optional[Any] = len(target_dict.symbols ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ ,exist_ok=lowercase_ ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,lowercase_ ) _UpperCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase_ ,) _UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = SEWForCTC(lowercase_ ) else: _UpperCamelCase : int = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ ,lowercase_ ,lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
354
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : Optional[Any] = generate_pascal_triangle(lowercase_ ) for row_idx in range(lowercase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=" " ) else: print(triangle[row_idx][col_idx] ,end="" ) print() def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _UpperCamelCase : list[list[int]] = [] for current_row_idx in range(lowercase_ ): _UpperCamelCase : Any = populate_current_row(lowercase_ ,lowercase_ ) triangle.append(lowercase_ ) return triangle def lowercase__ ( lowercase_ ,lowercase_ ) -> list[int]: """simple docstring""" _UpperCamelCase : str = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _UpperCamelCase : Union[str, Any] = 1, 1 for current_col_idx in range(1 ,lowercase_ ): calculate_current_element( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) return current_row def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,) -> None: """simple docstring""" _UpperCamelCase : Tuple = triangle[current_row_idx - 1][current_col_idx - 1] _UpperCamelCase : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx] _UpperCamelCase : str = above_to_left_elt + above_to_right_elt def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _UpperCamelCase : list[list[int]] = [[1]] for row_index in range(1 ,lowercase_ ): _UpperCamelCase : Tuple = [0] + result[-1] + [0] _UpperCamelCase : Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row _UpperCamelCase : List[Any] = sum(divmod(lowercase_ ,2 ) ) _UpperCamelCase : Optional[int] = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] _UpperCamelCase : Any = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _UpperCamelCase : int = row_first_half + row_second_half result.append(lowercase_ ) return result def lowercase__ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase_ ,lowercase_ ) -> None: _UpperCamelCase : int = F'''{func.__name__}({value})''' _UpperCamelCase : Optional[int] = timeit(F'''__main__.{call}''' ,setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowercase_ ,lowercase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
355
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
310
0
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : Dict = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : str = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : Union[str, Any] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : Any = get_module_path(lowercase_ ) _UpperCamelCase : Optional[Any] = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Any = [] _UpperCamelCase : Tuple = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = [] _UpperCamelCase : int = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : List[Any] = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : List[str] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Any = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Optional[Any] = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : List[str] = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = get_test_classes(lowercase_ ) _UpperCamelCase : Optional[Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : int = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: _UpperCamelCase : int = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[int] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Any = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
0
"""simple docstring""" lowerCamelCase__ = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
357
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowerCamelCase__ = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowerCamelCase__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowerCamelCase__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
310
0
"""simple docstring""" from math import sqrt def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and ( number >= 0 ), "'number' must been an int and positive" _UpperCamelCase : Optional[int] = True # 0 and 1 are none primes. if number <= 1: _UpperCamelCase : str = False for divisor in range(2 ,int(round(sqrt(lowercase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _UpperCamelCase : Any = False break # precondition assert isinstance(lowercase_ ,lowercase_ ), "'status' must been from type bool" return status def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _UpperCamelCase : Tuple = list(range(2 ,n + 1 ) ) _UpperCamelCase : Dict = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowercase_ ) ): for j in range(i + 1 ,len(lowercase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _UpperCamelCase : List[str] = 0 # filters actual prime numbers. _UpperCamelCase : Union[str, Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowercase_ ,lowercase_ ), "'ans' must been from type list" return ans def lowercase__ ( lowercase_ ) -> str: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and (n > 2), "'N' must been an int and > 2" _UpperCamelCase : Union[str, Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 ,n + 1 ): if is_prime(lowercase_ ): ans.append(lowercase_ ) # precondition assert isinstance(lowercase_ ,lowercase_ ), "'ans' must been from type list" return ans def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and number >= 0, "'number' must been an int and >= 0" _UpperCamelCase : int = [] # this list will be returns of the function. # potential prime number factors. _UpperCamelCase : str = 2 _UpperCamelCase : List[Any] = number if number == 0 or number == 1: ans.append(lowercase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowercase_ ): while quotient != 1: if is_prime(lowercase_ ) and (quotient % factor == 0): ans.append(lowercase_ ) quotient /= factor else: factor += 1 else: ans.append(lowercase_ ) # precondition assert isinstance(lowercase_ ,lowercase_ ), "'ans' must been from type list" return ans def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCamelCase : Optional[Any] = 0 # prime factorization of 'number' _UpperCamelCase : str = prime_factorization(lowercase_ ) _UpperCamelCase : Optional[Any] = max(lowercase_ ) # precondition assert isinstance(lowercase_ ,lowercase_ ), "'ans' must been from type int" return ans def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCamelCase : Union[str, Any] = 0 # prime factorization of 'number' _UpperCamelCase : Dict = prime_factorization(lowercase_ ) _UpperCamelCase : int = min(lowercase_ ) # precondition assert isinstance(lowercase_ ,lowercase_ ), "'ans' must been from type int" return ans def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 ,lowercase_ ), "compare bust been from type bool" return number % 2 == 0 def lowercase__ ( lowercase_ ) -> str: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 ,lowercase_ ), "compare bust been from type bool" return number % 2 != 0 def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" assert ( isinstance(lowercase_ ,lowercase_ ) and (number > 2) and is_even(lowercase_ ) ), "'number' must been an int, even and > 2" _UpperCamelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _UpperCamelCase : Any = get_prime_numbers(lowercase_ ) _UpperCamelCase : int = len(lowercase_ ) # run variable for while-loops. _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : List[Any] = None # exit variable. for break up the loops _UpperCamelCase : Optional[int] = True while i < len_pn and loop: _UpperCamelCase : Union[str, Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _UpperCamelCase : List[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowercase_ ,lowercase_ ) and (len(lowercase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" assert ( isinstance(lowercase_ ,lowercase_ ) and isinstance(lowercase_ ,lowercase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _UpperCamelCase : List[Any] = 0 while numbera != 0: _UpperCamelCase : Any = numbera % numbera _UpperCamelCase : Optional[int] = numbera _UpperCamelCase : Dict = rest # precondition assert isinstance(lowercase_ ,lowercase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowercase__ ( lowercase_ ,lowercase_ ) -> Any: """simple docstring""" assert ( isinstance(lowercase_ ,lowercase_ ) and isinstance(lowercase_ ,lowercase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _UpperCamelCase : Tuple = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _UpperCamelCase : Any = prime_factorization(lowercase_ ) _UpperCamelCase : Optional[Any] = prime_factorization(lowercase_ ) elif numbera == 1 or numbera == 1: _UpperCamelCase : Dict = [] _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Dict = max(lowercase_ ,lowercase_ ) _UpperCamelCase : Any = 0 _UpperCamelCase : Dict = 0 _UpperCamelCase : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _UpperCamelCase : Optional[int] = prime_fac_a.count(lowercase_ ) _UpperCamelCase : Optional[Any] = prime_fac_a.count(lowercase_ ) for _ in range(max(lowercase_ ,lowercase_ ) ): ans *= n else: _UpperCamelCase : int = prime_fac_a.count(lowercase_ ) for _ in range(lowercase_ ): ans *= n done.append(lowercase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _UpperCamelCase : Tuple = prime_fac_a.count(lowercase_ ) for _ in range(lowercase_ ): ans *= n done.append(lowercase_ ) # precondition assert isinstance(lowercase_ ,lowercase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and (n >= 0), "'number' must been a positive int" _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowercase_ ): ans += 1 # precondition assert isinstance(lowercase_ ,lowercase_ ) and is_prime( lowercase_ ), "'ans' must been a prime number and from type int" return ans def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" assert ( is_prime(lowercase_ ) and is_prime(lowercase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _UpperCamelCase : Any = p_number_a + 1 # jump to the next number _UpperCamelCase : int = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowercase_ ): number += 1 while number < p_number_a: ans.append(lowercase_ ) number += 1 # fetch the next prime number. while not is_prime(lowercase_ ): number += 1 # precondition assert ( isinstance(lowercase_ ,lowercase_ ) and ans[0] != p_number_a and ans[len(lowercase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and (n >= 1), "'n' must been int and >= 1" _UpperCamelCase : Tuple = [] # will be returned. for divisor in range(1 ,n + 1 ): if n % divisor == 0: ans.append(lowercase_ ) # precondition assert ans[0] == 1 and ans[len(lowercase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and ( number > 1 ), "'number' must been an int and >= 1" _UpperCamelCase : List[Any] = get_divisors(lowercase_ ) # precondition assert ( isinstance(lowercase_ ,lowercase_ ) and (divisors[0] == 1) and (divisors[len(lowercase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" assert ( isinstance(lowercase_ ,lowercase_ ) and isinstance(lowercase_ ,lowercase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _UpperCamelCase : str = gcd(abs(lowercase_ ) ,abs(lowercase_ ) ) # precondition assert ( isinstance(lowercase_ ,lowercase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and (n >= 0), "'n' must been a int and >= 0" _UpperCamelCase : List[Any] = 1 # this will be return. for factor in range(1 ,n + 1 ): ans *= factor return ans def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) and (n >= 0), "'n' must been an int and >= 0" _UpperCamelCase : Dict = 0 _UpperCamelCase : str = 1 _UpperCamelCase : str = 1 # this will be return for _ in range(n - 1 ): _UpperCamelCase : Any = ans ans += fiba _UpperCamelCase : Optional[Any] = tmp return ans
358
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl" def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Union[str, Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
310
0
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , **__a : Any ) -> Any: requires_backends(self , ["bs4"] ) super().__init__(**__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase : int = [] _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Any = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _UpperCamelCase : Any = parent.find_all(child.name , recursive=__a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__a ) else next(i for i, s in enumerate(__a , 1 ) if s is child ) ) _UpperCamelCase : List[Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] ) -> List[Any]: _UpperCamelCase : Any = BeautifulSoup(__a , "html.parser" ) _UpperCamelCase : Dict = [] _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[str] = [] for element in html_code.descendants: if type(__a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _UpperCamelCase : List[str] = html.unescape(__a ).strip() if not text_in_this_tag: continue all_doc_strings.append(__a ) _UpperCamelCase : Union[str, Any] = self.xpath_soup(__a ) stringaxtag_seq.append(__a ) stringaxsubs_seq.append(__a ) if len(__a ) != len(__a ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(__a ) != len(__a ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Tuple , __a : int ) -> List[Any]: _UpperCamelCase : int = "" for tagname, subs in zip(__a , __a ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self : List[str] , __a : str ) -> BatchFeature: _UpperCamelCase : str = False # Check that strings has a valid type if isinstance(__a , __a ): _UpperCamelCase : int = True elif isinstance(__a , (list, tuple) ): if len(__a ) == 0 or isinstance(html_strings[0] , __a ): _UpperCamelCase : List[str] = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F'''but is of type {type(__a )}.''' ) _UpperCamelCase : Optional[Any] = bool(isinstance(__a , (list, tuple) ) and (isinstance(html_strings[0] , __a )) ) if not is_batched: _UpperCamelCase : str = [html_strings] # Get nodes + xpaths _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Any = [] for html_string in html_strings: _UpperCamelCase : str = self.get_three_from_single(__a ) nodes.append(__a ) _UpperCamelCase : Any = [] for node, tag_list, sub_list in zip(__a , __a , __a ): _UpperCamelCase : Dict = self.construct_xpath(__a , __a ) xpath_strings.append(__a ) xpaths.append(__a ) # return as Dict _UpperCamelCase : Optional[Any] = {"nodes": nodes, "xpaths": xpaths} _UpperCamelCase : Any = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
359
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( *__a : int , **__a : int ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> Optional[Any]: _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Union[str, Any] ) -> int: _UpperCamelCase : Any = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets _UpperCamelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _UpperCamelCase : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase : List[Any] = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[str] = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = "facebook/detr-resnet-50" _UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Dict = "facebook/detr-resnet-50" _UpperCamelCase : Optional[Any] = pipeline("object-detection" , model=__a ) _UpperCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase : Tuple = 0.99_85 _UpperCamelCase : List[Any] = "facebook/detr-resnet-50" _UpperCamelCase : List[str] = pipeline("object-detection" , model=__a ) _UpperCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase : int = 0.99_93 _UpperCamelCase : str = pipeline("object-detection" , model=__a , threshold=__a ) _UpperCamelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
310
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" _UpperCamelCase : int = int(number**0.5 ) return number == sq * sq def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> tuple[int, int]: """simple docstring""" _UpperCamelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCamelCase : int = x_den * y_den * z_den _UpperCamelCase : int = gcd(lowercase_ ,lowercase_ ) top //= hcf bottom //= hcf return top, bottom def lowercase__ ( lowercase_ = 35 ) -> int: """simple docstring""" _UpperCamelCase : set = set() _UpperCamelCase : int _UpperCamelCase : Fraction = Fraction(0 ) _UpperCamelCase : tuple[int, int] for x_num in range(1 ,order + 1 ): for x_den in range(x_num + 1 ,order + 1 ): for y_num in range(1 ,order + 1 ): for y_den in range(y_num + 1 ,order + 1 ): # n=1 _UpperCamelCase : Dict = x_num * y_den + x_den * y_num _UpperCamelCase : List[Any] = x_den * y_den _UpperCamelCase : Optional[int] = gcd(lowercase_ ,lowercase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCamelCase : Union[str, Any] = add_three( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) unique_s.add(lowercase_ ) # n=2 _UpperCamelCase : str = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCamelCase : Tuple = x_den * x_den * y_den * y_den if is_sq(lowercase_ ) and is_sq(lowercase_ ): _UpperCamelCase : Any = int(sqrt(lowercase_ ) ) _UpperCamelCase : str = int(sqrt(lowercase_ ) ) _UpperCamelCase : Optional[Any] = gcd(lowercase_ ,lowercase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCamelCase : Optional[int] = add_three( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) unique_s.add(lowercase_ ) # n=-1 _UpperCamelCase : str = x_num * y_num _UpperCamelCase : str = x_den * y_num + x_num * y_den _UpperCamelCase : Dict = gcd(lowercase_ ,lowercase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCamelCase : Any = add_three( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) unique_s.add(lowercase_ ) # n=2 _UpperCamelCase : List[str] = x_num * x_num * y_num * y_num _UpperCamelCase : Dict = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowercase_ ) and is_sq(lowercase_ ): _UpperCamelCase : List[Any] = int(sqrt(lowercase_ ) ) _UpperCamelCase : str = int(sqrt(lowercase_ ) ) _UpperCamelCase : int = gcd(lowercase_ ,lowercase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCamelCase : List[str] = add_three( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) unique_s.add(lowercase_ ) for num, den in unique_s: total += Fraction(lowercase_ ,lowercase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
360
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {"UserAgent": UserAgent().random} def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : str = script.contents[0] _UpperCamelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : str ) -> Tuple: _UpperCamelCase : List[str] = F'''https://www.instagram.com/{username}/''' _UpperCamelCase : Optional[Any] = self.get_json() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> dict: _UpperCamelCase : int = requests.get(self.url , headers=__a ).text _UpperCamelCase : Union[str, Any] = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return self.user_data["username"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["full_name"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["biography"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["external_url"] @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: return self.user_data["is_verified"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def lowercase__ ( lowercase_ = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCamelCase : Union[str, Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
310
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = "▁" lowerCamelCase__ = {"vocab_file": "sentencepiece.bpe.model"} lowerCamelCase__ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } lowerCamelCase__ = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off lowerCamelCase__ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ :Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ :Union[str, Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ :List[int] = [] SCREAMING_SNAKE_CASE__ :List[int] = [] def __init__( self : Optional[int] , __a : Union[str, Any] , __a : Tuple="<s>" , __a : List[Any]="</s>" , __a : Optional[int]="</s>" , __a : int="<s>" , __a : str="<unk>" , __a : Dict="<pad>" , __a : str="<mask>" , __a : Dict=None , __a : str=None , __a : Any=None , __a : Optional[Dict[str, Any]] = None , __a : List[str]=None , __a : Any=False , **__a : Dict , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : str = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token _UpperCamelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCamelCase : Optional[Any] = legacy_behaviour super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , tokenizer_file=__a , src_lang=__a , tgt_lang=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__a , **__a , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) _UpperCamelCase : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : List[str] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : Tuple = 1 _UpperCamelCase : Optional[Any] = len(self.sp_model ) _UpperCamelCase : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__a ) } _UpperCamelCase : List[str] = {v: k for k, v in self.lang_code_to_id.items()} _UpperCamelCase : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _UpperCamelCase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCamelCase : List[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _UpperCamelCase : Any = src_lang if src_lang is not None else "eng_Latn" _UpperCamelCase : List[Any] = self.lang_code_to_id[self._src_lang] _UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = self.__dict__.copy() _UpperCamelCase : List[str] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , __a : int ) -> Any: _UpperCamelCase : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCamelCase : Dict = {} _UpperCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Any , __a : str ) -> None: _UpperCamelCase : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) _UpperCamelCase : int = [1] * len(self.prefix_tokens ) _UpperCamelCase : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[Any] , __a : str , __a : Optional[str] , __a : Optional[str] , **__a : Tuple ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _UpperCamelCase : str = src_lang _UpperCamelCase : Dict = self(__a , add_special_tokens=__a , return_tensors=__a , **__a ) _UpperCamelCase : List[str] = self.convert_tokens_to_ids(__a ) _UpperCamelCase : Optional[Any] = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : Any , __a : str ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : Optional[Any] = self.sp_model.PieceToId(__a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[int] ) -> Optional[int]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[str] ) -> Dict: _UpperCamelCase : List[Any] = "".join(__a ).replace(__a , " " ).strip() return out_string def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase : Optional[Any] = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: _UpperCamelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[str] , __a : str = "eng_Latn" , __a : Optional[List[str]] = None , __a : str = "fra_Latn" , **__a : List[Any] , ) -> BatchEncoding: _UpperCamelCase : str = src_lang _UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : int ) -> None: _UpperCamelCase : Optional[Any] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _UpperCamelCase : List[str] = [] _UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase : str = [self.cur_lang_code] _UpperCamelCase : Tuple = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : str ) -> None: _UpperCamelCase : Tuple = self.lang_code_to_id[lang] if self.legacy_behaviour: _UpperCamelCase : Dict = [] _UpperCamelCase : List[Any] = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase : List[str] = [self.cur_lang_code] _UpperCamelCase : Union[str, Any] = [self.eos_token_id]
