code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A ( _lowerCamelCase ): '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(_lowerCamelCase , "_dynamo" ): return False return isinstance(_lowerCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def A ( _lowerCamelCase , _lowerCamelCase = True ): '''simple docstring''' _lowerCAmelCase : Optional[int] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _lowerCAmelCase : Optional[Any] = is_compiled_module(_lowerCamelCase ) if is_compiled: _lowerCAmelCase : Optional[int] = model _lowerCAmelCase : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[Any] = model.module if not keep_fpaa_wrapper: _lowerCAmelCase : Any = getattr(_lowerCamelCase , "forward" ) _lowerCAmelCase : Any = model.__dict__.pop("_original_forward" , _lowerCamelCase ) if original_forward is not None: while hasattr(_lowerCamelCase , "__wrapped__" ): _lowerCAmelCase : Tuple = forward.__wrapped__ if forward == original_forward: break _lowerCAmelCase : Optional[Any] = forward if getattr(_lowerCamelCase , "_converted_to_transformer_engine" , _lowerCamelCase ): convert_model(_lowerCamelCase , to_transformer_engine=_lowerCamelCase ) if is_compiled: _lowerCAmelCase : int = model _lowerCAmelCase : str = compiled_model return model def A ( ): '''simple docstring''' PartialState().wait_for_everyone() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowerCamelCase , _lowerCamelCase ) elif PartialState().local_process_index == 0: torch.save(_lowerCamelCase , _lowerCamelCase ) @contextmanager def A ( **_lowerCamelCase ): '''simple docstring''' for key, value in kwargs.items(): _lowerCAmelCase : Tuple = str(_lowerCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A ( _lowerCamelCase ): '''simple docstring''' if not hasattr(_lowerCamelCase , "__qualname__" ) and not hasattr(_lowerCamelCase , "__name__" ): _lowerCAmelCase : Any = getattr(_lowerCamelCase , "__class__" , _lowerCamelCase ) if hasattr(_lowerCamelCase , "__qualname__" ): return obj.__qualname__ if hasattr(_lowerCamelCase , "__name__" ): return obj.__name__ return str(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key, value in source.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Tuple = destination.setdefault(_lowerCamelCase , {} ) merge_dicts(_lowerCamelCase , _lowerCamelCase ) else: _lowerCAmelCase : int = value return destination def A ( _lowerCamelCase = None ): '''simple docstring''' if port is None: _lowerCAmelCase : List[str] = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
300
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
1
from collections import namedtuple import requests from lxml import html # type: ignore _snake_case = namedtuple("covid_data", "cases deaths recovered") def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus/" ): '''simple docstring''' _lowerCAmelCase : List[Any] = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(_lowerCamelCase ).content ).xpath(_lowerCamelCase ) ) _snake_case = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } _snake_case = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] lowerCamelCase__ = RobertaTokenizer def __init__( self, __a=None, __a=None, __a=None, __a="replace", __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", __a=False, __a=True, **__a, ): '''simple docstring''' super().__init__( __a, __a, tokenizer_file=__a, errors=__a, bos_token=__a, eos_token=__a, sep_token=__a, cls_token=__a, unk_token=__a, pad_token=__a, mask_token=__a, add_prefix_space=__a, trim_offsets=__a, **__a, ) _lowerCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", __a) != add_prefix_space: _lowerCAmelCase : Optional[int] = getattr(__a, pre_tok_state.pop("type")) _lowerCAmelCase : Dict = add_prefix_space _lowerCAmelCase : Any = pre_tok_class(**__a) _lowerCAmelCase : Dict = add_prefix_space _lowerCAmelCase : str = "post_processor" _lowerCAmelCase : Optional[int] = getattr(self.backend_tokenizer, __a, __a) if tokenizer_component_instance: _lowerCAmelCase : List[str] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : List[str] = tuple(state["sep"]) if "cls" in state: _lowerCAmelCase : int = tuple(state["cls"]) _lowerCAmelCase : List[str] = False if state.get("add_prefix_space", __a) != add_prefix_space: _lowerCAmelCase : str = add_prefix_space _lowerCAmelCase : List[str] = True if state.get("trim_offsets", __a) != trim_offsets: _lowerCAmelCase : Any = trim_offsets _lowerCAmelCase : int = True if changes_to_apply: _lowerCAmelCase : Any = getattr(__a, state.pop("type")) _lowerCAmelCase : Any = component_class(**__a) setattr(self.backend_tokenizer, __a, __a) @property def snake_case__ ( self): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int = AddedToken(__a, lstrip=__a, rstrip=__a) if isinstance(__a, __a) else value _lowerCAmelCase : List[Any] = value def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get("is_split_into_words", __a) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Tuple = kwargs.get("is_split_into_words", __a) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__a, **__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Tuple = self._tokenizer.model.save(__a, name=__a) return tuple(__a) def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