361
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
310
0
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE__ :List[Any] = "OwlViTImageProcessor" SCREAMING_SNAKE_CASE__ :Optional[Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Optional[Any] , __a : str=None , __a : Any=None , **__a : List[str] ) -> int: _UpperCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _UpperCamelCase : int = kwargs.pop("feature_extractor" ) _UpperCamelCase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : List[str] , __a : Any=None , __a : int=None , __a : Any=None , __a : Dict="max_length" , __a : str="np" , **__a : Dict ) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__a , __a ) or (isinstance(__a , __a ) and not isinstance(text[0] , __a )): _UpperCamelCase : Optional[int] = [self.tokenizer(__a , padding=__a , return_tensors=__a , **__a )] elif isinstance(__a , __a ) and isinstance(text[0] , __a ): _UpperCamelCase : int = [] # Maximum number of queries across batch _UpperCamelCase : Optional[int] = max([len(__a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__a ) != max_num_queries: _UpperCamelCase : Optional[Any] = t + [" "] * (max_num_queries - len(__a )) _UpperCamelCase : Dict = self.tokenizer(__a , padding=__a , return_tensors=__a , **__a ) encodings.append(__a ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCamelCase : Optional[int] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCamelCase : Any = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCamelCase : List[str] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCamelCase : Dict = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCamelCase : Optional[int] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCamelCase : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCamelCase : Tuple = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCamelCase : Optional[int] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCamelCase : List[Any] = BatchEncoding() _UpperCamelCase : Optional[Any] = input_ids _UpperCamelCase : Union[str, Any] = attention_mask if query_images is not None: _UpperCamelCase : List[Any] = BatchEncoding() _UpperCamelCase : str = self.image_processor( __a , return_tensors=__a , **__a ).pixel_values _UpperCamelCase : Tuple = query_pixel_values if images is not None: _UpperCamelCase : Optional[int] = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: _UpperCamelCase : Any = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCamelCase : List[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] , *__a : Optional[int] , **__a : int ) -> Tuple: return self.image_processor.post_process(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , *__a : int , **__a : List[Any] ) -> Optional[Any]: return self.image_processor.post_process_object_detection(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple , *__a : int , **__a : Any ) -> Any: return self.image_processor.post_process_image_guided_detection(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , *__a : Optional[Any] , **__a : List[str] ) -> Tuple: return self.tokenizer.batch_decode(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , *__a : int , **__a : List[str] ) -> Optional[Any]: return self.tokenizer.decode(*__a , **__a ) @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
362
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ) if weight_type is not None: _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ).shape else: _UpperCamelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": _UpperCamelCase : int = value elif weight_type == "weight_v": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias": _UpperCamelCase : int = value else: _UpperCamelCase : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = fairseq_model.state_dict() _UpperCamelCase : Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,hf_model.config.feat_extract_norm == "group" ,) _UpperCamelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : Dict = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase : Any = mapped_key.replace("*" ,lowercase_ ) if "weight_g" in name: _UpperCamelCase : str = "weight_g" elif "weight_v" in name: _UpperCamelCase : Any = "weight_v" elif "weight" in name: _UpperCamelCase : List[str] = "weight" elif "bias" in name: _UpperCamelCase : List[Any] = "bias" else: _UpperCamelCase : str = None set_recursively(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Any = full_name.split("conv_layers." )[-1] _UpperCamelCase : Optional[Any] = name.split("." ) _UpperCamelCase : Union[str, Any] = int(items[0] ) _UpperCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = SEWConfig() if is_finetuned: _UpperCamelCase : Dict = model.wav_encoder.wav_model.cfg else: _UpperCamelCase : List[Any] = model.cfg _UpperCamelCase : Any = fs_config.conv_bias _UpperCamelCase : str = eval(fs_config.conv_feature_layers ) _UpperCamelCase : Any = [x[0] for x in conv_layers] _UpperCamelCase : List[Any] = [x[1] for x in conv_layers] _UpperCamelCase : Union[str, Any] = [x[2] for x in conv_layers] _UpperCamelCase : str = "gelu" _UpperCamelCase : List[str] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" _UpperCamelCase : Optional[int] = 0.0 _UpperCamelCase : Dict = fs_config.activation_fn.name _UpperCamelCase : Any = fs_config.encoder_embed_dim _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = fs_config.encoder_ffn_embed_dim _UpperCamelCase : int = 1e-5 _UpperCamelCase : Optional[int] = fs_config.encoder_layerdrop _UpperCamelCase : str = fs_config.encoder_attention_heads _UpperCamelCase : Tuple = fs_config.conv_pos_groups _UpperCamelCase : List[str] = fs_config.conv_pos _UpperCamelCase : Optional[int] = len(lowercase_ ) _UpperCamelCase : Union[str, Any] = fs_config.encoder_layers _UpperCamelCase : Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase : List[str] = model.cfg _UpperCamelCase : List[str] = fs_config.final_dropout _UpperCamelCase : Optional[Any] = fs_config.layerdrop _UpperCamelCase : int = fs_config.activation_dropout _UpperCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase : int = fs_config.attention_dropout _UpperCamelCase : int = fs_config.dropout_input _UpperCamelCase : List[Any] = fs_config.dropout _UpperCamelCase : List[Any] = fs_config.mask_channel_length _UpperCamelCase : List[str] = fs_config.mask_channel_prob _UpperCamelCase : Optional[Any] = fs_config.mask_length _UpperCamelCase : Optional[int] = fs_config.mask_prob _UpperCamelCase : List[str] = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=True ) -> str: """simple docstring""" if is_finetuned: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase : str = SEWConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = convert_config(model[0] ,lowercase_ ) _UpperCamelCase : List[str] = model[0].eval() _UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=lowercase_ ,return_attention_mask=lowercase_ ,) if is_finetuned: if dict_path: _UpperCamelCase : Union[str, Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : List[str] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Any = target_dict.pad_index _UpperCamelCase : List[Any] = target_dict.bos_index _UpperCamelCase : List[str] = target_dict.eos_index _UpperCamelCase : Optional[Any] = len(target_dict.symbols ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ ,exist_ok=lowercase_ ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,lowercase_ ) _UpperCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase_ ,) _UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = SEWForCTC(lowercase_ ) else: _UpperCamelCase : int = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ ,lowercase_ ,lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
310
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = ["pixel_values"] def __init__( self : Dict , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : List[str] = size if size is not None else {"shortest_edge": 224} _UpperCamelCase : str = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) _UpperCamelCase : List[str] = do_resize _UpperCamelCase : List[Any] = size _UpperCamelCase : Any = resample _UpperCamelCase : Union[str, Any] = do_center_crop _UpperCamelCase : List[str] = crop_size _UpperCamelCase : Tuple = do_rescale _UpperCamelCase : Tuple = rescale_factor _UpperCamelCase : List[str] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase : List[str] = do_convert_rgb def __SCREAMING_SNAKE_CASE ( self : str , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ) -> np.ndarray: _UpperCamelCase : Optional[int] = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _UpperCamelCase : str = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: _UpperCamelCase : str = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> Optional[int]: return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : str , ) -> PIL.Image.Image: _UpperCamelCase : str = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Union[str, Any] = size if size is not None else self.size _UpperCamelCase : Union[str, Any] = get_size_dict(__a , param_name="size" , default_to_square=__a ) _UpperCamelCase : Any = resample if resample is not None else self.resample _UpperCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : int = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Any = image_std if image_std is not None else self.image_std _UpperCamelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase : str = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase : Tuple = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. _UpperCamelCase : Optional[int] = [to_numpy_array(__a ) for image in images] if do_resize: _UpperCamelCase : Dict = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _UpperCamelCase : Dict = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _UpperCamelCase : Tuple = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _UpperCamelCase : Optional[int] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _UpperCamelCase : Optional[Any] = [to_channel_dimension_format(__a , __a ) for image in images] _UpperCamelCase : List[str] = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
363
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : int = prime_factors(lowercase_ ) if is_square_free(lowercase_ ): return -1 if len(lowercase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> YolosConfig: """simple docstring""" _UpperCamelCase : int = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _UpperCamelCase : List[Any] = 192 _UpperCamelCase : Union[str, Any] = 768 _UpperCamelCase : int = 12 _UpperCamelCase : Any = 3 _UpperCamelCase : Optional[int] = [800, 1_333] _UpperCamelCase : Any = False elif yolos_name == "yolos_s_dWr": _UpperCamelCase : Optional[Any] = 330 _UpperCamelCase : Optional[int] = 14 _UpperCamelCase : Union[str, Any] = 6 _UpperCamelCase : Tuple = 1_320 elif "yolos_s" in yolos_name: _UpperCamelCase : str = 384 _UpperCamelCase : List[str] = 1_536 _UpperCamelCase : Any = 12 _UpperCamelCase : int = 6 elif "yolos_b" in yolos_name: _UpperCamelCase : Union[str, Any] = [800, 1_344] _UpperCamelCase : Union[str, Any] = 91 _UpperCamelCase : Any = "huggingface/label-files" _UpperCamelCase : Union[str, Any] = "coco-detection-id2label.json" _UpperCamelCase : List[Any] = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) ) _UpperCamelCase : Tuple = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase : List[str] = idalabel _UpperCamelCase : int = {v: k for k, v in idalabel.items()} return config def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCamelCase : int = in_proj_bias[: config.hidden_size] _UpperCamelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase : Union[str, Any] = in_proj_weight[-config.hidden_size :, :] _UpperCamelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "backbone" in name: _UpperCamelCase : Tuple = name.replace("backbone" ,"vit" ) if "cls_token" in name: _UpperCamelCase : Optional[int] = name.replace("cls_token" ,"embeddings.cls_token" ) if "det_token" in name: _UpperCamelCase : Union[str, Any] = name.replace("det_token" ,"embeddings.detection_tokens" ) if "mid_pos_embed" in name: _UpperCamelCase : Optional[int] = name.replace("mid_pos_embed" ,"encoder.mid_position_embeddings" ) if "pos_embed" in name: _UpperCamelCase : List[Any] = name.replace("pos_embed" ,"embeddings.position_embeddings" ) if "patch_embed.proj" in name: _UpperCamelCase : Tuple = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "blocks" in name: _UpperCamelCase : List[str] = name.replace("blocks" ,"encoder.layer" ) if "attn.proj" in name: _UpperCamelCase : Optional[Any] = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name: _UpperCamelCase : Any = name.replace("attn" ,"attention.self" ) if "norm1" in name: _UpperCamelCase : Optional[int] = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: _UpperCamelCase : List[str] = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: _UpperCamelCase : Tuple = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: _UpperCamelCase : Dict = name.replace("mlp.fc2" ,"output.dense" ) if "class_embed" in name: _UpperCamelCase : Any = name.replace("class_embed" ,"class_labels_classifier" ) if "bbox_embed" in name: _UpperCamelCase : Any = name.replace("bbox_embed" ,"bbox_predictor" ) if "vit.norm" in name: _UpperCamelCase : Any = name.replace("vit.norm" ,"vit.layernorm" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase : Tuple = orig_state_dict.pop(lowercase_ ) if "qkv" in key: _UpperCamelCase : Any = key.split("." ) _UpperCamelCase : int = int(key_split[2] ) _UpperCamelCase : Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _UpperCamelCase : Tuple = val[:dim, :] _UpperCamelCase : Optional[Any] = val[ dim : dim * 2, : ] _UpperCamelCase : Union[str, Any] = val[-dim:, :] else: _UpperCamelCase : Optional[int] = val[:dim] _UpperCamelCase : List[Any] = val[dim : dim * 2] _UpperCamelCase : Any = val[-dim:] else: _UpperCamelCase : Dict = val return orig_state_dict def lowercase__ ( ) -> torch.Tensor: """simple docstring""" _UpperCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : Union[str, Any] = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = False ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = get_yolos_config(lowercase_ ) # load original state_dict _UpperCamelCase : Dict = torch.load(lowercase_ ,map_location="cpu" )["model"] # load 🤗 model _UpperCamelCase : int = YolosForObjectDetection(lowercase_ ) model.eval() _UpperCamelCase : Optional[Any] = convert_state_dict(lowercase_ ,lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by YolosImageProcessor _UpperCamelCase : Tuple = 800 if yolos_name != "yolos_ti" else 512 _UpperCamelCase : Tuple = YolosImageProcessor(format="coco_detection" ,size=lowercase_ ) _UpperCamelCase : Union[str, Any] = image_processor(images=prepare_img() ,return_tensors="pt" ) _UpperCamelCase : Dict = model(**lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.logits, outputs.pred_boxes _UpperCamelCase : Optional[int] = None, None if yolos_name == "yolos_ti": _UpperCamelCase : Optional[int] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) _UpperCamelCase : int = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": _UpperCamelCase : Any = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) _UpperCamelCase : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": _UpperCamelCase : Dict = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) _UpperCamelCase : Tuple = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": _UpperCamelCase : Dict = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) _UpperCamelCase : Optional[int] = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": _UpperCamelCase : Any = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) _UpperCamelCase : Tuple = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] ,lowercase_ ,atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] ,lowercase_ ,atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: _UpperCamelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) _UpperCamelCase : List[Any] = model_mapping[yolos_name] image_processor.push_to_hub(lowercase_ ,organization="hustvl" ) model.push_to_hub(lowercase_ ,organization="hustvl" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
364
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = GPTaTokenizer SCREAMING_SNAKE_CASE__ :Tuple = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :int = {"add_prefix_space": True} SCREAMING_SNAKE_CASE__ :Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCamelCase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : str = {"unk_token": "<unk>"} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any , **__a : Optional[int] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> Tuple: _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Dict = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : Optional[Any] = "lower newer" _UpperCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : Any = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : str = tokens + [tokenizer.unk_token] _UpperCamelCase : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: if not self.test_rust_tokenizer: return _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = "lower newer" # Testing tokenization _UpperCamelCase : str = tokenizer.tokenize(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _UpperCamelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _UpperCamelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token _UpperCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _UpperCamelCase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : int , **__a : List[Any] ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input _UpperCamelCase : Optional[int] = "This is a simple input" _UpperCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Dict = ("This is a simple input", "This is a pair") _UpperCamelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCamelCase : Union[str, Any] = "This is a simple input" _UpperCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] _UpperCamelCase : str = ("This is a simple input", "This is a pair") _UpperCamelCase : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCamelCase : Union[str, Any] = tokenizer.pad_token_id _UpperCamelCase : str = tokenizer(__a , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCamelCase : Tuple = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) _UpperCamelCase : str = tokenizer(*__a , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCamelCase : Optional[int] = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: _UpperCamelCase : Any = "$$$" _UpperCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) _UpperCamelCase : int = "This is a simple input" _UpperCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Union[str, Any] = tokenizer.bos_token_id _UpperCamelCase : str = tokenizer(__a ) _UpperCamelCase : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCamelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _UpperCamelCase : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _UpperCamelCase : Optional[Any] = [self.get_tokenizer(do_lower_case=__a , add_bos_token=__a )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "Encode this." _UpperCamelCase : List[str] = "This one too please." _UpperCamelCase : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) encoded_sequence += tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer.encode_plus( __a , __a , add_special_tokens=__a , return_special_tokens_mask=__a , ) _UpperCamelCase : str = encoded_sequence_dict["input_ids"] _UpperCamelCase : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__a ) , len(__a ) ) _UpperCamelCase : Union[str, Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__a ) ] _UpperCamelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__a , __a ) @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> str: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Any = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) _UpperCamelCase : str = AutoTokenizer.from_pretrained("./test_opt" ) _UpperCamelCase : Optional[Any] = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Union[str, Any] = tokenizer.encode( __a , ) # Same as above self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[str] = "bos" _UpperCamelCase : Tuple = tokenizer.get_vocab()["bos"] _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : List[Any] = tokenizer.encode( __a , ) # We changed the bos token self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _UpperCamelCase : Tuple = tokenizer.encode( __a , ) self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] )
310
0
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowerCamelCase__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Whether to SortishSamler or not."} ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "whether to use adafactor"} ) SCREAMING_SNAKE_CASE__ :Optional[float] = field( default=_UpperCamelCase , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) SCREAMING_SNAKE_CASE__ :Optional[float] = field( default=_UpperCamelCase , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) SCREAMING_SNAKE_CASE__ :Optional[float] = field(default=_UpperCamelCase , metadata={"help": "Dropout probability. Goes into model.config."} ) SCREAMING_SNAKE_CASE__ :Optional[float] = field( default=_UpperCamelCase , metadata={"help": "Attention dropout probability. Goes into model.config."} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default="linear" , metadata={"help": F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
365
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : Union[str, Any] = load_tool("text-question-answering" , remote=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Dict = self.tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.remote_tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Dict = self.tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[Any] = self.remote_tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" )
310
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 10**-10 ) -> float: """simple docstring""" _UpperCamelCase : Dict = a while True: _UpperCamelCase : Optional[Any] = Decimal(lowercase_ ) - ( Decimal(eval(lowercase_ ) ) / Decimal(eval(str(diff(lowercase_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowercase_ ) ) < precision: # noqa: S307 return float(lowercase_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
366
"""simple docstring""" lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [False] * len(lowercase_ ) _UpperCamelCase : Dict = [s] _UpperCamelCase : List[str] = True while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase_ ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = [-1] * (len(lowercase_ )) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : int = float("Inf" ) _UpperCamelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : List[Any] = min(lowercase_ ,graph[parent[s]][s] ) _UpperCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _UpperCamelCase : Union[str, Any] = sink while v != source: _UpperCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Dict = parent[v] for i in range(len(lowercase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
310
0
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __SCREAMING_SNAKE_CASE ( ctypes.Structure ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowercase__ ( ) -> List[str]: """simple docstring""" if os.name == "nt": _UpperCamelCase : List[Any] = CursorInfo() _UpperCamelCase : Dict = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase_ ,ctypes.byref(lowercase_ ) ) _UpperCamelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase_ ,ctypes.byref(lowercase_ ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def lowercase__ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": _UpperCamelCase : Optional[Any] = CursorInfo() _UpperCamelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase_ ,ctypes.byref(lowercase_ ) ) _UpperCamelCase : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase_ ,ctypes.byref(lowercase_ ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
367
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : int = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : str = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : int = do_center_crop _UpperCamelCase : int = crop_size _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Dict = do_rescale _UpperCamelCase : Any = rescale_factor _UpperCamelCase : Any = offset _UpperCamelCase : Union[str, Any] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: _UpperCamelCase : str = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: _UpperCamelCase : Any = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> Optional[Any]: _UpperCamelCase : Any = image.astype(np.floataa ) if offset: _UpperCamelCase : Dict = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCamelCase : Optional[Any] = to_numpy_array(__a ) if do_resize: _UpperCamelCase : Any = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: _UpperCamelCase : Dict = self.center_crop(__a , size=__a ) if do_rescale: _UpperCamelCase : Union[str, Any] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: _UpperCamelCase : int = self.normalize(image=__a , mean=__a , std=__a ) _UpperCamelCase : str = to_channel_dimension_format(__a , __a ) return image def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: _UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = offset if offset is not None else self.offset _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(__a , param_name="crop_size" ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Union[str, Any] = make_batched(__a ) _UpperCamelCase : Optional[Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase : List[Any] = {"pixel_values": videos} return BatchFeature(data=__a , tensor_type=__a )
310
0
"""simple docstring""" import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowercase__ ( lowercase_ ) -> int: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase_ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main _UpperCamelCase : Optional[Any] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowercase_ ,id=lowercase_ )
368
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCamelCase__ = True except ImportError: lowerCamelCase__ = False try: from torch.hub import _get_torch_home lowerCamelCase__ = _get_torch_home() except ImportError: lowerCamelCase__ = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) lowerCamelCase__ = os.path.join(torch_cache_home, "transformers") lowerCamelCase__ = "https://cdn.huggingface.co" lowerCamelCase__ = "https://s3.amazonaws.com/models.huggingface.co/bert" lowerCamelCase__ = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) lowerCamelCase__ = os.path.join(PATH, "config.yaml") lowerCamelCase__ = os.path.join(PATH, "attributes.txt") lowerCamelCase__ = os.path.join(PATH, "objects.txt") lowerCamelCase__ = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) lowerCamelCase__ = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) lowerCamelCase__ = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) lowerCamelCase__ = "pytorch_model.bin" lowerCamelCase__ = "config.yaml" def lowercase__ ( lowercase_=OBJECTS ,lowercase_=ATTRIBUTES ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _UpperCamelCase : Any = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = OrderedDict() with open(lowercase_ ,"rb" ) as f: _UpperCamelCase : List[str] = pkl.load(lowercase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _UpperCamelCase : List[str] = ckp.pop(lowercase_ ) if isinstance(lowercase_ ,np.ndarray ): _UpperCamelCase : List[Any] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ ,torch.tensor ), type(lowercase_ ) _UpperCamelCase : Optional[Any] = v return r class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = {} def __init__( self : str , __a : dict , __a : str = "root" , __a : Any=0 ) -> Any: _UpperCamelCase : Optional[Any] = name _UpperCamelCase : Optional[Any] = level _UpperCamelCase : Union[str, Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _UpperCamelCase : Optional[int] = copy.deepcopy(__a ) _UpperCamelCase : Dict = copy.deepcopy(__a ) if isinstance(__a , __a ): _UpperCamelCase : Union[str, Any] = Config(__a , name=__a , level=level + 1 ) _UpperCamelCase : Optional[Any] = v setattr(self , __a , __a ) _UpperCamelCase : Optional[Any] = d def __repr__( self : List[str] ) -> List[Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : Dict , __a : Union[str, Any] , __a : Optional[int] ) -> int: _UpperCamelCase : Any = val _UpperCamelCase : Optional[Any] = val _UpperCamelCase : Dict = key.split("." ) _UpperCamelCase : int = len(__a ) - 1 _UpperCamelCase : List[str] = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: _UpperCamelCase : str = val else: _UpperCamelCase : List[str] = pointer[l] def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._pointer def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Tuple , __a : List[str] ) -> Dict: with open(F'''{file_name}''' , "w" ) as stream: dump(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : Dict ) -> List[Any]: with open(F'''{file_name}''' , "w" ) as stream: json.dump(__a , __a ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Union[str, Any] ) -> Optional[int]: with open(__a ) as stream: _UpperCamelCase : int = load(__a , Loader=__a ) return data def __str__( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = " " if self._name != "root": _UpperCamelCase : Dict = F'''{t * (self._level-1)}{self._name}:\n''' else: _UpperCamelCase : Any = "" _UpperCamelCase : Any = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n''' _UpperCamelCase : Optional[Any] = level return r[:-1] @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict , __a : str , **__a : str ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : int = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __a : str , **__a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Tuple = kwargs.pop("cache_dir" , __a ) _UpperCamelCase : Optional[int] = kwargs.pop("force_download" , __a ) _UpperCamelCase : str = kwargs.pop("resume_download" , __a ) _UpperCamelCase : Any = kwargs.pop("proxies" , __a ) _UpperCamelCase : List[Any] = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): _UpperCamelCase : Optional[Any] = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): _UpperCamelCase : Optional[int] = pretrained_model_name_or_path else: _UpperCamelCase : int = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached _UpperCamelCase : Optional[int] = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _UpperCamelCase : List[Any] = Config.load_yaml(__a ) except EnvironmentError: _UpperCamelCase : Union[str, Any] = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : str = torch.load("dump.pt" ,map_location=in_tensor.device ) _UpperCamelCase : str = in_tensor.numpy() _UpperCamelCase : Union[str, Any] = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ), ( F'''{sum([1 for x in np.isclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Dict = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=True ) -> str: """simple docstring""" _UpperCamelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _UpperCamelCase : List[str] = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=0 ,lowercase_=None ,) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ ,lowercase_ ): ua += "; " + "; ".join("{}/{}".format(lowercase_ ,lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ ,lowercase_ ): ua += "; " + user_agent _UpperCamelCase : Any = {"user-agent": ua} if resume_size > 0: _UpperCamelCase : str = "bytes=%d-" % (resume_size,) _UpperCamelCase : str = requests.get(lowercase_ ,stream=lowercase_ ,proxies=lowercase_ ,headers=lowercase_ ) if response.status_code == 416: # Range not satisfiable return _UpperCamelCase : List[str] = response.headers.get("Content-Length" ) _UpperCamelCase : Union[str, Any] = resume_size + int(lowercase_ ) if content_length is not None else None _UpperCamelCase : Optional[int] = tqdm( unit="B" ,unit_scale=lowercase_ ,total=lowercase_ ,initial=lowercase_ ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=10 ,lowercase_=False ,lowercase_=None ,lowercase_=False ,) -> Tuple: """simple docstring""" if cache_dir is None: _UpperCamelCase : str = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Dict = str(lowercase_ ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) _UpperCamelCase : Dict = None if not local_files_only: try: _UpperCamelCase : List[Any] = requests.head(lowercase_ ,allow_redirects=lowercase_ ,proxies=lowercase_ ,timeout=lowercase_ ) if response.status_code == 200: _UpperCamelCase : str = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _UpperCamelCase : int = url_to_filename(lowercase_ ,lowercase_ ) # get cache path to put the file _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: _UpperCamelCase : Optional[int] = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _UpperCamelCase : Dict = cache_path + ".lock" with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _UpperCamelCase : List[str] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(lowercase_ ,"a+b" ) as f: yield f _UpperCamelCase : Union[str, Any] = _resumable_file_manager if os.path.exists(lowercase_ ): _UpperCamelCase : str = os.stat(lowercase_ ).st_size else: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Tuple = partial(tempfile.NamedTemporaryFile ,dir=lowercase_ ,delete=lowercase_ ) _UpperCamelCase : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,lowercase_ ,temp_file.name ,) http_get( lowercase_ ,lowercase_ ,proxies=lowercase_ ,resume_size=lowercase_ ,user_agent=lowercase_ ,) os.replace(temp_file.name ,lowercase_ ) _UpperCamelCase : Optional[int] = {"url": url, "etag": etag} _UpperCamelCase : List[str] = cache_path + ".json" with open(lowercase_ ,"w" ) as meta_file: json.dump(lowercase_ ,lowercase_ ) return cache_path def lowercase__ ( lowercase_ ,lowercase_=None ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = url.encode("utf-8" ) _UpperCamelCase : List[str] = shaaaa(lowercase_ ) _UpperCamelCase : List[str] = url_hash.hexdigest() if etag: _UpperCamelCase : Optional[Any] = etag.encode("utf-8" ) _UpperCamelCase : Optional[Any] = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=False ,lowercase_=False ,) -> str: """simple docstring""" if cache_dir is None: _UpperCamelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) _UpperCamelCase : Union[str, Any] = get_from_cache( lowercase_ ,cache_dir=lowercase_ ,force_download=lowercase_ ,proxies=lowercase_ ,resume_download=lowercase_ ,user_agent=lowercase_ ,local_files_only=lowercase_ ,) elif os.path.exists(lowercase_ ): # File, and it exists. _UpperCamelCase : List[str] = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(lowercase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _UpperCamelCase, _UpperCamelCase : Any = os.path.split(lowercase_ ) _UpperCamelCase : Optional[int] = output_file.replace("." ,"-" ) + "-extracted" _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _UpperCamelCase : Optional[int] = output_path + ".lock" with FileLock(lowercase_ ): shutil.rmtree(lowercase_ ,ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ ,"r" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): _UpperCamelCase : int = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(lowercase_ ) ) return output_path_extracted return output_path def lowercase__ ( lowercase_ ,lowercase_="," ) -> Optional[int]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: _UpperCamelCase : Tuple = eval(f.read() ) else: _UpperCamelCase : str = requests.get(lowercase_ ) try: _UpperCamelCase : Optional[int] = requests.json() except Exception: _UpperCamelCase : Union[str, Any] = req.content.decode() assert data is not None, "could not connect" try: _UpperCamelCase : List[Any] = eval(lowercase_ ) except Exception: _UpperCamelCase : int = data.split("\n" ) req.close() return data def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[Any] = requests.get(lowercase_ ) _UpperCamelCase : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ ,"rb" ) as stream: _UpperCamelCase : Union[str, Any] = pkl.load(lowercase_ ) _UpperCamelCase : Union[str, Any] = weights.pop("model" ) _UpperCamelCase : Optional[int] = {} for k, v in model.items(): _UpperCamelCase : str = torch.from_numpy(lowercase_ ) if "running_var" in k: _UpperCamelCase : List[Any] = torch.tensor([0] ) _UpperCamelCase : str = k.replace("running_var" ,"num_batches_tracked" ) _UpperCamelCase : Any = zero return new def lowercase__ ( ) -> Dict: """simple docstring""" print(F'''{os.path.abspath(os.path.join(lowercase_ ,os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( lowercase_ ,lowercase_="RGB" ) -> int: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): _UpperCamelCase : Optional[Any] = cva.imread(lowercase_ ) else: _UpperCamelCase : Optional[int] = get_image_from_url(lowercase_ ) assert img is not None, F'''could not connect to: {im}''' _UpperCamelCase : Optional[int] = cva.cvtColor(lowercase_ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": _UpperCamelCase : List[Any] = img[:, :, ::-1] return img def lowercase__ ( lowercase_ ,lowercase_=1 ) -> List[Any]: """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(lowercase_ ) ,lowercase_ ))
310
0
"""simple docstring""" import os from pathlib import Path def lowercase__ ( ) -> Dict: """simple docstring""" from torch.utils.cpp_extension import load _UpperCamelCase : Optional[Any] = Path(lowercase_ ).resolve().parent.parent.parent / "kernels" / "deformable_detr" _UpperCamelCase : Any = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" ,"ms_deform_attn_cpu.cpp" ), os.path.join("cuda" ,"ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" ,lowercase_ ,with_cuda=lowercase_ ,extra_include_paths=[str(lowercase_ )] ,extra_cflags=["-DWITH_CUDA=1"] ,extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] ,) import MultiScaleDeformableAttention as MSDA return MSDA
369
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase__ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["DPTFeatureExtractor"] lowerCamelCase__ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE__ :Any = "Pix2StructImageProcessor" SCREAMING_SNAKE_CASE__ :Optional[Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : int , __a : List[Any] , __a : Any ) -> int: _UpperCamelCase : List[Any] = False super().__init__(__a , __a ) def __call__( self : List[str] , __a : Tuple=None , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : Optional[int] = 2048 , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Any , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCamelCase : Optional[Any] = self.tokenizer _UpperCamelCase : Tuple = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCamelCase : Optional[Any] = self.image_processor( __a , return_tensors=__a , max_patches=__a , **__a ) else: # add pixel_values and bbox _UpperCamelCase : int = self.image_processor( __a , return_tensors=__a , max_patches=__a , header_text=__a , **__a ) if text is not None and not self.image_processor.is_vqa: _UpperCamelCase : Dict = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) if "attention_mask" in text_encoding: _UpperCamelCase : Union[str, Any] = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: _UpperCamelCase : Optional[Any] = text_encoding.pop("input_ids" ) else: _UpperCamelCase : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(__a ) return encoding_image_processor def __SCREAMING_SNAKE_CASE ( self : List[str] , *__a : Optional[Any] , **__a : Optional[int] ) -> Dict: return self.tokenizer.batch_decode(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : str , *__a : Dict , **__a : Optional[int] ) -> int: return self.tokenizer.decode(*__a , **__a ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: _UpperCamelCase : Union[str, Any] = self.tokenizer.model_input_names _UpperCamelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
371
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
0
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
350
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
310
0