300
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
1
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) _lowerCAmelCase : Optional[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = DebertaVaTokenizer lowerCamelCase__ = DebertaVaTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Dict = DebertaVaTokenizer(__a, unk_token="<unk>") tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = "this is a test" _lowerCAmelCase : Optional[int] = "this is a test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "<pad>" _lowerCAmelCase : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a), __a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<pad>") self.assertEqual(vocab_keys[1], "<unk>") self.assertEqual(vocab_keys[-1], "[PAD]") self.assertEqual(len(__a), 3_0001) def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = " \tHeLLo!how \n Are yoU? " _lowerCAmelCase : Any = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on _lowerCAmelCase : Optional[Any] = DebertaVaTokenizer(__a, do_lower_case=__a) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : List[str] = DebertaVaTokenizerFast(__a, do_lower_case=__a) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "I was born in 92000, and this is falsé." _lowerCAmelCase : List[Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _lowerCAmelCase : str = DebertaVaTokenizer(__a, split_by_punct=__a) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[Any] = DebertaVaTokenizerFast(__a, split_by_punct=__a) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "I was born in 92000, and this is falsé." _lowerCAmelCase : Any = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "I was born in 92000, and this is falsé." _lowerCAmelCase : Dict = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = DebertaVaTokenizerFast(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "I was born in 92000, and this is falsé." _lowerCAmelCase : Tuple = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _lowerCAmelCase : Optional[int] = DebertaVaTokenizer(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = DebertaVaTokenizerFast(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = " \tHeLLo!how \n Are yoU? " _lowerCAmelCase : List[Any] = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on _lowerCAmelCase : List[Any] = DebertaVaTokenizer(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : List[Any] = DebertaVaTokenizerFast(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = "I was born in 92000, and this is falsé." _lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) _lowerCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : str = tokenizer.encode(__a, add_special_tokens=__a) _lowerCAmelCase : Tuple = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Any = tokenizer.encode(__a) _lowerCAmelCase : Tuple = rust_tokenizer.encode(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = "This is a test" _lowerCAmelCase : Dict = [13, 1, 4398, 25, 21, 1289] _lowerCAmelCase : str = ["▁", "T", "his", "▁is", "▁a", "▁test"] _lowerCAmelCase : Dict = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] _lowerCAmelCase : Tuple = DebertaVaTokenizer(__a, keep_accents=__a) _lowerCAmelCase : Dict = DebertaVaTokenizerFast(__a, keep_accents=__a) _lowerCAmelCase : Optional[Any] = tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Any = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : int = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(__a) self.assertListEqual(__a, __a) # fmt: off _lowerCAmelCase : Optional[Any] = "I was born in 92000, and this is falsé." _lowerCAmelCase : int = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _lowerCAmelCase : Optional[Any] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] _lowerCAmelCase : List[Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _lowerCAmelCase : Union[str, Any] = tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = DebertaVaTokenizer(__a) _lowerCAmelCase : List[Any] = tokenizer.encode("sequence builders") _lowerCAmelCase : str = tokenizer.encode("multi-sequence build") _lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a) _lowerCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__a, __a) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], __a) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], __a, ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = {"input_ids": [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a, model_name="microsoft/deberta-v2-xlarge", revision="ad6e42c1532ddf3a15c39246b63f5559d558b670", )
300