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Dict = torch.nn.Linear(2 ,4 ) _UpperCamelCase : Tuple = torch.optim.AdamW(model.parameters() ,lr=1.0 ) _UpperCamelCase : Optional[int] = torch.optim.lr_scheduler.OneCycleLR(lowercase_ ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) _UpperCamelCase : Optional[int] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _UpperCamelCase : Tuple = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : int = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowercase_ ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @require_cuda def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: _UpperCamelCase : Dict = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__a ): _UpperCamelCase : List[str] = Accelerator(cpu=__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: _UpperCamelCase : Optional[int] = Accelerator() _UpperCamelCase : Any = GradientState() assert state.num_steps == 1 _UpperCamelCase : List[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True _UpperCamelCase : List[str] = False assert state.sync_gradients is False GradientState._reset_state() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: _UpperCamelCase : Optional[Any] = Accelerator() _UpperCamelCase : Optional[Any] = create_components() ( _UpperCamelCase ) : List[Any] = accelerator.prepare(__a , __a , __a , __a , __a ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = Accelerator() _UpperCamelCase : List[str] = create_components() accelerator.prepare(__a , __a , __a , __a , __a ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__a : Union[str, Any] , **__a : int ): pass with patch("torch.cuda.set_device" , __a ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): _UpperCamelCase : Optional[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = Accelerator() _UpperCamelCase : Optional[int] = create_components() accelerator.prepare(__a , __a , __a , __a , __a ) _UpperCamelCase : str = get_signature(__a ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__a ) # make sure random weights don't match load_random_weights(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) < 1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: _UpperCamelCase : List[str] = Accelerator() _UpperCamelCase : Union[str, Any] = create_components() accelerator.prepare(__a , __a , __a , __a , __a ) _UpperCamelCase : str = get_signature(__a ) # saving hook def save_config(__a : Optional[Any] , __a : str , __a : Optional[int] ): _UpperCamelCase : Optional[int] = {"class_name": models[0].__class__.__name__} with open(os.path.join(__a , "data.json" ) , "w" ) as f: json.dump(__a , __a ) # loading hook def load_config(__a : str , __a : Union[str, Any] ): with open(os.path.join(__a , "data.json" ) , "r" ) as f: _UpperCamelCase : int = json.load(__a ) _UpperCamelCase : Tuple = config["class_name"] _UpperCamelCase : Tuple = accelerator.register_save_state_pre_hook(__a ) _UpperCamelCase : List[str] = accelerator.register_load_state_pre_hook(__a ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__a ) # make sure random weights don't match with hooks load_random_weights(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) > 1e-3 ) # random class name to verify correct one is loaded _UpperCamelCase : Dict = "random" # make sure loaded weights match with hooks accelerator.load_state(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__a ) # make sure random weights don't match with hooks removed load_random_weights(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) > 1e-3 ) # random class name to verify correct one is loaded _UpperCamelCase : Any = "random" # make sure loaded weights match with hooks removed accelerator.load_state(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: _UpperCamelCase : Union[str, Any] = Accelerator() _UpperCamelCase : Union[str, Any] = create_components() _UpperCamelCase : Optional[Any] = None # This should work _UpperCamelCase : Optional[Any] = accelerator.prepare( __a , __a , __a , __a , __a , __a ) self.assertTrue(dummy_obj is None ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Optional[int] = Accelerator() _UpperCamelCase : Optional[Any] = create_components() _UpperCamelCase : Union[str, Any] = [1, 2, 3] # This should work _UpperCamelCase : List[str] = accelerator.prepare( __a , __a , __a , __a , __a , __a ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: from transformers import AutoModelForCausalLM _UpperCamelCase : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__a , device_map={"": 0} , ) _UpperCamelCase : str = Accelerator() # This should work _UpperCamelCase : Optional[int] = accelerator.prepare(__a ) @slow @require_bnb def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: from transformers import AutoModelForCausalLM _UpperCamelCase : Dict = Accelerator() with init_empty_weights(): _UpperCamelCase : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() _UpperCamelCase : str = infer_auto_device_map(__a ) _UpperCamelCase : int = "cpu" _UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=__a , load_in_abit=__a , llm_inta_enable_fpaa_cpu_offload=__a ) # This should not work and get value error with self.assertRaises(__a ): _UpperCamelCase : List[Any] = accelerator.prepare(__a ) @slow @require_bnb @require_multi_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: from transformers import AutoModelForCausalLM _UpperCamelCase : int = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() _UpperCamelCase : Union[str, Any] = infer_auto_device_map(__a ) _UpperCamelCase : List[str] = 1 _UpperCamelCase : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__a , device_map=__a , ) _UpperCamelCase : Tuple = Accelerator() # This should not work and get value error with self.assertRaises(__a ): _UpperCamelCase : Dict = accelerator.prepare(__a ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: from transformers import AutoModelForCausalLM with init_empty_weights(): _UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) _UpperCamelCase : int = infer_auto_device_map(__a ) _UpperCamelCase : List[Any] = 1 _UpperCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__a , device_map=__a , ) _UpperCamelCase : Any = Accelerator() # This should work _UpperCamelCase : List[str] = accelerator.prepare(__a ) @require_cuda def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = torch.nn.Linear(10 , 10 ) _UpperCamelCase : Tuple = torch.optim.SGD(model.parameters() , lr=0.01 ) _UpperCamelCase : Any = Accelerator(cpu=__a ) _UpperCamelCase : str = accelerator.prepare(__a )
351
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
0
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase__ = 16 lowerCamelCase__ = 32 def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return int(x / 2**20 ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __enter__( self : Dict ) -> Optional[int]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _UpperCamelCase : List[str] = torch.cuda.memory_allocated() return self def __exit__( self : Tuple , *__a : List[str] ) -> Dict: gc.collect() torch.cuda.empty_cache() _UpperCamelCase : List[str] = torch.cuda.memory_allocated() _UpperCamelCase : int = torch.cuda.max_memory_allocated() _UpperCamelCase : Optional[Any] = bamb(self.end - self.begin ) _UpperCamelCase : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowercase__ ( lowercase_ ,lowercase_ = 16 ,lowercase_ = "bert-base-cased" ,lowercase_ = 320 ,lowercase_ = 160 ,) -> List[Any]: """simple docstring""" _UpperCamelCase : int = AutoTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : Optional[Any] = load_dataset( "glue" ,"mrpc" ,split={"train": F'''train[:{n_train}]''', "validation": F'''validation[:{n_val}]'''} ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : Optional[Any] = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=lowercase_ ,max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCamelCase : Tuple = datasets.map( lowercase_ ,batched=lowercase_ ,remove_columns=["idx", "sentence1", "sentence2"] ,load_from_cache_file=lowercase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : Union[str, Any] = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase_ ,padding="max_length" ,max_length=128 ,return_tensors="pt" ) return tokenizer.pad(lowercase_ ,padding="longest" ,return_tensors="pt" ) # Instantiate dataloaders. _UpperCamelCase : List[Any] = DataLoader( tokenized_datasets["train"] ,shuffle=lowercase_ ,collate_fn=lowercase_ ,batch_size=lowercase_ ) _UpperCamelCase : Any = DataLoader( tokenized_datasets["validation"] ,shuffle=lowercase_ ,collate_fn=lowercase_ ,batch_size=lowercase_ ) return train_dataloader, eval_dataloader def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Dict = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : Dict = config["lr"] _UpperCamelCase : List[Any] = int(config["num_epochs"] ) _UpperCamelCase : int = int(config["seed"] ) _UpperCamelCase : List[str] = int(config["batch_size"] ) _UpperCamelCase : Optional[int] = args.model_name_or_path set_seed(lowercase_ ) _UpperCamelCase : Union[str, Any] = get_dataloaders(lowercase_ ,lowercase_ ,lowercase_ ,args.n_train ,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : str = AutoModelForSequenceClassification.from_pretrained(lowercase_ ,return_dict=lowercase_ ) # Instantiate optimizer _UpperCamelCase : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCamelCase : Optional[Any] = optimizer_cls(params=model.parameters() ,lr=lowercase_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCamelCase : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _UpperCamelCase : str = 1 _UpperCamelCase : Dict = (len(lowercase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCamelCase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase_ ,num_warmup_steps=0 ,num_training_steps=lowercase_ ,) else: _UpperCamelCase : Any = DummyScheduler(lowercase_ ,total_num_steps=lowercase_ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase : Tuple = accelerator.prepare( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCamelCase : Any = 0 # Now we train the model _UpperCamelCase : Tuple = {} for epoch in range(lowercase_ ,lowercase_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase_ ): _UpperCamelCase : List[Any] = model(**lowercase_ ) _UpperCamelCase : List[str] = outputs.loss _UpperCamelCase : Dict = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _UpperCamelCase : Dict = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"peak_memory_utilization.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) def lowercase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" ,type=lowercase_ ,default="bert-base-cased" ,help="Path to pretrained model or model identifier from huggingface.co/models." ,required=lowercase_ ,) parser.add_argument( "--output_dir" ,type=lowercase_ ,default="." ,help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." ,) parser.add_argument( "--peak_memory_upper_bound" ,type=lowercase_ ,default=lowercase_ ,help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." ,) parser.add_argument( "--n_train" ,type=lowercase_ ,default=320 ,help="Number of training examples to use." ,) parser.add_argument( "--n_val" ,type=lowercase_ ,default=160 ,help="Number of validation examples to use." ,) parser.add_argument( "--num_epochs" ,type=lowercase_ ,default=1 ,help="Number of train epochs." ,) _UpperCamelCase : int = parser.parse_args() _UpperCamelCase : Optional[Any] = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(lowercase_ ,lowercase_ ) if __name__ == "__main__": main()
352
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
0
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a ) }
310
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" _UpperCamelCase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack _UpperCamelCase : set[int] = set() return any( node not in visited and depth_first_search(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) for node in graph ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> bool: """simple docstring""" visited.add(lowercase_ ) rec_stk.add(lowercase_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
354
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ,lowercase_ ) -> bool: """simple docstring""" _UpperCamelCase : Tuple = get_failure_array(lowercase_ ) # 2) Step through text searching for pattern _UpperCamelCase : Tuple = 0, 0 # index into text, pattern while i < len(lowercase_ ): if pattern[j] == text[i]: if j == (len(lowercase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCamelCase : Optional[int] = failure[j - 1] continue i += 1 return False def lowercase__ ( lowercase_ ) -> list[int]: """simple docstring""" _UpperCamelCase : Optional[Any] = [0] _UpperCamelCase : Tuple = 0 _UpperCamelCase : str = 1 while j < len(lowercase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCamelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(lowercase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase__ = "abc1abc12" lowerCamelCase__ = "alskfjaldsabc1abc1abc12k23adsfabcabc" lowerCamelCase__ = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase__ = "ABABX" lowerCamelCase__ = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) lowerCamelCase__ = "AAAB" lowerCamelCase__ = "ABAAAAAB" assert kmp(pattern, text) # Test 4) lowerCamelCase__ = "abcdabcy" lowerCamelCase__ = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) lowerCamelCase__ = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
355
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
310
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Any , *__a : int , **__a : Tuple ) -> Tuple: super().__init__(*__a , **__a ) _UpperCamelCase : int = {} def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , *__a : Optional[Any] , **__a : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : str = super().add_tokens(__a , *__a , **__a ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' " `placeholder_token` that is not already in the tokenizer." ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int , *__a : Optional[int] , __a : List[str]=1 , **__a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Union[str, Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(__a , *__a , **__a ) output.append(__a ) else: _UpperCamelCase : Optional[Any] = [] for i in range(__a ): _UpperCamelCase : List[str] = placeholder_token + F'''_{i}''' self.try_adding_tokens(__a , *__a , **__a ) output.append(__a ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) _UpperCamelCase : str = output def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[int] , __a : Tuple=False , __a : List[Any]=1.0 ) -> Union[str, Any]: if isinstance(__a , __a ): _UpperCamelCase : Tuple = [] for i in range(len(__a ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__a ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCamelCase : Optional[Any] = self.token_map[placeholder_token] _UpperCamelCase : Union[str, Any] = tokens[: 1 + int(len(__a ) * prop_tokens_to_load )] if vector_shuffle: _UpperCamelCase : int = copy.copy(__a ) random.shuffle(__a ) _UpperCamelCase : List[Any] = text.replace(__a , " ".join(__a ) ) return text def __call__( self : int , __a : Union[str, Any] , *__a : List[Any] , __a : Optional[Any]=False , __a : Union[str, Any]=1.0 , **__a : Tuple ) -> List[Any]: return super().__call__( self.replace_placeholder_tokens_in_text( __a , vector_shuffle=__a , prop_tokens_to_load=__a ) , *__a , **__a , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : str , *__a : List[str] , __a : List[Any]=False , __a : str=1.0 , **__a : List[Any] ) -> str: return super().encode( self.replace_placeholder_tokens_in_text( __a , vector_shuffle=__a , prop_tokens_to_load=__a ) , *__a , **__a , )
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE__ :Tuple = "AutoImageProcessor" SCREAMING_SNAKE_CASE__ :Optional[Any] = "AutoTokenizer" def __init__( self : Any , __a : List[str] , __a : List[Any] ) -> List[str]: super().__init__(__a , __a ) _UpperCamelCase : Dict = self.image_processor def __call__( self : List[str] , __a : Optional[Any]=None , __a : Any=None , __a : int=None , **__a : int ) -> Dict: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _UpperCamelCase : Any = self.tokenizer(__a , return_tensors=__a , **__a ) if images is not None: _UpperCamelCase : List[str] = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: _UpperCamelCase : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : Union[str, Any] , **__a : Tuple ) -> List[str]: return self.tokenizer.batch_decode(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : Dict , **__a : Dict ) -> List[str]: return self.tokenizer.decode(*__a , **__a ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: return ["input_ids", "attention_mask", "pixel_values"]
357
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowerCamelCase__ = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowerCamelCase__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowerCamelCase__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
310
0
"""simple docstring""" from manim import * class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : int = Rectangle(height=0.5 , width=0.5 ) _UpperCamelCase : Optional[Any] = Rectangle(height=0.25 , width=0.25 ) _UpperCamelCase : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCamelCase : Union[str, Any] = [mem.copy() for i in range(6 )] _UpperCamelCase : List[Any] = [mem.copy() for i in range(6 )] _UpperCamelCase : Any = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : int = VGroup(__a , __a ).arrange(__a , buff=0 ) _UpperCamelCase : List[str] = Text("CPU" , font_size=24 ) _UpperCamelCase : Optional[Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) _UpperCamelCase : Optional[int] = [mem.copy() for i in range(4 )] _UpperCamelCase : int = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Union[str, Any] = Text("GPU" , font_size=24 ) _UpperCamelCase : int = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) _UpperCamelCase : int = [mem.copy() for i in range(6 )] _UpperCamelCase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Union[str, Any] = Text("Model" , font_size=24 ) _UpperCamelCase : List[Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) _UpperCamelCase : List[str] = [] _UpperCamelCase : int = [] _UpperCamelCase : str = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) _UpperCamelCase : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) model_cpu_arr.append(__a ) self.add(*__a , *__a , *__a ) _UpperCamelCase : int = [mem.copy() for i in range(6 )] _UpperCamelCase : Optional[Any] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Dict = Text("Loaded Checkpoint" , font_size=24 ) _UpperCamelCase : Union[str, Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) checkpoint.move_to([3, 0.5, 0] ) self.add(__a ) _UpperCamelCase : List[str] = [] _UpperCamelCase : str = [] for i, rect in enumerate(__a ): _UpperCamelCase : Union[str, Any] = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) ckpt_arr.append(__a ) _UpperCamelCase : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__a ) self.add(*__a , *__a ) _UpperCamelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCamelCase : Optional[int] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) _UpperCamelCase : List[Any] = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__a ) _UpperCamelCase : Tuple = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) _UpperCamelCase : int = [meta_mem.copy() for i in range(6 )] _UpperCamelCase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] _UpperCamelCase : Optional[int] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) _UpperCamelCase : Any = VGroup(__a , __a ).arrange(__a , buff=0 ) _UpperCamelCase : List[Any] = Text("Disk" , font_size=24 ) _UpperCamelCase : List[Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__a , run_time=3 ) , Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) _UpperCamelCase : str = [] for i, rect in enumerate(__a ): _UpperCamelCase : Tuple = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(FadeOut(__a ) ) _UpperCamelCase : Optional[int] = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=3 ) ) self.play( FadeOut(__a , __a , *__a , *__a ) , ) self.wait()
358
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl" def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Union[str, Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
310
0
"""simple docstring""" import argparse import os import re lowerCamelCase__ = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase__ = re.compile(R"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings lowerCamelCase__ = re.compile(R"\s*\(\s*\"(\S[^\"]+)\"") def lowercase__ ( lowercase_ ,lowercase_ = False ) -> Any: """simple docstring""" with open(lowercase_ ,"r" ,encoding="utf-8" ) as f: _UpperCamelCase : List[str] = f.read() _UpperCamelCase : Dict = content.split("\n" ) _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Optional[Any] = 0 while line_idx < len(lowercase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _UpperCamelCase : List[Any] = len(re.search(r"^(\s*)\S" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 _UpperCamelCase : Dict = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _UpperCamelCase : Tuple = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _UpperCamelCase : List[str] = sorted(lowercase_ ,key=lambda lowercase_ : _re_identifier.search(lowercase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase_ ,"w" ,encoding="utf-8" ) as f: f.write("\n".join(lowercase_ ) ) elif "\n".join(lowercase_ ) != content: return True def lowercase__ ( lowercase_ = False ) -> Any: """simple docstring""" _UpperCamelCase : int = [os.path.join(lowercase_ ,lowercase_ ) for f in os.listdir(lowercase_ ) if f.endswith(".py" )] _UpperCamelCase : Optional[int] = [sort_auto_mapping(lowercase_ ,overwrite=lowercase_ ) for fname in fnames] if not overwrite and any(lowercase_ ): _UpperCamelCase : Dict = [f for f, d in zip(lowercase_ ,lowercase_ ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {', '.join(lowercase_ )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCamelCase__ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
359
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( *__a : int , **__a : int ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> Optional[Any]: _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Union[str, Any] ) -> int: _UpperCamelCase : Any = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets _UpperCamelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _UpperCamelCase : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase : List[Any] = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[str] = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = "facebook/detr-resnet-50" _UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Dict = "facebook/detr-resnet-50" _UpperCamelCase : Optional[Any] = pipeline("object-detection" , model=__a ) _UpperCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase : Tuple = 0.99_85 _UpperCamelCase : List[Any] = "facebook/detr-resnet-50" _UpperCamelCase : List[str] = pipeline("object-detection" , model=__a ) _UpperCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase : int = 0.99_93 _UpperCamelCase : str = pipeline("object-detection" , model=__a , threshold=__a ) _UpperCamelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
310
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = XGLMConfig SCREAMING_SNAKE_CASE__ :Dict = {} SCREAMING_SNAKE_CASE__ :Optional[Any] = "gelu" def __init__( self : Union[str, Any] , __a : List[str] , __a : Optional[int]=14 , __a : str=7 , __a : List[str]=True , __a : List[Any]=True , __a : int=True , __a : int=99 , __a : Any=32 , __a : Any=2 , __a : Union[str, Any]=4 , __a : Union[str, Any]=37 , __a : Any="gelu" , __a : List[str]=0.1 , __a : str=0.1 , __a : Dict=512 , __a : Tuple=0.02 , ) -> Dict: _UpperCamelCase : str = parent _UpperCamelCase : int = batch_size _UpperCamelCase : Optional[Any] = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : Dict = use_input_mask _UpperCamelCase : Optional[Any] = use_labels _UpperCamelCase : List[str] = vocab_size _UpperCamelCase : Optional[Any] = d_model _UpperCamelCase : int = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[int] = ffn_dim _UpperCamelCase : List[Any] = activation_function _UpperCamelCase : Union[str, Any] = activation_dropout _UpperCamelCase : Tuple = attention_dropout _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : List[str] = None _UpperCamelCase : Any = 0 _UpperCamelCase : Dict = 2 _UpperCamelCase : Any = 1 def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: _UpperCamelCase : str = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCamelCase : List[str] = None if self.use_input_mask: _UpperCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Optional[int] = self.get_config() _UpperCamelCase : int = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__a , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__a , ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: _UpperCamelCase : Any = self.prepare_config_and_inputs() ( _UpperCamelCase ) : Optional[int] = config_and_inputs _UpperCamelCase : Dict = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :Optional[Any] = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Optional[int] = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :List[str] = False def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase : int = TFXGLMModelTester(self ) _UpperCamelCase : int = ConfigTester(self , config_class=__a , n_embd=37 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: self.config_tester.run_common_tests() @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: super().test_resize_token_embeddings() @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : str , __a : int=True ) -> Tuple: _UpperCamelCase : List[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCamelCase : Optional[Any] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCamelCase : List[Any] = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on _UpperCamelCase : str = model.generate(__a , do_sample=__a , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: _UpperCamelCase : Dict = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCamelCase : int = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCamelCase : Tuple = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCamelCase : List[str] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCamelCase : Tuple = model.generate(__a , do_sample=__a , seed=[7, 0] ) _UpperCamelCase : str = tokenizer.decode(output_ids[0] , skip_special_tokens=__a ) _UpperCamelCase : Dict = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : List[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCamelCase : Optional[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCamelCase : Dict = "left" # use different length sentences to test batching _UpperCamelCase : Optional[Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCamelCase : Any = tokenizer(__a , return_tensors="tf" , padding=__a ) _UpperCamelCase : Any = inputs["input_ids"] _UpperCamelCase : List[str] = model.generate(input_ids=__a , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) _UpperCamelCase : str = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCamelCase : Union[str, Any] = model.generate(input_ids=__a , max_new_tokens=12 ) _UpperCamelCase : List[str] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCamelCase : str = model.generate(input_ids=__a , max_new_tokens=12 ) _UpperCamelCase : Tuple = tokenizer.batch_decode(__a , skip_special_tokens=__a ) _UpperCamelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) _UpperCamelCase : Any = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] )
360
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {"UserAgent": UserAgent().random} def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : str = script.contents[0] _UpperCamelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : str ) -> Tuple: _UpperCamelCase : List[str] = F'''https://www.instagram.com/{username}/''' _UpperCamelCase : Optional[Any] = self.get_json() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> dict: _UpperCamelCase : int = requests.get(self.url , headers=__a ).text _UpperCamelCase : Union[str, Any] = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return self.user_data["username"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["full_name"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["biography"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["external_url"] @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: return self.user_data["is_verified"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def lowercase__ ( lowercase_ = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCamelCase : Union[str, Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
310
0
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCamelCase__ = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" lowerCamelCase__ = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" lowerCamelCase__ = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" return float((preds == labels).mean() ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_="binary" ) -> Any: """simple docstring""" _UpperCamelCase : str = simple_accuracy(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = float(fa_score(y_true=lowercase_ ,y_pred=lowercase_ ,average=lowercase_ ) ) return { "accuracy": acc, "f1": fa, } def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Dict = {} for id_pred, label in zip(lowercase_ ,lowercase_ ): _UpperCamelCase : Optional[int] = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' _UpperCamelCase : Optional[int] = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _UpperCamelCase : List[Any] = [(pred, label)] _UpperCamelCase : int = [], [] for question, preds_labels in question_map.items(): _UpperCamelCase : Any = zip(*lowercase_ ) _UpperCamelCase : Union[str, Any] = fa_score(y_true=lowercase_ ,y_pred=lowercase_ ,average="macro" ) fas.append(lowercase_ ) _UpperCamelCase : List[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase_ ) ) ems.append(lowercase_ ) _UpperCamelCase : Tuple = float(sum(lowercase_ ) / len(lowercase_ ) ) _UpperCamelCase : Union[str, Any] = sum(lowercase_ ) / len(lowercase_ ) _UpperCamelCase : Any = float(fa_score(y_true=lowercase_ ,y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str] ) -> int: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__a , __a )} elif self.config_name == "cb": return acc_and_fa(__a , __a , fa_avg="macro" ) elif self.config_name == "record": _UpperCamelCase : Optional[Any] = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] _UpperCamelCase : str = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(__a , __a )[0] elif self.config_name == "multirc": return evaluate_multirc(__a , __a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__a , __a )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
361
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
310
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ) if weight_type is not None: _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ).shape else: _UpperCamelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": _UpperCamelCase : int = value elif weight_type == "weight_v": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias": _UpperCamelCase : int = value else: _UpperCamelCase : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = fairseq_model.state_dict() _UpperCamelCase : Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,hf_model.config.feat_extract_norm == "group" ,) _UpperCamelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : Dict = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase : Any = mapped_key.replace("*" ,lowercase_ ) if "weight_g" in name: _UpperCamelCase : str = "weight_g" elif "weight_v" in name: _UpperCamelCase : Any = "weight_v" elif "weight" in name: _UpperCamelCase : List[str] = "weight" elif "bias" in name: _UpperCamelCase : List[Any] = "bias" else: _UpperCamelCase : str = None set_recursively(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Any = full_name.split("conv_layers." )[-1] _UpperCamelCase : Optional[Any] = name.split("." ) _UpperCamelCase : Union[str, Any] = int(items[0] ) _UpperCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = SEWConfig() if is_finetuned: _UpperCamelCase : Dict = model.wav_encoder.wav_model.cfg else: _UpperCamelCase : List[Any] = model.cfg _UpperCamelCase : Any = fs_config.conv_bias _UpperCamelCase : str = eval(fs_config.conv_feature_layers ) _UpperCamelCase : Any = [x[0] for x in conv_layers] _UpperCamelCase : List[Any] = [x[1] for x in conv_layers] _UpperCamelCase : Union[str, Any] = [x[2] for x in conv_layers] _UpperCamelCase : str = "gelu" _UpperCamelCase : List[str] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" _UpperCamelCase : Optional[int] = 0.0 _UpperCamelCase : Dict = fs_config.activation_fn.name _UpperCamelCase : Any = fs_config.encoder_embed_dim _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = fs_config.encoder_ffn_embed_dim _UpperCamelCase : int = 1e-5 _UpperCamelCase : Optional[int] = fs_config.encoder_layerdrop _UpperCamelCase : str = fs_config.encoder_attention_heads _UpperCamelCase : Tuple = fs_config.conv_pos_groups _UpperCamelCase : List[str] = fs_config.conv_pos _UpperCamelCase : Optional[int] = len(lowercase_ ) _UpperCamelCase : Union[str, Any] = fs_config.encoder_layers _UpperCamelCase : Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase : List[str] = model.cfg _UpperCamelCase : List[str] = fs_config.final_dropout _UpperCamelCase : Optional[Any] = fs_config.layerdrop _UpperCamelCase : int = fs_config.activation_dropout _UpperCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase : int = fs_config.attention_dropout _UpperCamelCase : int = fs_config.dropout_input _UpperCamelCase : List[Any] = fs_config.dropout _UpperCamelCase : List[Any] = fs_config.mask_channel_length _UpperCamelCase : List[str] = fs_config.mask_channel_prob _UpperCamelCase : Optional[Any] = fs_config.mask_length _UpperCamelCase : Optional[int] = fs_config.mask_prob _UpperCamelCase : List[str] = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=True ) -> str: """simple docstring""" if is_finetuned: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase : str = SEWConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = convert_config(model[0] ,lowercase_ ) _UpperCamelCase : List[str] = model[0].eval() _UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=lowercase_ ,return_attention_mask=lowercase_ ,) if is_finetuned: if dict_path: _UpperCamelCase : Union[str, Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : List[str] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Any = target_dict.pad_index _UpperCamelCase : List[Any] = target_dict.bos_index _UpperCamelCase : List[str] = target_dict.eos_index _UpperCamelCase : Optional[Any] = len(target_dict.symbols ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ ,exist_ok=lowercase_ ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,lowercase_ ) _UpperCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase_ ,) _UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = SEWForCTC(lowercase_ ) else: _UpperCamelCase : int = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ ,lowercase_ ,lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
310
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowercase__ ( lowercase_ ) -> int: """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(lowercase_ ,"_dynamo" ): return False return isinstance(lowercase_ ,torch._dynamo.eval_frame.OptimizedModule ) def lowercase__ ( lowercase_ ,lowercase_ = True ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCamelCase : int = is_compiled_module(lowercase_ ) if is_compiled: _UpperCamelCase : Dict = model _UpperCamelCase : Union[str, Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Tuple = model.module if not keep_fpaa_wrapper: _UpperCamelCase : Tuple = getattr(lowercase_ ,"forward" ) _UpperCamelCase : str = model.__dict__.pop("_original_forward" ,lowercase_ ) if original_forward is not None: while hasattr(lowercase_ ,"__wrapped__" ): _UpperCamelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCamelCase : int = forward if getattr(lowercase_ ,"_converted_to_transformer_engine" ,lowercase_ ): convert_model(lowercase_ ,to_transformer_engine=lowercase_ ) if is_compiled: _UpperCamelCase : Dict = model _UpperCamelCase : List[Any] = compiled_model return model def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" PartialState().wait_for_everyone() def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(lowercase_ ,lowercase_ ) elif PartialState().local_process_index == 0: torch.save(lowercase_ ,lowercase_ ) @contextmanager def lowercase__ ( **lowercase_ ) -> Optional[Any]: """simple docstring""" for key, value in kwargs.items(): _UpperCamelCase : Any = str(lowercase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" if not hasattr(lowercase_ ,"__qualname__" ) and not hasattr(lowercase_ ,"__name__" ): _UpperCamelCase : Union[str, Any] = getattr(lowercase_ ,"__class__" ,lowercase_ ) if hasattr(lowercase_ ,"__qualname__" ): return obj.__qualname__ if hasattr(lowercase_ ,"__name__" ): return obj.__name__ return str(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for key, value in source.items(): if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Any = destination.setdefault(lowercase_ ,{} ) merge_dicts(lowercase_ ,lowercase_ ) else: _UpperCamelCase : Union[str, Any] = value return destination def lowercase__ ( lowercase_ = None ) -> bool: """simple docstring""" if port is None: _UpperCamelCase : Optional[int] = 29_500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
363
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : int = prime_factors(lowercase_ ) if is_square_free(lowercase_ ): return -1 if len(lowercase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCamelCase__ = "hf-internal-testing/tiny-random-bert" lowerCamelCase__ = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") lowerCamelCase__ = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Any = cached_file(__a , __a ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__a ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__a , __a ) ) ) with open(os.path.join(__a , "refs" , "main" ) ) as f: _UpperCamelCase : Dict = f.read() self.assertEqual(__a , os.path.join(__a , "snapshots" , __a , __a ) ) self.assertTrue(os.path.isfile(__a ) ) # File is cached at the same place the second time. _UpperCamelCase : Tuple = cached_file(__a , __a ) self.assertEqual(__a , __a ) # Using a specific revision to test the full commit hash. _UpperCamelCase : Any = cached_file(__a , __a , revision="9b8c223" ) self.assertEqual(__a , os.path.join(__a , "snapshots" , __a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: with self.assertRaisesRegex(__a , "is not a valid model identifier" ): _UpperCamelCase : Tuple = cached_file("tiny-random-bert" , __a ) with self.assertRaisesRegex(__a , "is not a valid git identifier" ): _UpperCamelCase : int = cached_file(__a , __a , revision="aaaa" ) with self.assertRaisesRegex(__a , "does not appear to have a file named" ): _UpperCamelCase : Tuple = cached_file(__a , "conf" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: with self.assertRaisesRegex(__a , "does not appear to have a file named" ): _UpperCamelCase : List[Any] = cached_file(__a , "conf" ) with open(os.path.join(__a , "refs" , "main" ) ) as f: _UpperCamelCase : Optional[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(__a , ".no_exist" , __a , "conf" ) ) ) _UpperCamelCase : List[Any] = cached_file(__a , "conf" , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) _UpperCamelCase : int = cached_file(__a , "conf" , local_files_only=__a , _raise_exceptions_for_missing_entries=__a ) self.assertIsNone(__a ) _UpperCamelCase : Any = mock.Mock() _UpperCamelCase : Dict = 500 _UpperCamelCase : str = {} _UpperCamelCase : Optional[Any] = HTTPError _UpperCamelCase : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__a ) as mock_head: _UpperCamelCase : Union[str, Any] = cached_file(__a , "conf" , _raise_exceptions_for_connection_errors=__a ) self.assertIsNone(__a ) # This check we did call the fake head request mock_head.assert_called() def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , __a ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , __a ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__a , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , __a ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__a , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , __a , revision="ahaha" ) _UpperCamelCase : Tuple = get_file_from_repo("bert-base-cased" , __a ) # The name is the cached name which is not very easy to test, so instead we load the content. _UpperCamelCase : List[Any] = json.loads(open(__a , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : Union[str, Any] = Path(__a ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(__a , "a.txt" ) , str(__a ) ) self.assertIsNone(get_file_from_repo(__a , "b.txt" ) )
364
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = GPTaTokenizer SCREAMING_SNAKE_CASE__ :Tuple = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ :Dict = True SCREAMING_SNAKE_CASE__ :int = {"add_prefix_space": True} SCREAMING_SNAKE_CASE__ :Optional[Any] = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _UpperCamelCase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) _UpperCamelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCamelCase : str = {"unk_token": "<unk>"} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Any , **__a : Optional[int] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , **__a : Union[str, Any] ) -> int: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any ) -> Tuple: _UpperCamelCase : List[Any] = "lower newer" _UpperCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Dict = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : Optional[Any] = "lower newer" _UpperCamelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _UpperCamelCase : Any = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) _UpperCamelCase : str = tokens + [tokenizer.unk_token] _UpperCamelCase : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: if not self.test_rust_tokenizer: return _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = "lower newer" # Testing tokenization _UpperCamelCase : str = tokenizer.tokenize(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens _UpperCamelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) _UpperCamelCase : Optional[Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens _UpperCamelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__a ) _UpperCamelCase : List[Any] = tokenizer.encode(__a , add_prefix_space=__a ) _UpperCamelCase : List[str] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token _UpperCamelCase : Optional[int] = tokens + [rust_tokenizer.unk_token] _UpperCamelCase : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __SCREAMING_SNAKE_CASE ( self : int , *__a : int , **__a : List[Any] ) -> Union[str, Any]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int=15 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input _UpperCamelCase : Optional[int] = "This is a simple input" _UpperCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Dict = ("This is a simple input", "This is a pair") _UpperCamelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input _UpperCamelCase : Union[str, Any] = "This is a simple input" _UpperCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] _UpperCamelCase : str = ("This is a simple input", "This is a pair") _UpperCamelCase : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _UpperCamelCase : Union[str, Any] = tokenizer.pad_token_id _UpperCamelCase : str = tokenizer(__a , padding="max_length" , max_length=30 , return_tensors="np" ) _UpperCamelCase : Tuple = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) _UpperCamelCase : str = tokenizer(*__a , padding="max_length" , max_length=60 , return_tensors="np" ) _UpperCamelCase : Optional[int] = tokenizer(__a , padding=__a , truncate=__a , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: _UpperCamelCase : Any = "$$$" _UpperCamelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) _UpperCamelCase : int = "This is a simple input" _UpperCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Union[str, Any] = tokenizer.bos_token_id _UpperCamelCase : str = tokenizer(__a ) _UpperCamelCase : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCamelCase : Optional[Any] = tokenizer.decode(out_s.input_ids ) _UpperCamelCase : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: pass def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # TODO: change to self.get_tokenizers() when the fast version is implemented _UpperCamelCase : Optional[Any] = [self.get_tokenizer(do_lower_case=__a , add_bos_token=__a )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : Tuple = "Encode this." _UpperCamelCase : List[str] = "This one too please." _UpperCamelCase : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) encoded_sequence += tokenizer.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer.encode_plus( __a , __a , add_special_tokens=__a , return_special_tokens_mask=__a , ) _UpperCamelCase : str = encoded_sequence_dict["input_ids"] _UpperCamelCase : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__a ) , len(__a ) ) _UpperCamelCase : Union[str, Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__a ) ] _UpperCamelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(__a , __a ) @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> str: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Any = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) _UpperCamelCase : str = AutoTokenizer.from_pretrained("./test_opt" ) _UpperCamelCase : Optional[Any] = tokenizer.encode( __a , ) self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : int = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__a ) _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : Union[str, Any] = tokenizer.encode( __a , ) # Same as above self.assertEqual(__a , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__a ) _UpperCamelCase : List[str] = "bos" _UpperCamelCase : Tuple = tokenizer.get_vocab()["bos"] _UpperCamelCase : List[Any] = "A photo of a cat" _UpperCamelCase : List[Any] = tokenizer.encode( __a , ) # We changed the bos token self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _UpperCamelCase : Tuple = tokenizer.encode( __a , ) self.assertEqual(__a , [3_1957, 250, 1345, 9, 10, 4758] )