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( a): lowerCamelCase__ = (DDPMScheduler,) def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Dict = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__a) return config def snake_case__ ( self): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__a) def snake_case__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__a, beta_end=__a) def snake_case__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a) def snake_case__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a) def snake_case__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a) def snake_case__ ( self): '''simple docstring''' self.check_over_configs(thresholding=__a) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a, prediction_type=__a, sample_max_value=__a, ) def snake_case__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a) def snake_case__ ( self): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.scheduler_classes[0] _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**__a) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00_979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.scheduler_classes[0] _lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() _lowerCAmelCase : Optional[Any] = scheduler_class(**__a) _lowerCAmelCase : Union[str, Any] = len(__a) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[Any] = self.dummy_sample_deter _lowerCAmelCase : str = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _lowerCAmelCase : List[Any] = model(__a, __a) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase : str = scheduler.step(__a, __a, __a, generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase : str = pred_prev_sample _lowerCAmelCase : Union[str, Any] = torch.sum(torch.abs(__a)) _lowerCAmelCase : Any = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 258.9_606) < 1E-2 assert abs(result_mean.item() - 0.3_372) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="v_prediction") _lowerCAmelCase : Optional[int] = scheduler_class(**__a) _lowerCAmelCase : Optional[int] = len(__a) _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : int = self.dummy_sample_deter _lowerCAmelCase : Dict = torch.manual_seed(0) for t in reversed(range(__a)): # 1. predict noise residual _lowerCAmelCase : Union[str, Any] = model(__a, __a) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase : Optional[Any] = scheduler.step(__a, __a, __a, generator=__a).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase : Any = pred_prev_sample _lowerCAmelCase : Union[str, Any] = torch.sum(torch.abs(__a)) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(__a)) assert abs(result_sum.item() - 202.0_296) < 1E-2 assert abs(result_mean.item() - 0.2_631) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.scheduler_classes[0] _lowerCAmelCase : List[Any] = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**__a) _lowerCAmelCase : Tuple = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a) _lowerCAmelCase : List[str] = scheduler.timesteps for i, timestep in enumerate(__a): if i == len(__a) - 1: _lowerCAmelCase : int = -1 else: _lowerCAmelCase : Any = timesteps[i + 1] _lowerCAmelCase : Any = scheduler.previous_timestep(__a) _lowerCAmelCase : Optional[Any] = prev_t.item() self.assertEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**__a) _lowerCAmelCase : int = [100, 87, 50, 51, 0] with self.assertRaises(__a, msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.scheduler_classes[0] _lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**__a) _lowerCAmelCase : str = [100, 87, 50, 1, 0] _lowerCAmelCase : str = len(__a) with self.assertRaises(__a, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=__a, timesteps=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config() _lowerCAmelCase : int = scheduler_class(**__a) _lowerCAmelCase : Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __a, msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", ): scheduler.set_timesteps(timesteps=__a)
300
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( _lowerCamelCase = 3 ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(_lowerCamelCase ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) _lowerCAmelCase : Optional[int] = QuantumRegister(_lowerCamelCase , "qr" ) _lowerCAmelCase : int = ClassicalRegister(_lowerCamelCase , "cr" ) _lowerCAmelCase : Optional[int] = QuantumCircuit(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = number_of_qubits for i in range(_lowerCamelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_lowerCamelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _lowerCamelCase , _lowerCamelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_lowerCamelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_lowerCamelCase , _lowerCamelCase ) # simulate with 10000 shots _lowerCAmelCase : List[str] = Aer.get_backend("qasm_simulator" ) _lowerCAmelCase : Optional[Any] = execute(_lowerCamelCase , _lowerCamelCase , shots=10_000 ) return job.result().get_counts(_lowerCamelCase ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
300
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
1
from itertools import count def A ( _lowerCamelCase = 50 ): '''simple docstring''' _lowerCAmelCase : Dict = [1] * min_block_length for n in count(_lowerCamelCase ): fill_count_functions.append(1 ) for block_length in range(_lowerCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_000_000: break return n if __name__ == "__main__": print(f'''{solution() = }''')