310
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowerCamelCase__ = 10 lowerCamelCase__ = 256 def lowercase__ ( lowercase_ ) -> Optional[MinHash]: """simple docstring""" if len(lowercase_ ) < MIN_NUM_TOKENS: return None _UpperCamelCase : Any = MinHash(num_perm=lowercase_ ) for token in set(lowercase_ ): min_hash.update(token.encode() ) return min_hash def lowercase__ ( lowercase_ ) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(lowercase_ ) if len(t.strip() ) > 0} class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> int: _UpperCamelCase : List[Any] = duplication_jaccard_threshold _UpperCamelCase : Tuple = NUM_PERM _UpperCamelCase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _UpperCamelCase : Union[str, Any] = defaultdict(__a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Tuple , __a : MinHash ) -> None: _UpperCamelCase : List[str] = self._index.query(__a ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[List[Dict]]: _UpperCamelCase : Union[str, Any] = [] for base, duplicates in self._duplicate_clusters.items(): _UpperCamelCase : Any = [base] + list(__a ) # reformat the cluster to be a list of dict _UpperCamelCase : Any = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def __SCREAMING_SNAKE_CASE ( self : int , __a : Union[str, Any] ) -> None: _UpperCamelCase : Optional[Any] = self.get_duplicate_clusters() with open(__a , "w" ) as f: json.dump(__a , __a ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Any = element _UpperCamelCase : Union[str, Any] = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(lowercase_ ,max_queue_size=10_000 ) ,chunksize=100 ,): if data is not None: yield data def lowercase__ ( lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Any = DuplicationIndex(duplication_jaccard_threshold=lowercase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowercase_ ) ) ,max_queue_size=100 ) ): di.add(lowercase_ ,lowercase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowercase__ ( lowercase_ ,lowercase_ ) -> float: """simple docstring""" _UpperCamelCase : Optional[int] = get_tokens(lowercase_ ) _UpperCamelCase : Any = get_tokens(lowercase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase__ = None def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Any = [] for elementa in cluster: _UpperCamelCase : Any = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: _UpperCamelCase : Dict = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(lowercase_ ,lowercase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: _UpperCamelCase : Tuple = 1 extremes.append(lowercase_ ) return extremes def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" global _shared_dataset _UpperCamelCase : List[str] = dataset _UpperCamelCase : int = [] _UpperCamelCase : List[str] = partial(_find_cluster_extremes_shared ,jaccard_threshold=lowercase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowercase_ ,lowercase_ ,) ,total=len(lowercase_ ) ,): extremes_list.append(lowercase_ ) return extremes_list def lowercase__ ( lowercase_ ,lowercase_ = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" _UpperCamelCase : List[str] = make_duplicate_clusters(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = {x["base_index"] for cluster in duplicate_clusters for x in cluster} _UpperCamelCase : Any = {} _UpperCamelCase : Union[str, Any] = find_extremes(lowercase_ ,lowercase_ ,lowercase_ ) for extremes in extremes_clusters: for element in extremes: _UpperCamelCase : Dict = element _UpperCamelCase : List[Any] = duplicate_indices - set(extreme_dict.keys() ) _UpperCamelCase : Dict = dataset.filter(lambda lowercase_ ,lowercase_ : idx not in remove_indices ,with_indices=lowercase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _UpperCamelCase : List[str] = element["base_index"] in extreme_dict if element["is_extreme"]: _UpperCamelCase : Any = extreme_dict[element["base_index"]]["copies"] print(F'''Original dataset size: {len(lowercase_ )}''' ) print(F'''Number of duplicate clusters: {len(lowercase_ )}''' ) print(F'''Files in duplicate cluster: {len(lowercase_ )}''' ) print(F'''Unique files in duplicate cluster: {len(lowercase_ )}''' ) print(F'''Filtered dataset size: {len(lowercase_ )}''' ) return ds_filter, duplicate_clusters
365
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : Union[str, Any] = load_tool("text-question-answering" , remote=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Dict = self.tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.remote_tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Dict = self.tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[Any] = self.remote_tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" )
310
0
"""simple docstring""" def lowercase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Tuple = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _UpperCamelCase : List[str] = 6 _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : int = 1_901 _UpperCamelCase : Optional[Any] = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _UpperCamelCase : Tuple = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _UpperCamelCase : Any = day - 29 else: if day > days_per_month[month - 1]: month += 1 _UpperCamelCase : List[str] = day - days_per_month[month - 2] if month > 12: year += 1 _UpperCamelCase : Any = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
366
"""simple docstring""" lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [False] * len(lowercase_ ) _UpperCamelCase : Dict = [s] _UpperCamelCase : List[str] = True while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase_ ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = [-1] * (len(lowercase_ )) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : int = float("Inf" ) _UpperCamelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : List[Any] = min(lowercase_ ,graph[parent[s]][s] ) _UpperCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _UpperCamelCase : Union[str, Any] = sink while v != source: _UpperCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Dict = parent[v] for i in range(len(lowercase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
310
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCamelCase__ = logging.getLogger(__name__) def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" return (preds == labels).mean() @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE__ :str = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE__ :int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowercase__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" ,lowercase_ ) # Set seed set_seed(training_args.seed ) try: _UpperCamelCase : str = processors[data_args.task_name]() _UpperCamelCase : List[Any] = processor.get_labels() _UpperCamelCase : str = len(lowercase_ ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowercase_ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) _UpperCamelCase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _UpperCamelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=lowercase_ ,cache_dir=model_args.cache_dir ,) # Get datasets _UpperCamelCase : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=lowercase_ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) _UpperCamelCase : List[str] = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=lowercase_ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(lowercase_ ) -> Dict: _UpperCamelCase : Any = np.argmax(p.predictions ,axis=1 ) return {"acc": simple_accuracy(lowercase_ ,p.label_ids )} # Data collator _UpperCamelCase : int = DataCollatorWithPadding(lowercase_ ,pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase : List[str] = Trainer( model=lowercase_ ,args=lowercase_ ,train_dataset=lowercase_ ,eval_dataset=lowercase_ ,compute_metrics=lowercase_ ,data_collator=lowercase_ ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCamelCase : List[Any] = trainer.evaluate() _UpperCamelCase : int = os.path.join(training_args.output_dir ,"eval_results.txt" ) if trainer.is_world_master(): with open(lowercase_ ,"w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" ,lowercase_ ,lowercase_ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowercase_ ) return results def lowercase__ ( lowercase_ ) -> str: """simple docstring""" main() if __name__ == "__main__": main()
367
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase_ ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase_ ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = ["pixel_values"] def __init__( self : List[str] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} _UpperCamelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : int = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Optional[Any] = get_size_dict(__a , param_name="crop_size" ) _UpperCamelCase : str = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : int = do_center_crop _UpperCamelCase : int = crop_size _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Dict = do_rescale _UpperCamelCase : Any = rescale_factor _UpperCamelCase : Any = offset _UpperCamelCase : Union[str, Any] = do_normalize _UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self : Any , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: _UpperCamelCase : str = get_resize_output_image_size(__a , size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: _UpperCamelCase : Any = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ) -> np.ndarray: _UpperCamelCase : List[Any] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : bool = True , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> Optional[Any]: _UpperCamelCase : Any = image.astype(np.floataa ) if offset: _UpperCamelCase : Dict = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Union[str, Any] , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCamelCase : Optional[Any] = to_numpy_array(__a ) if do_resize: _UpperCamelCase : Any = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: _UpperCamelCase : Dict = self.center_crop(__a , size=__a ) if do_rescale: _UpperCamelCase : Union[str, Any] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: _UpperCamelCase : int = self.normalize(image=__a , mean=__a , std=__a ) _UpperCamelCase : str = to_channel_dimension_format(__a , __a ) return image def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: _UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : str = offset if offset is not None else self.offset _UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Optional[int] = get_size_dict(__a , param_name="crop_size" ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Union[str, Any] = make_batched(__a ) _UpperCamelCase : Optional[Any] = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase : List[Any] = {"pixel_values": videos} return BatchFeature(data=__a , tensor_type=__a )
310
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
368
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCamelCase__ = True except ImportError: lowerCamelCase__ = False try: from torch.hub import _get_torch_home lowerCamelCase__ = _get_torch_home() except ImportError: lowerCamelCase__ = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) lowerCamelCase__ = os.path.join(torch_cache_home, "transformers") lowerCamelCase__ = "https://cdn.huggingface.co" lowerCamelCase__ = "https://s3.amazonaws.com/models.huggingface.co/bert" lowerCamelCase__ = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) lowerCamelCase__ = os.path.join(PATH, "config.yaml") lowerCamelCase__ = os.path.join(PATH, "attributes.txt") lowerCamelCase__ = os.path.join(PATH, "objects.txt") lowerCamelCase__ = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) lowerCamelCase__ = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) lowerCamelCase__ = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) lowerCamelCase__ = "pytorch_model.bin" lowerCamelCase__ = "config.yaml" def lowercase__ ( lowercase_=OBJECTS ,lowercase_=ATTRIBUTES ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _UpperCamelCase : Any = [] with open(lowercase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = OrderedDict() with open(lowercase_ ,"rb" ) as f: _UpperCamelCase : List[str] = pkl.load(lowercase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _UpperCamelCase : List[str] = ckp.pop(lowercase_ ) if isinstance(lowercase_ ,np.ndarray ): _UpperCamelCase : List[Any] = torch.tensor(lowercase_ ) else: assert isinstance(lowercase_ ,torch.tensor ), type(lowercase_ ) _UpperCamelCase : Optional[Any] = v return r class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = {} def __init__( self : str , __a : dict , __a : str = "root" , __a : Any=0 ) -> Any: _UpperCamelCase : Optional[Any] = name _UpperCamelCase : Optional[Any] = level _UpperCamelCase : Union[str, Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _UpperCamelCase : Optional[int] = copy.deepcopy(__a ) _UpperCamelCase : Dict = copy.deepcopy(__a ) if isinstance(__a , __a ): _UpperCamelCase : Union[str, Any] = Config(__a , name=__a , level=level + 1 ) _UpperCamelCase : Optional[Any] = v setattr(self , __a , __a ) _UpperCamelCase : Optional[Any] = d def __repr__( self : List[str] ) -> List[Any]: return str(list((self._pointer.keys()) ) ) def __setattr__( self : Dict , __a : Union[str, Any] , __a : Optional[int] ) -> int: _UpperCamelCase : Any = val _UpperCamelCase : Optional[Any] = val _UpperCamelCase : Dict = key.split("." ) _UpperCamelCase : int = len(__a ) - 1 _UpperCamelCase : List[str] = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: _UpperCamelCase : str = val else: _UpperCamelCase : List[str] = pointer[l] def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self._pointer def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Tuple , __a : List[str] ) -> Dict: with open(F'''{file_name}''' , "w" ) as stream: dump(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : Dict ) -> List[Any]: with open(F'''{file_name}''' , "w" ) as stream: json.dump(__a , __a ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Union[str, Any] ) -> Optional[int]: with open(__a ) as stream: _UpperCamelCase : int = load(__a , Loader=__a ) return data def __str__( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = " " if self._name != "root": _UpperCamelCase : Dict = F'''{t * (self._level-1)}{self._name}:\n''' else: _UpperCamelCase : Any = "" _UpperCamelCase : Any = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n''' _UpperCamelCase : Optional[Any] = level return r[:-1] @classmethod def __SCREAMING_SNAKE_CASE ( cls : Dict , __a : str , **__a : str ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : int = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __a : str , **__a : Union[str, Any] ) -> Tuple: _UpperCamelCase : Tuple = kwargs.pop("cache_dir" , __a ) _UpperCamelCase : Optional[int] = kwargs.pop("force_download" , __a ) _UpperCamelCase : str = kwargs.pop("resume_download" , __a ) _UpperCamelCase : Any = kwargs.pop("proxies" , __a ) _UpperCamelCase : List[Any] = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): _UpperCamelCase : Optional[Any] = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): _UpperCamelCase : Optional[int] = pretrained_model_name_or_path else: _UpperCamelCase : int = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached _UpperCamelCase : Optional[int] = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _UpperCamelCase : List[Any] = Config.load_yaml(__a ) except EnvironmentError: _UpperCamelCase : Union[str, Any] = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : str = torch.load("dump.pt" ,map_location=in_tensor.device ) _UpperCamelCase : str = in_tensor.numpy() _UpperCamelCase : Union[str, Any] = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ), ( F'''{sum([1 for x in np.isclose(lowercase_ ,lowercase_ ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Dict = urlparse(lowercase_ ) return parsed.scheme in ("http", "https") def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=True ) -> str: """simple docstring""" _UpperCamelCase : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _UpperCamelCase : List[str] = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=0 ,lowercase_=None ,) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase_ ,lowercase_ ): ua += "; " + "; ".join("{}/{}".format(lowercase_ ,lowercase_ ) for k, v in user_agent.items() ) elif isinstance(lowercase_ ,lowercase_ ): ua += "; " + user_agent _UpperCamelCase : Any = {"user-agent": ua} if resume_size > 0: _UpperCamelCase : str = "bytes=%d-" % (resume_size,) _UpperCamelCase : str = requests.get(lowercase_ ,stream=lowercase_ ,proxies=lowercase_ ,headers=lowercase_ ) if response.status_code == 416: # Range not satisfiable return _UpperCamelCase : List[str] = response.headers.get("Content-Length" ) _UpperCamelCase : Union[str, Any] = resume_size + int(lowercase_ ) if content_length is not None else None _UpperCamelCase : Optional[int] = tqdm( unit="B" ,unit_scale=lowercase_ ,total=lowercase_ ,initial=lowercase_ ,desc="Downloading" ,) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_ ) ) temp_file.write(lowercase_ ) progress.close() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=10 ,lowercase_=False ,lowercase_=None ,lowercase_=False ,) -> Tuple: """simple docstring""" if cache_dir is None: _UpperCamelCase : str = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Dict = str(lowercase_ ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) _UpperCamelCase : Dict = None if not local_files_only: try: _UpperCamelCase : List[Any] = requests.head(lowercase_ ,allow_redirects=lowercase_ ,proxies=lowercase_ ,timeout=lowercase_ ) if response.status_code == 200: _UpperCamelCase : str = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _UpperCamelCase : int = url_to_filename(lowercase_ ,lowercase_ ) # get cache path to put the file _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_ ): return cache_path else: _UpperCamelCase : Optional[int] = [ file for file in fnmatch.filter(os.listdir(lowercase_ ) ,filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(lowercase_ ) > 0: return os.path.join(lowercase_ ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(lowercase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _UpperCamelCase : Dict = cache_path + ".lock" with FileLock(lowercase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowercase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _UpperCamelCase : List[str] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(lowercase_ ,"a+b" ) as f: yield f _UpperCamelCase : Union[str, Any] = _resumable_file_manager if os.path.exists(lowercase_ ): _UpperCamelCase : str = os.stat(lowercase_ ).st_size else: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Tuple = partial(tempfile.NamedTemporaryFile ,dir=lowercase_ ,delete=lowercase_ ) _UpperCamelCase : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" ,lowercase_ ,temp_file.name ,) http_get( lowercase_ ,lowercase_ ,proxies=lowercase_ ,resume_size=lowercase_ ,user_agent=lowercase_ ,) os.replace(temp_file.name ,lowercase_ ) _UpperCamelCase : Optional[int] = {"url": url, "etag": etag} _UpperCamelCase : List[str] = cache_path + ".json" with open(lowercase_ ,"w" ) as meta_file: json.dump(lowercase_ ,lowercase_ ) return cache_path def lowercase__ ( lowercase_ ,lowercase_=None ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = url.encode("utf-8" ) _UpperCamelCase : List[str] = shaaaa(lowercase_ ) _UpperCamelCase : List[str] = url_hash.hexdigest() if etag: _UpperCamelCase : Optional[Any] = etag.encode("utf-8" ) _UpperCamelCase : Optional[Any] = shaaaa(lowercase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=None ,lowercase_=False ,lowercase_=False ,lowercase_=False ,) -> str: """simple docstring""" if cache_dir is None: _UpperCamelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : str = str(lowercase_ ) if is_remote_url(lowercase_ ): # URL, so get it from the cache (downloading if necessary) _UpperCamelCase : Union[str, Any] = get_from_cache( lowercase_ ,cache_dir=lowercase_ ,force_download=lowercase_ ,proxies=lowercase_ ,resume_download=lowercase_ ,user_agent=lowercase_ ,local_files_only=lowercase_ ,) elif os.path.exists(lowercase_ ): # File, and it exists. _UpperCamelCase : List[str] = url_or_filename elif urlparse(lowercase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(lowercase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(lowercase_ ) ) if extract_compressed_file: if not is_zipfile(lowercase_ ) and not tarfile.is_tarfile(lowercase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _UpperCamelCase, _UpperCamelCase : Any = os.path.split(lowercase_ ) _UpperCamelCase : Optional[int] = output_file.replace("." ,"-" ) + "-extracted" _UpperCamelCase : Any = os.path.join(lowercase_ ,lowercase_ ) if os.path.isdir(lowercase_ ) and os.listdir(lowercase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _UpperCamelCase : Optional[int] = output_path + ".lock" with FileLock(lowercase_ ): shutil.rmtree(lowercase_ ,ignore_errors=lowercase_ ) os.makedirs(lowercase_ ) if is_zipfile(lowercase_ ): with ZipFile(lowercase_ ,"r" ) as zip_file: zip_file.extractall(lowercase_ ) zip_file.close() elif tarfile.is_tarfile(lowercase_ ): _UpperCamelCase : int = tarfile.open(lowercase_ ) tar_file.extractall(lowercase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(lowercase_ ) ) return output_path_extracted return output_path def lowercase__ ( lowercase_ ,lowercase_="," ) -> Optional[int]: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): with open(lowercase_ ) as f: _UpperCamelCase : Tuple = eval(f.read() ) else: _UpperCamelCase : str = requests.get(lowercase_ ) try: _UpperCamelCase : Optional[int] = requests.json() except Exception: _UpperCamelCase : Union[str, Any] = req.content.decode() assert data is not None, "could not connect" try: _UpperCamelCase : List[Any] = eval(lowercase_ ) except Exception: _UpperCamelCase : int = data.split("\n" ) req.close() return data def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[Any] = requests.get(lowercase_ ) _UpperCamelCase : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__ ( lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase_ ) with open(lowercase_ ,"rb" ) as stream: _UpperCamelCase : Union[str, Any] = pkl.load(lowercase_ ) _UpperCamelCase : Union[str, Any] = weights.pop("model" ) _UpperCamelCase : Optional[int] = {} for k, v in model.items(): _UpperCamelCase : str = torch.from_numpy(lowercase_ ) if "running_var" in k: _UpperCamelCase : List[Any] = torch.tensor([0] ) _UpperCamelCase : str = k.replace("running_var" ,"num_batches_tracked" ) _UpperCamelCase : Any = zero return new def lowercase__ ( ) -> Dict: """simple docstring""" print(F'''{os.path.abspath(os.path.join(lowercase_ ,os.pardir ) )}/demo.ipynb''' ) def lowercase__ ( lowercase_ ,lowercase_="RGB" ) -> int: """simple docstring""" assert isinstance(lowercase_ ,lowercase_ ) if os.path.isfile(lowercase_ ): _UpperCamelCase : Optional[Any] = cva.imread(lowercase_ ) else: _UpperCamelCase : Optional[int] = get_image_from_url(lowercase_ ) assert img is not None, F'''could not connect to: {im}''' _UpperCamelCase : Optional[int] = cva.cvtColor(lowercase_ ,cva.COLOR_BGR2RGB ) if input_format == "RGB": _UpperCamelCase : List[Any] = img[:, :, ::-1] return img def lowercase__ ( lowercase_ ,lowercase_=1 ) -> List[Any]: """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(lowercase_ ) ,lowercase_ ))
310
0
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] lowerCamelCase__ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = " Hello world! cécé herlolip" lowerCamelCase__ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(lowercase_ ,lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Union[str, Any] = dct.pop(lowercase_ ) _UpperCamelCase : int = val def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = torch.load(lowercase_ ,map_location="cpu" ) _UpperCamelCase : Dict = torch.hub.load("pytorch/fairseq" ,"bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = emb.weight.shape _UpperCamelCase : str = nn.Linear(lowercase_ ,lowercase_ ,bias=lowercase_ ) _UpperCamelCase : int = emb.weight.data return lin_layer @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ) -> List[Any]: """simple docstring""" if not os.path.exists(lowercase_ ): _UpperCamelCase : Tuple = torch.hub.load("pytorch/fairseq" ,lowercase_ ).eval() else: _UpperCamelCase : Dict = load_xsum_checkpoint(lowercase_ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _UpperCamelCase : Tuple = checkpoint_path.replace("." ,"-" ) _UpperCamelCase : Dict = BartConfig.from_pretrained(lowercase_ ) _UpperCamelCase : List[str] = bart.encode(lowercase_ ).unsqueeze(0 ) _UpperCamelCase : List[Any] = BartTokenizer.from_pretrained(lowercase_ ).encode(lowercase_ ,return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(lowercase_ ,lowercase_ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _UpperCamelCase : List[str] = bart.state_dict() remove_ignore_keys_(lowercase_ ) _UpperCamelCase : Any = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Optional[int] = BartForSequenceClassification(lowercase_ ).eval() model.load_state_dict(lowercase_ ) _UpperCamelCase : List[Any] = bart.predict("mnli" ,lowercase_ ,return_logits=lowercase_ ) _UpperCamelCase : Dict = model(lowercase_ )[0] # logits else: # no classification heads to worry about _UpperCamelCase : Optional[Any] = bart.model.state_dict() remove_ignore_keys_(lowercase_ ) _UpperCamelCase : Any = state_dict["decoder.embed_tokens.weight"] _UpperCamelCase : Optional[Any] = bart.extract_features(lowercase_ ) if hf_checkpoint_name == "facebook/bart-large": _UpperCamelCase : Dict = BartModel(lowercase_ ).eval() model.load_state_dict(lowercase_ ) _UpperCamelCase : Dict = model(lowercase_ ).model[0] else: _UpperCamelCase : Union[str, Any] = BartForConditionalGeneration(lowercase_ ).eval() # an existing summarization ckpt model.model.load_state_dict(lowercase_ ) if hasattr(lowercase_ ,"lm_head" ): _UpperCamelCase : Tuple = make_linear_from_emb(model.model.shared ) _UpperCamelCase : str = model.model(lowercase_ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
369
"""simple docstring""" import torch from transformers import AutoModel class __SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple="sayef/fsner-bert-base-uncased" ) -> Dict: super(__a , self ).__init__() _UpperCamelCase : Optional[Any] = AutoModel.from_pretrained(__a , return_dict=__a ) _UpperCamelCase : str = torch.nn.CosineSimilarity(3 , 1e-0_8 ) _UpperCamelCase : List[str] = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : int , **__a : Tuple ) -> Optional[Any]: return self.bert(**__a ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] ) -> Optional[int]: return token_embeddings.sum(2 , keepdim=__a ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : List[Any] , __a : Tuple=1 ) -> List[Any]: return self.softmax(T * self.cos(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Dict ) -> Union[str, Any]: _UpperCamelCase : str = W_supports["sizes"].tolist() _UpperCamelCase : Any = W_supports["start_token_id"].item() _UpperCamelCase : Optional[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _UpperCamelCase : str = self.BERT(**__a ) _UpperCamelCase : int = self.BERT(**__a ) _UpperCamelCase : int = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = W_supports["input_ids"] == start_token_id _UpperCamelCase : Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(__a ): if i == 0: _UpperCamelCase : Dict = 0 else: _UpperCamelCase : Any = support_sizes[i - 1] _UpperCamelCase : Dict = S[s : s + size][start_token_masks[s : s + size]] _UpperCamelCase : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] _UpperCamelCase : List[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) _UpperCamelCase : Any = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: _UpperCamelCase : Any = torch.vstack((p_starts, p_start) ) _UpperCamelCase : Any = torch.vstack((p_ends, p_end) ) else: _UpperCamelCase : Optional[Any] = p_start _UpperCamelCase : str = p_end return p_starts, p_ends
310
0
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase__ = 2 class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , *, # begin keyword-only arguments __a : Optional[Any]="<s>" , __a : Dict="<pad>" , __a : Optional[int]="</s>" , __a : List[str]="<unk>" , __a : Dict=None , ) -> Tuple: _UpperCamelCase : int = bos, unk, pad, eos _UpperCamelCase : List[str] = [] _UpperCamelCase : List[str] = [] _UpperCamelCase : int = {} _UpperCamelCase : Optional[int] = self.add_symbol(__a ) _UpperCamelCase : List[str] = self.add_symbol(__a ) _UpperCamelCase : Tuple = self.add_symbol(__a ) _UpperCamelCase : int = self.add_symbol(__a ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__a ) _UpperCamelCase : Union[str, Any] = len(self.symbols ) def __eq__( self : Optional[int] , __a : Dict ) -> Tuple: return self.indices == other.indices def __getitem__( self : Optional[int] , __a : int ) -> str: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Optional[int] ) -> str: return len(self.symbols ) def __contains__( self : Optional[Any] , __a : List[Any] ) -> List[str]: return sym in self.indices @classmethod def __SCREAMING_SNAKE_CASE ( cls : Tuple , __a : int ) -> List[Any]: _UpperCamelCase : List[str] = cls() d.add_from_file(__a ) return d def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] , __a : Any=1 , __a : str=False ) -> Optional[int]: if word in self.indices and not overwrite: _UpperCamelCase : Optional[int] = self.indices[word] _UpperCamelCase : str = self.count[idx] + n return idx else: _UpperCamelCase : Any = len(self.symbols ) _UpperCamelCase : Optional[Any] = idx self.symbols.append(__a ) self.count.append(__a ) return idx def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[str, Any] ) -> Optional[Any]: return 0 def __SCREAMING_SNAKE_CASE ( self : str , __a : str ) -> Any: if isinstance(__a , __a ): try: with open(__a , "r" , encoding="utf-8" ) as fd: self.add_from_file(__a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(__a ) ) return _UpperCamelCase : int = f.readlines() _UpperCamelCase : Dict = self._load_meta(__a ) for line in lines[indices_start_line:]: try: _UpperCamelCase : List[str] = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": _UpperCamelCase : str = True _UpperCamelCase : Optional[int] = line.rsplit(" " , 1 ) else: _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[int] = int(__a ) _UpperCamelCase : Tuple = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(__a ) ) self.add_symbol(__a , n=__a , overwrite=__a ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : str = dict((re.sub(r"@@$" ,"" ,lowercase_ ), v) if k.endswith("@@" ) else (re.sub(r"$" ,"</w>" ,lowercase_ ), v) for k, v in d.items() ) _UpperCamelCase : Dict = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] _UpperCamelCase : Any = d[k] # restore return da def lowercase__ ( lowercase_ ,lowercase_ ) -> Any: """simple docstring""" if not os.path.exists(lowercase_ ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _UpperCamelCase : str = os.path.join(lowercase_ ,"checkpoint.pt" ) if not os.path.isfile(lowercase_ ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) _UpperCamelCase : int = torch.load(lowercase_ ,map_location="cpu" ) _UpperCamelCase : Optional[int] = chkpt["cfg"]["model"] # dicts _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"dict.txt" ) if not os.path.isfile(lowercase_ ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) _UpperCamelCase : int = Dictionary.load(lowercase_ ) _UpperCamelCase : Optional[Any] = rewrite_dict_keys(src_dict.indices ) _UpperCamelCase : Tuple = len(lowercase_ ) _UpperCamelCase : Optional[Any] = os.path.join(lowercase_ ,VOCAB_FILES_NAMES["vocab_file"] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(lowercase_ ,ensure_ascii=lowercase_ ,indent=lowercase_ ) ) # merges_file (bpecodes) _UpperCamelCase : Optional[Any] = os.path.join(lowercase_ ,"bpecodes" ) if not os.path.isfile(lowercase_ ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(lowercase_ ,lowercase_ ) # model config _UpperCamelCase : Any = os.path.join(lowercase_ ,"config.json" ) _UpperCamelCase : List[str] = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1e-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(lowercase_ ,ensure_ascii=lowercase_ ,indent=lowercase_ ) ) # tokenizer config _UpperCamelCase : Optional[int] = os.path.join(lowercase_ ,lowercase_ ) _UpperCamelCase : str = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(lowercase_ ,ensure_ascii=lowercase_ ,indent=lowercase_ ) ) # model _UpperCamelCase : Tuple = chkpt["model"] # remove unneeded keys _UpperCamelCase : Any = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): _UpperCamelCase : int = model_state_dict.pop(lowercase_ ) else: _UpperCamelCase : Optional[int] = model_state_dict.pop(lowercase_ ) _UpperCamelCase : Tuple = BioGptConfig.from_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = BioGptForCausalLM(lowercase_ ) # check that it loads ok model_new.load_state_dict(lowercase_ ) # save _UpperCamelCase : List[str] = os.path.join(lowercase_ ,lowercase_ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(lowercase_ ,lowercase_ ) print("Conversion is done!" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase__ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
370
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) _UpperCamelCase : Optional[Any] = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" ,lowercase_ ) if matches: _UpperCamelCase : Tuple = float(matches[1] ) _UpperCamelCase : Dict = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _UpperCamelCase : Optional[Any] = 1_001 _UpperCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _UpperCamelCase : Union[str, Any] = "huggingface/label-files" _UpperCamelCase : Union[str, Any] = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) ) _UpperCamelCase : str = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} _UpperCamelCase : Optional[Any] = "background" _UpperCamelCase : Optional[int] = idalabel _UpperCamelCase : Dict = {v: k for k, v in idalabel.items()} return config def lowercase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : str = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=False ) -> Dict: """simple docstring""" _UpperCamelCase : Dict = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model _UpperCamelCase : str = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ ,lowercase_ ,lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _UpperCamelCase : List[Any] = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} ,size={"shortest_edge": config.image_size + 32} ,) _UpperCamelCase : Optional[int] = image_processor(images=prepare_img() ,return_tensors="pt" ) _UpperCamelCase : Optional[int] = model(**lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": _UpperCamelCase : str = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": _UpperCamelCase : Optional[int] = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: _UpperCamelCase : int = None if expected_logits is not None: assert torch.allclose(logits[0, :3] ,lowercase_ ,atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print("Pushing to the hub..." ) _UpperCamelCase : Dict = "google/" + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
371
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
0
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } lowerCamelCase__ = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[str] = EfficientNetConfig() _UpperCamelCase : Optional[int] = CONFIG_MAP[model_name]["hidden_dim"] _UpperCamelCase : List[str] = CONFIG_MAP[model_name]["width_coef"] _UpperCamelCase : Optional[Any] = CONFIG_MAP[model_name]["depth_coef"] _UpperCamelCase : Optional[int] = CONFIG_MAP[model_name]["image_size"] _UpperCamelCase : Tuple = CONFIG_MAP[model_name]["dropout_rate"] _UpperCamelCase : Optional[Any] = CONFIG_MAP[model_name]["dw_padding"] _UpperCamelCase : Optional[Any] = "huggingface/label-files" _UpperCamelCase : Dict = "imagenet-1k-id2label.json" _UpperCamelCase : Union[str, Any] = 1_000 _UpperCamelCase : List[str] = json.load(open(hf_hub_download(lowercase_ ,lowercase_ ,repo_type="dataset" ) ,"r" ) ) _UpperCamelCase : Tuple = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase : List[Any] = idalabel _UpperCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : Optional[Any] = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = CONFIG_MAP[model_name]["image_size"] _UpperCamelCase : int = EfficientNetImageProcessor( size={"height": size, "width": size} ,image_mean=[0.485, 0.456, 0.406] ,image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] ,do_center_crop=lowercase_ ,) return preprocessor def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : List[str] = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] _UpperCamelCase : Dict = sorted(set(lowercase_ ) ) _UpperCamelCase : Dict = len(lowercase_ ) _UpperCamelCase : Optional[int] = {b: str(lowercase_ ) for b, i in zip(lowercase_ ,range(lowercase_ ) )} _UpperCamelCase : Any = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: _UpperCamelCase : Dict = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) _UpperCamelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: _UpperCamelCase : Optional[int] = "efficientnet." + item[1] _UpperCamelCase : Optional[int] = "classifier.weight" _UpperCamelCase : Optional[Any] = "classifier.bias" return key_mapping def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue _UpperCamelCase : int = key_mapping[key] if "_conv" in key and "kernel" in key: _UpperCamelCase : Union[str, Any] = torch.from_numpy(lowercase_ ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: _UpperCamelCase : Optional[Any] = torch.from_numpy(lowercase_ ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: _UpperCamelCase : Dict = torch.from_numpy(np.transpose(lowercase_ ) ) else: _UpperCamelCase : str = torch.from_numpy(lowercase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase_ ) @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = model_classes[model_name]( include_top=lowercase_ ,weights="imagenet" ,input_tensor=lowercase_ ,input_shape=lowercase_ ,pooling=lowercase_ ,classes=1_000 ,classifier_activation="softmax" ,) _UpperCamelCase : Tuple = original_model.trainable_variables _UpperCamelCase : List[str] = original_model.non_trainable_variables _UpperCamelCase : List[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _UpperCamelCase : Optional[int] = param.numpy() _UpperCamelCase : Any = list(tf_params.keys() ) # Load HuggingFace model _UpperCamelCase : List[Any] = get_efficientnet_config(lowercase_ ) _UpperCamelCase : Tuple = EfficientNetForImageClassification(lowercase_ ).eval() _UpperCamelCase : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) _UpperCamelCase : Optional[int] = rename_keys(lowercase_ ) replace_params(lowercase_ ,lowercase_ ,lowercase_ ) # Initialize preprocessor and preprocess input image _UpperCamelCase : Union[str, Any] = convert_image_processor(lowercase_ ) _UpperCamelCase : Optional[int] = preprocessor(images=prepare_img() ,return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): _UpperCamelCase : str = hf_model(**lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.logits.detach().numpy() # Original model inference _UpperCamelCase : Dict = False _UpperCamelCase : str = CONFIG_MAP[model_name]["image_size"] _UpperCamelCase : Tuple = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) _UpperCamelCase : str = image.img_to_array(lowercase_ ) _UpperCamelCase : Optional[Any] = np.expand_dims(lowercase_ ,axis=0 ) _UpperCamelCase : Dict = original_model.predict(lowercase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase_ ,lowercase_ ,atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase_ ): os.mkdir(lowercase_ ) # Save converted model and image processor hf_model.save_pretrained(lowercase_ ) preprocessor.save_pretrained(lowercase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _UpperCamelCase : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase_ ) hf_model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") lowerCamelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
350
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
310
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
351
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
0
"""simple docstring""" from __future__ import annotations import pandas as pd def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> list[int]: """simple docstring""" _UpperCamelCase : Optional[int] = [0] * no_of_processes _UpperCamelCase : str = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowercase_ ): _UpperCamelCase : Optional[int] = burst_time[i] _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : Dict = 999_999_999 _UpperCamelCase : str = 0 _UpperCamelCase : List[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowercase_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _UpperCamelCase : int = remaining_time[j] _UpperCamelCase : Union[str, Any] = j _UpperCamelCase : Optional[Any] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _UpperCamelCase : str = remaining_time[short] if minm == 0: _UpperCamelCase : List[str] = 999_999_999 if remaining_time[short] == 0: complete += 1 _UpperCamelCase : List[Any] = False # Find finish time of current process _UpperCamelCase : Optional[Any] = increment_time + 1 # Calculate waiting time _UpperCamelCase : Any = finish_time - arrival_time[short] _UpperCamelCase : Optional[Any] = finar - burst_time[short] if waiting_time[short] < 0: _UpperCamelCase : Union[str, Any] = 0 # Increment time increment_time += 1 return waiting_time def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> list[int]: """simple docstring""" _UpperCamelCase : Dict = [0] * no_of_processes for i in range(lowercase_ ): _UpperCamelCase : Union[str, Any] = burst_time[i] + waiting_time[i] return turn_around_time def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : str = 0 for i in range(lowercase_ ): _UpperCamelCase : str = total_waiting_time + waiting_time[i] _UpperCamelCase : int = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("Average turn around time =" ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") lowerCamelCase__ = int(input()) lowerCamelCase__ = [0] * no_of_processes lowerCamelCase__ = [0] * no_of_processes lowerCamelCase__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) lowerCamelCase__ , lowerCamelCase__ = map(int, input().split()) lowerCamelCase__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ = burst_time lowerCamelCase__ = no_of_processes lowerCamelCase__ = waiting_time lowerCamelCase__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCamelCase__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