300
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = MobileBertConfig.from_json_file(_lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) _lowerCAmelCase : int = MobileBertForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint _lowerCAmelCase : str = load_tf_weights_in_mobilebert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
300
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
1
_snake_case = tuple[float, float, float] _snake_case = tuple[float, float, float] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = end_pointa[0] - end_pointa[0] _lowerCAmelCase : str = end_pointa[1] - end_pointa[1] _lowerCAmelCase : Optional[int] = end_pointa[2] - end_pointa[2] return (x, y, z) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _lowerCAmelCase : int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _lowerCAmelCase : Any = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return tuple(round(_UpperCAmelCase , _UpperCAmelCase ) for x in vector ) == (0, 0, 0) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : Any = create_vector(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : List[Any] = create_vector(_UpperCAmelCase , _UpperCAmelCase ) return is_zero_vector(get_ad_vectors_cross(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase )
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class UpperCAmelCase_ ( A__): lowerCamelCase__ = "nllb-moe" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, __a=12_8112, __a=1024, __a=12, __a=4096, __a=16, __a=12, __a=4096, __a=16, __a=0.05, __a=0.05, __a=True, __a=True, __a="relu", __a=1024, __a=0.1, __a=0.1, __a=0.0, __a=0.02, __a=2, __a=True, __a=False, __a="float32", __a=False, __a=128, __a=64, __a=4, __a=4, __a=0.001, __a=0.001, __a="all", __a=False, __a=False, __a=1.0, __a=0.2, __a=1, __a=0, __a=2, __a=False, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Tuple = d_model _lowerCAmelCase : Tuple = encoder_ffn_dim _lowerCAmelCase : Optional[Any] = encoder_layers _lowerCAmelCase : str = encoder_attention_heads _lowerCAmelCase : List[str] = decoder_ffn_dim _lowerCAmelCase : Any = decoder_layers _lowerCAmelCase : Dict = decoder_attention_heads _lowerCAmelCase : Any = dropout _lowerCAmelCase : Dict = attention_dropout _lowerCAmelCase : int = activation_dropout _lowerCAmelCase : str = activation_function _lowerCAmelCase : Tuple = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : List[Any] = decoder_layerdrop _lowerCAmelCase : int = use_cache _lowerCAmelCase : int = encoder_layers _lowerCAmelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : List[str] = router_z_loss_coef _lowerCAmelCase : Any = router_aux_loss_coef _lowerCAmelCase : str = decoder_sparse_step _lowerCAmelCase : Union[str, Any] = encoder_sparse_step _lowerCAmelCase : str = num_experts _lowerCAmelCase : int = expert_capacity _lowerCAmelCase : Any = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}") _lowerCAmelCase : List[Any] = router_dtype _lowerCAmelCase : Optional[int] = router_ignore_padding_tokens _lowerCAmelCase : List[str] = batch_prioritized_routing _lowerCAmelCase : Optional[int] = second_expert_policy _lowerCAmelCase : Union[str, Any] = normalize_router_prob_before_dropping _lowerCAmelCase : Dict = moe_eval_capacity_token_fraction _lowerCAmelCase : List[Any] = moe_token_dropout _lowerCAmelCase : int = output_router_logits super().__init__( pad_token_id=__A, bos_token_id=__A, eos_token_id=__A, is_encoder_decoder=__A, decoder_start_token_id=__A, **__A, )
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model"} _snake_case = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class UpperCAmelCase_ ( _UpperCAmelCase): def __init__( self, __a, __a=False, __a=True, __a=False, __a="<s>", __a="</s>", __a="<unk>", __a="<sep>", __a="<pad>", __a="<cls>", __a="<mask>", __a=["<eop>", "<eod>"], __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase, _UpperCAmelCase) else mask_token _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase, remove_space=_UpperCAmelCase, keep_accents=_UpperCAmelCase, bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **_UpperCAmelCase, ) _lowerCAmelCase : Union[str, Any] = 3 _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Tuple = remove_space _lowerCAmelCase : Optional[Any] = keep_accents _lowerCAmelCase : Optional[Any] = vocab_file _lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_UpperCAmelCase) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation.") _lowerCAmelCase : Union[str, Any] = jieba _lowerCAmelCase : Any = str.maketrans(" \n", "\u2582\u2583") @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def snake_case__ ( self): '''simple docstring''' return len(self.sp_model) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = {self.convert_ids_to_tokens(_UpperCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): '''simple docstring''' _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : Optional[int] = None return state def __setstate__( self, __a): '''simple docstring''' _lowerCAmelCase : int = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case__ ( self, __a): '''simple docstring''' if self.remove_space: _lowerCAmelCase : Optional[int] = ''' '''.join(inputs.strip().split()) else: _lowerCAmelCase : Optional[int] = inputs _lowerCAmelCase : Any = outputs.replace("``", "\"").replace("\'\'", "\"") if not self.keep_accents: _lowerCAmelCase : Union[str, Any] = unicodedata.normalize("NFKD", _UpperCAmelCase) _lowerCAmelCase : Optional[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase)]) if self.do_lower_case: _lowerCAmelCase : Optional[int] = outputs.lower() return outputs def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.preprocess_text(_UpperCAmelCase) _lowerCAmelCase : int = self.sp_model.encode(_UpperCAmelCase, out_type=_UpperCAmelCase) _lowerCAmelCase : Union[str, Any] = [] for piece in pieces: if len(_UpperCAmelCase) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): _lowerCAmelCase : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: _lowerCAmelCase : Tuple = cur_pieces[1:] else: _lowerCAmelCase : str = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_UpperCAmelCase) else: new_pieces.append(_UpperCAmelCase) return new_pieces def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.PieceToId(_UpperCAmelCase) def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.IdToPiece(_UpperCAmelCase) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = ''''''.join(_UpperCAmelCase).replace(_UpperCAmelCase, " ").strip() return out_string def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[int] = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase, token_ids_a=_UpperCAmelCase, already_has_special_tokens=_UpperCAmelCase) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase)) + [1] + ([0] * len(_UpperCAmelCase)) + [1, 1] return ([0] * len(_UpperCAmelCase)) + [1, 1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : List[str] = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, _UpperCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_UpperCAmelCase, "wb") as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase) return (out_vocab_file,) def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : List[str] = super()._decode(*_UpperCAmelCase, **_UpperCAmelCase) _lowerCAmelCase : Dict = text.replace(" ", "").replace("\u2582", " ").replace("\u2583", "\n") return text
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=18, __a=30, __a=400, __a=True, __a=None, __a=True, ): '''simple docstring''' _lowerCAmelCase : List[str] = size if size is not None else {"height": 18, "width": 18} _lowerCAmelCase : int = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : int = min_resolution _lowerCAmelCase : Union[str, Any] = max_resolution _lowerCAmelCase : Optional[Any] = do_resize _lowerCAmelCase : Optional[Any] = size _lowerCAmelCase : Any = apply_ocr def snake_case__ ( self): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase_ ( A__ , unittest.TestCase): lowerCamelCase__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = LayoutLMvaImageProcessingTester(self) @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__snake_case, "do_resize")) self.assertTrue(hasattr(__snake_case, "size")) self.assertTrue(hasattr(__snake_case, "apply_ocr")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) _lowerCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=__snake_case) for image in image_inputs: self.assertIsInstance(__snake_case, Image.Image) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0], return_tensors="pt") self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertIsInstance(encoding.words, __snake_case) self.assertIsInstance(encoding.boxes, __snake_case) # Test batched _lowerCAmelCase : List[str] = image_processing(__snake_case, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__snake_case, numpify=__snake_case) for image in image_inputs: self.assertIsInstance(__snake_case, np.ndarray) # Test not batched input _lowerCAmelCase : Tuple = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(__snake_case, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=__snake_case, torchify=__snake_case) for image in image_inputs: self.assertIsInstance(__snake_case, torch.Tensor) # Test not batched input _lowerCAmelCase : List[Any] = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched _lowerCAmelCase : Dict = image_processing(__snake_case, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = LayoutLMvaImageProcessor() from datasets import load_dataset _lowerCAmelCase : Tuple = load_dataset("hf-internal-testing/fixtures_docvqa", split="test") _lowerCAmelCase : Any = Image.open(ds[0]["file"]).convert("RGB") _lowerCAmelCase : Union[str, Any] = image_processing(__snake_case, return_tensors="pt") self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224)) self.assertEqual(len(encoding.words), len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _lowerCAmelCase : List[Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 _lowerCAmelCase : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, __snake_case) self.assertListEqual(encoding.boxes, __snake_case) # with apply_OCR = False _lowerCAmelCase : List[Any] = LayoutLMvaImageProcessor(apply_ocr=__snake_case) _lowerCAmelCase : Tuple = image_processing(__snake_case, return_tensors="pt") self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224))