352
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_UpperCamelCase ) , "Tatoeba directory does not exist." ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: self.resolver.convert_models(["heb-eng"] ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: _UpperCamelCase : int = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__a ) assert mmeta["long_pair"] == "heb-eng"
353
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a ) }
310
0
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = DownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Union[str, Any] = "down" def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : int = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = ResnetDownsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Any = "down" def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[Any] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = AttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Any = "down" def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : str = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = CrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Dict = "down" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: _UpperCamelCase : str = super().prepare_init_args_and_inputs_for_common() _UpperCamelCase : str = 32 return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: _UpperCamelCase : Optional[int] = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = SimpleCrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Tuple = "down" @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: return super().get_dummy_input(include_encoder_hidden_states=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: _UpperCamelCase : Dict = super().prepare_init_args_and_inputs_for_common() _UpperCamelCase : List[Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: _UpperCamelCase : int = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = SkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Optional[Any] = "down" @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: return super().get_dummy_input(include_skip_sample=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: _UpperCamelCase : Optional[int] = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = AttnSkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Optional[int] = "down" @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return super().get_dummy_input(include_skip_sample=__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = DownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Any = "down" @property def __SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: return super().get_dummy_input(include_temb=__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: _UpperCamelCase : Union[str, Any] = { "in_channels": 32, "out_channels": 32, } _UpperCamelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: _UpperCamelCase : Any = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = AttnDownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Any = "down" @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return super().get_dummy_input(include_temb=__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: _UpperCamelCase : Union[str, Any] = { "in_channels": 32, "out_channels": 32, } _UpperCamelCase : List[str] = self.dummy_input return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase : List[Any] = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = UNetMidBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Dict = "mid" def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: _UpperCamelCase : List[Any] = { "in_channels": 32, "temb_channels": 128, } _UpperCamelCase : List[str] = self.dummy_input return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase : int = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = UNetMidBlockaDCrossAttn # noqa F405 SCREAMING_SNAKE_CASE__ :Optional[int] = "mid" def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() _UpperCamelCase : Union[str, Any] = 32 return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : str ) -> str: _UpperCamelCase : int = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = UNetMidBlockaDSimpleCrossAttn # noqa F405 SCREAMING_SNAKE_CASE__ :Any = "mid" @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: return super().get_dummy_input(include_encoder_hidden_states=__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: _UpperCamelCase : Tuple = super().prepare_init_args_and_inputs_for_common() _UpperCamelCase : List[Any] = 32 return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase : Any = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = UpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :List[str] = "up" @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: _UpperCamelCase : Any = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = ResnetUpsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Optional[Any] = "up" @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = CrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Optional[Any] = "up" @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: return super().get_dummy_input(include_res_hidden_states_tuple=__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: _UpperCamelCase : Dict = super().prepare_init_args_and_inputs_for_common() _UpperCamelCase : List[Any] = 32 return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: _UpperCamelCase : str = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = SimpleCrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :int = "up" @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=__a , include_encoder_hidden_states=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() _UpperCamelCase : int = 32 return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase : int = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = AttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Optional[int] = "up" @property def __SCREAMING_SNAKE_CASE ( self : int ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=__a ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: _UpperCamelCase : Dict = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = SkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :List[str] = "up" @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return super().get_dummy_input(include_res_hidden_states_tuple=__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : int = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = AttnSkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :Tuple = "up" @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: _UpperCamelCase : str = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = UpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :int = "up" @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: return super().get_dummy_input(include_temb=__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: _UpperCamelCase : str = {"in_channels": 32, "out_channels": 32} _UpperCamelCase : List[str] = self.dummy_input return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: _UpperCamelCase : List[str] = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(__a ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = AttnUpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ :List[str] = "up" @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: return super().get_dummy_input(include_temb=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: _UpperCamelCase : int = {"in_channels": 32, "out_channels": 32} _UpperCamelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: _UpperCamelCase : str = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(__a )
354
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def lowercase__ ( lowercase_ ) -> Callable: """simple docstring""" @wraps(lowercase_ ) def _inner_fn(*lowercase_ ,**lowercase_ ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') ,lowercase_ ,) return fn(*lowercase_ ,**lowercase_ ) return _inner_fn
355
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
310
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"audio": Audio()} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"labels": ClassLabel} ) SCREAMING_SNAKE_CASE__ :str = "audio" SCREAMING_SNAKE_CASE__ :str = "labels" def __SCREAMING_SNAKE_CASE ( self : Dict , __a : int ) -> List[Any]: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __a ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) _UpperCamelCase : List[Any] = copy.deepcopy(self ) _UpperCamelCase : List[str] = self.label_schema.copy() _UpperCamelCase : Tuple = features[self.label_column] _UpperCamelCase : Union[str, Any] = label_schema return task_template @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
0
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = False if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } lowerCamelCase__ = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } lowerCamelCase__ = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: lowerCamelCase__ = reader.read() lowerCamelCase__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): lowerCamelCase__ = UNetaDModel(**config) else: lowerCamelCase__ = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel lowerCamelCase__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCamelCase__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCamelCase__ = config[key] del config[key] lowerCamelCase__ = [k.replace("UNetRes", "") for k in config["down_block_types"]] lowerCamelCase__ = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: lowerCamelCase__ = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) lowerCamelCase__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue lowerCamelCase__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: lowerCamelCase__ = param_value lowerCamelCase__ = True if not has_changed: lowerCamelCase__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
357
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowerCamelCase__ = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowerCamelCase__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowerCamelCase__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
310
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCamelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ = { "unc-nlp/lxmert-base-uncased": 512, } lowerCamelCase__ = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ :Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ :Dict = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ :Any = LxmertTokenizer def __init__( self : List[Any] , __a : Optional[Any]=None , __a : Dict=None , __a : List[str]=True , __a : Optional[Any]="[UNK]" , __a : List[str]="[SEP]" , __a : Optional[Any]="[PAD]" , __a : Any="[CLS]" , __a : Any="[MASK]" , __a : Tuple=True , __a : str=None , **__a : Tuple , ) -> List[Any]: super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) _UpperCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __a ) != do_lower_case or normalizer_state.get("strip_accents" , __a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __a ) != tokenize_chinese_chars ): _UpperCamelCase : Tuple = getattr(__a , normalizer_state.pop("type" ) ) _UpperCamelCase : Optional[Any] = do_lower_case _UpperCamelCase : Tuple = strip_accents _UpperCamelCase : str = tokenize_chinese_chars _UpperCamelCase : int = normalizer_class(**__a ) _UpperCamelCase : Tuple = do_lower_case def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : str , __a : Optional[int]=None ) -> List[Any]: _UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self : int , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: _UpperCamelCase : Dict = [self.sep_token_id] _UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[str] = None ) -> Tuple[str]: _UpperCamelCase : Dict = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
358
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl" def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Union[str, Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
310
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCamelCase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowerCamelCase__ = json.load(f) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int ) -> Any: return FSMTTokenizer.from_pretrained(__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Dict = FSMTForConditionalGeneration.from_pretrained(__a ).to(__a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Any , __a : Tuple ) -> Union[str, Any]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _UpperCamelCase : Optional[int] = F'''facebook/wmt19-{pair}''' _UpperCamelCase : str = self.get_tokenizer(__a ) _UpperCamelCase : Union[str, Any] = self.get_model(__a ) _UpperCamelCase : Dict = bleu_data[pair]["src"] _UpperCamelCase : Tuple = bleu_data[pair]["tgt"] _UpperCamelCase : str = tokenizer(__a , return_tensors="pt" , truncation=__a , padding="longest" ).to(__a ) _UpperCamelCase : Tuple = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _UpperCamelCase : Optional[Any] = tokenizer.batch_decode( __a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) _UpperCamelCase : List[str] = calculate_bleu(__a , __a ) print(__a ) self.assertGreaterEqual(scores["bleu"] , __a )
359
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( *__a : int , **__a : int ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[int] , __a : str ) -> Optional[Any]: _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : Union[str, Any] ) -> int: _UpperCamelCase : Any = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets _UpperCamelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _UpperCamelCase : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase : List[Any] = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass @require_torch def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: _UpperCamelCase : List[str] = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : List[Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase : Any = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = "facebook/detr-resnet-50" _UpperCamelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__a ) _UpperCamelCase : str = AutoFeatureExtractor.from_pretrained(__a ) _UpperCamelCase : Union[str, Any] = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) _UpperCamelCase : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : Dict = "facebook/detr-resnet-50" _UpperCamelCase : Optional[Any] = pipeline("object-detection" , model=__a ) _UpperCamelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase : Tuple = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: _UpperCamelCase : Tuple = 0.99_85 _UpperCamelCase : List[Any] = "facebook/detr-resnet-50" _UpperCamelCase : List[str] = pipeline("object-detection" , model=__a ) _UpperCamelCase : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase : int = 0.99_93 _UpperCamelCase : str = pipeline("object-detection" , model=__a , threshold=__a ) _UpperCamelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
310
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
360
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {"UserAgent": UserAgent().random} def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : str = script.contents[0] _UpperCamelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : str ) -> Tuple: _UpperCamelCase : List[str] = F'''https://www.instagram.com/{username}/''' _UpperCamelCase : Optional[Any] = self.get_json() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> dict: _UpperCamelCase : int = requests.get(self.url , headers=__a ).text _UpperCamelCase : Union[str, Any] = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return self.user_data["username"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["full_name"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["biography"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["external_url"] @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: return self.user_data["is_verified"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def lowercase__ ( lowercase_ = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCamelCase : Union[str, Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
310
0
"""simple docstring""" from numpy import exp, pi, sqrt def lowercase__ ( lowercase_ ,lowercase_ = 0.0 ,lowercase_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
310
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
362
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ) if weight_type is not None: _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ).shape else: _UpperCamelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": _UpperCamelCase : int = value elif weight_type == "weight_v": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias": _UpperCamelCase : int = value else: _UpperCamelCase : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = fairseq_model.state_dict() _UpperCamelCase : Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,hf_model.config.feat_extract_norm == "group" ,) _UpperCamelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : Dict = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase : Any = mapped_key.replace("*" ,lowercase_ ) if "weight_g" in name: _UpperCamelCase : str = "weight_g" elif "weight_v" in name: _UpperCamelCase : Any = "weight_v" elif "weight" in name: _UpperCamelCase : List[str] = "weight" elif "bias" in name: _UpperCamelCase : List[Any] = "bias" else: _UpperCamelCase : str = None set_recursively(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Any = full_name.split("conv_layers." )[-1] _UpperCamelCase : Optional[Any] = name.split("." ) _UpperCamelCase : Union[str, Any] = int(items[0] ) _UpperCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = SEWConfig() if is_finetuned: _UpperCamelCase : Dict = model.wav_encoder.wav_model.cfg else: _UpperCamelCase : List[Any] = model.cfg _UpperCamelCase : Any = fs_config.conv_bias _UpperCamelCase : str = eval(fs_config.conv_feature_layers ) _UpperCamelCase : Any = [x[0] for x in conv_layers] _UpperCamelCase : List[Any] = [x[1] for x in conv_layers] _UpperCamelCase : Union[str, Any] = [x[2] for x in conv_layers] _UpperCamelCase : str = "gelu" _UpperCamelCase : List[str] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" _UpperCamelCase : Optional[int] = 0.0 _UpperCamelCase : Dict = fs_config.activation_fn.name _UpperCamelCase : Any = fs_config.encoder_embed_dim _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = fs_config.encoder_ffn_embed_dim _UpperCamelCase : int = 1e-5 _UpperCamelCase : Optional[int] = fs_config.encoder_layerdrop _UpperCamelCase : str = fs_config.encoder_attention_heads _UpperCamelCase : Tuple = fs_config.conv_pos_groups _UpperCamelCase : List[str] = fs_config.conv_pos _UpperCamelCase : Optional[int] = len(lowercase_ ) _UpperCamelCase : Union[str, Any] = fs_config.encoder_layers _UpperCamelCase : Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase : List[str] = model.cfg _UpperCamelCase : List[str] = fs_config.final_dropout _UpperCamelCase : Optional[Any] = fs_config.layerdrop _UpperCamelCase : int = fs_config.activation_dropout _UpperCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase : int = fs_config.attention_dropout _UpperCamelCase : int = fs_config.dropout_input _UpperCamelCase : List[Any] = fs_config.dropout _UpperCamelCase : List[Any] = fs_config.mask_channel_length _UpperCamelCase : List[str] = fs_config.mask_channel_prob _UpperCamelCase : Optional[Any] = fs_config.mask_length _UpperCamelCase : Optional[int] = fs_config.mask_prob _UpperCamelCase : List[str] = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=True ) -> str: """simple docstring""" if is_finetuned: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase : str = SEWConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = convert_config(model[0] ,lowercase_ ) _UpperCamelCase : List[str] = model[0].eval() _UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=lowercase_ ,return_attention_mask=lowercase_ ,) if is_finetuned: if dict_path: _UpperCamelCase : Union[str, Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : List[str] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Any = target_dict.pad_index _UpperCamelCase : List[Any] = target_dict.bos_index _UpperCamelCase : List[str] = target_dict.eos_index _UpperCamelCase : Optional[Any] = len(target_dict.symbols ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ ,exist_ok=lowercase_ ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,lowercase_ ) _UpperCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase_ ,) _UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = SEWForCTC(lowercase_ ) else: _UpperCamelCase : int = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ ,lowercase_ ,lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
310
0