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : List[Any] = ascii_letters + digits + punctuation return "".join(secrets.choice(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(lowerCamelCase__ ) _lowerCAmelCase : Tuple = i // 3 _lowerCAmelCase : Tuple = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : List[str] = ( chars_incl + random(lowerCamelCase__ , quotient + remainder ) + random(lowerCamelCase__ , lowerCamelCase__ ) + random(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCAmelCase : int = list(lowerCamelCase__ ) shuffle(lowerCamelCase__ ) return "".join(lowerCamelCase__ ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(lowerCamelCase__ ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : List[Any] = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Union[str, Any] = any(char in digits for char in password ) _lowerCAmelCase : Dict = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : List[str] = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(lowerCamelCase__ ) ) print( "Alternative Password generated:" , alternative_password_generator(lowerCamelCase__ , lowerCamelCase__ ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers _snake_case = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = os.path.dirname(os.path.realpath(__a ) ) _lowerCAmelCase : int = os.path.join(__a , "words.txt" ) _lowerCAmelCase : Union[str, Any] = '' with open(__a ) as f: _lowerCAmelCase : Dict = f.readline() _lowerCAmelCase : Tuple = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _lowerCAmelCase : str = [ word for word in [sum(ord(__a ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__a ) if __name__ == "__main__": print(solution())
355
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
0
def A ( _lowerCamelCase ): '''simple docstring''' if collection == []: return [] # get some information about the collection _lowerCAmelCase : List[str] = len(__snake_case ) _lowerCAmelCase : str = max(__snake_case ) _lowerCAmelCase : Dict = min(__snake_case ) # create the counting array _lowerCAmelCase : str = coll_max + 1 - coll_min _lowerCAmelCase : List[str] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __snake_case ): _lowerCAmelCase : Any = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCAmelCase : List[str] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __snake_case ) ): _lowerCAmelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def A ( _lowerCamelCase ): '''simple docstring''' return "".join([chr(__snake_case ) for i in counting_sort([ord(__snake_case ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
def A ( _lowerCamelCase ): '''simple docstring''' try: _lowerCAmelCase : List[Any] = float(__A ) except ValueError: raise ValueError("Please enter a valid number" ) _lowerCAmelCase : Union[str, Any] = decimal - int(__A ) if fractional_part == 0: return int(__A ), 1 else: _lowerCAmelCase : List[str] = len(str(__A ).split("." )[1] ) _lowerCAmelCase : Dict = int(decimal * (10**number_of_frac_digits) ) _lowerCAmelCase : Any = 10**number_of_frac_digits _lowerCAmelCase , _lowerCAmelCase : Tuple = denominator, numerator while True: _lowerCAmelCase : Optional[int] = dividend % divisor if remainder == 0: break _lowerCAmelCase , _lowerCAmelCase : Any = divisor, remainder _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = numerator / divisor, denominator / divisor return int(__A ), int(__A ) if __name__ == "__main__": print(f'''{decimal_to_fraction(2) = }''') print(f'''{decimal_to_fraction(89.0) = }''') print(f'''{decimal_to_fraction("67") = }''') print(f'''{decimal_to_fraction("45.0") = }''') print(f'''{decimal_to_fraction(1.5) = }''') print(f'''{decimal_to_fraction("6.25") = }''') print(f'''{decimal_to_fraction("78td") = }''')
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=12, __a=7, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a=0.1, __a=0.1, __a=512, __a=0.02, __a=0, __a=None, ): '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Union[str, Any] = seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : Union[str, Any] = use_input_mask _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : List[Any] = projection_dim _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : int = dropout _lowerCAmelCase : int = attention_dropout _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = bos_token_id def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: _lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: _lowerCAmelCase : int = input_mask.numpy() _lowerCAmelCase : Tuple = input_mask.shape _lowerCAmelCase : Any = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(_UpperCamelCase): _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase) def snake_case__ ( self): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = TFBlipTextModel(config=_UpperCamelCase) _lowerCAmelCase : List[Any] = model(_UpperCamelCase, attention_mask=_UpperCamelCase, training=_UpperCamelCase) _lowerCAmelCase : Any = model(_UpperCamelCase, training=_UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase : str = config_and_inputs _lowerCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( lowercase__ , unittest.TestCase): lowerCamelCase__ = (TFBlipTextModel,) if is_tf_available() else () lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = BlipTextModelTester(self) _lowerCAmelCase : Tuple = ConfigTester(self, config_class=_UpperCamelCase, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) def snake_case__ ( self, __a=True): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase)
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _snake_case = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ _snake_case = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ _snake_case = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return float((preds == labels).mean() ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = float(fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.array(_lowerCamelCase ) _lowerCAmelCase : Dict = np.array(_lowerCamelCase ) _lowerCAmelCase : str = en_sentvecs.shape[0] # mean centering _lowerCAmelCase : Tuple = en_sentvecs - np.mean(_lowerCamelCase , axis=0 ) _lowerCAmelCase : Optional[Any] = in_sentvecs - np.mean(_lowerCamelCase , axis=0 ) _lowerCAmelCase : List[str] = cdist(_lowerCamelCase , _lowerCamelCase , "cosine" ) _lowerCAmelCase : Tuple = np.array(range(_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = sim.argsort(axis=1 )[:, :10] _lowerCAmelCase : Optional[Any] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]") return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int64") if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32")), "references": datasets.Value("int64") if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32")), }), codebase_urls=[], reference_urls=[], format="numpy" if self.config_name != "cvit-mkb-clsr" else None, ) def snake_case__ ( self, __a, __a): '''simple docstring''' if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__lowercase, __lowercase)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__lowercase, __lowercase) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__lowercase, __lowercase)} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]")
359
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
0
def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("only integers accepted as input" ) else: _lowerCAmelCase : Dict = str(abs(__lowerCamelCase ) ) _lowerCAmelCase : Dict = [list(__lowerCamelCase ) for char in range(len(__lowerCamelCase ) )] for index in range(len(__lowerCamelCase ) ): num_transpositions[index].pop(__lowerCamelCase ) return max( int("".join(list(__lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
360
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model"} _snake_case = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } _snake_case = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _snake_case = "▁" class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, __a, __a=True, __a=True, __a=False, __a="[CLS]", __a="[SEP]", __a="<unk>", __a="[SEP]", __a="<pad>", __a="[CLS]", __a="[MASK]", __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ( AddedToken(_a, lstrip=_a, rstrip=_a, normalized=_a) if isinstance(_a, _a) else mask_token ) _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a, remove_space=_a, keep_accents=_a, bos_token=_a, eos_token=_a, unk_token=_a, sep_token=_a, pad_token=_a, cls_token=_a, mask_token=_a, sp_model_kwargs=self.sp_model_kwargs, **_a, ) _lowerCAmelCase : Optional[int] = do_lower_case _lowerCAmelCase : int = remove_space _lowerCAmelCase : List[Any] = keep_accents _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_a) @property def snake_case__ ( self): '''simple docstring''' return len(self.sp_model) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = {self.convert_ids_to_tokens(_a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : Optional[Any] = None return state def __setstate__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case__ ( self, __a): '''simple docstring''' if self.remove_space: _lowerCAmelCase : Union[str, Any] = " ".join(inputs.strip().split()) else: _lowerCAmelCase : List[str] = inputs _lowerCAmelCase : List[Any] = outputs.replace("``", "\"").replace("\'\'", "\"") if not self.keep_accents: _lowerCAmelCase : Optional[int] = unicodedata.normalize("NFKD", _a) _lowerCAmelCase : Any = "".join([c for c in outputs if not unicodedata.combining(_a)]) if self.do_lower_case: _lowerCAmelCase : str = outputs.lower() return outputs def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.preprocess_text(_a) _lowerCAmelCase : str = self.sp_model.encode(_a, out_type=_a) _lowerCAmelCase : List[Any] = [] for piece in pieces: if len(_a) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): _lowerCAmelCase : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: _lowerCAmelCase : Any = cur_pieces[1:] else: _lowerCAmelCase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_a) else: new_pieces.append(_a) return new_pieces def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.PieceToId(_a) def snake_case__ ( self, __a): '''simple docstring''' return self.sp_model.IdToPiece(_a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = "" _lowerCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a) + token _lowerCAmelCase : List[str] = True _lowerCAmelCase : Any = [] else: current_sub_tokens.append(_a) _lowerCAmelCase : List[str] = False out_string += self.sp_model.decode(_a) return out_string.strip() def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[Any] = [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a, token_ids_a=_a, already_has_special_tokens=_a) if token_ids_a is not None: return [1] + ([0] * len(_a)) + [1] + ([0] * len(_a)) + [1] return [1] + ([0] * len(_a)) + [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(_a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Dict = os.path.join( _a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, _a) elif not os.path.isfile(self.vocab_file): with open(_a, "wb") as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(_a) return (out_vocab_file,)
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0
from collections import namedtuple _snake_case = namedtuple("from_to", "from_ to") _snake_case = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F"Invalid \'from_type\' value: {from_type!r} Supported values are:\n" + ", ".join(lowercase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"Invalid \'to_type\' value: {to_type!r}. Supported values are:\n" + ", ".join(lowercase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
363
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class UpperCAmelCase_ ( a_): lowerCamelCase__ = '''swinv2''' lowerCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=[2, 2, 6, 2], __a=[3, 6, 12, 24], __a=7, __a=4.0, __a=True, __a=0.0, __a=0.0, __a=0.1, __a="gelu", __a=False, __a=0.02, __a=1E-5, __a=32, **__a, ): '''simple docstring''' super().__init__(**lowercase_) _lowerCAmelCase : Dict = image_size _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : Dict = embed_dim _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : Union[str, Any] = len(lowercase_) _lowerCAmelCase : Union[str, Any] = num_heads _lowerCAmelCase : Union[str, Any] = window_size _lowerCAmelCase : str = mlp_ratio _lowerCAmelCase : str = qkv_bias _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = drop_path_rate _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = use_absolute_embeddings _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(lowercase_) - 1)) _lowerCAmelCase : List[str] = (0, 0, 0, 0)
364
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
0
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) _lowerCAmelCase : Dict = str(bin(__a ) ) binary_number += "0" * shift_amount return binary_number def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) _lowerCAmelCase : Optional[int] = str(bin(__a ) )[2:] if shift_amount >= len(__a ): return "0b0" _lowerCAmelCase : Dict = binary_number[: len(__a ) - shift_amount] return "0b" + shifted_binary_number def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if number >= 0: # Get binary representation of positive number _lowerCAmelCase : Dict = '''0''' + str(bin(__a ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number _lowerCAmelCase : Dict = len(bin(__a )[3:] ) # Find 2's complement of number _lowerCAmelCase : List[Any] = bin(abs(__a ) - (1 << binary_number_length) )[3:] _lowerCAmelCase : Dict = ( '''1''' + '''0''' * (binary_number_length - len(__a )) + binary_number ) if shift_amount >= len(__a ): return "0b" + binary_number[0] * len(__a ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__a ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _snake_case = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE) class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE): def __init__( self, **__a): '''simple docstring''' super().__init__(**__UpperCAmelCase) requires_backends(self, "vision") self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self, __a, **__a): '''simple docstring''' return super().__call__(__UpperCAmelCase, **__UpperCAmelCase) def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : int = {} if "candidate_labels" in kwargs: _lowerCAmelCase : Dict = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowerCAmelCase : Union[str, Any] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def snake_case__ ( self, __a, __a=None, __a="This is a photo of {}."): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = load_image(__UpperCAmelCase) _lowerCAmelCase : List[Any] = self.image_processor(images=[image], return_tensors=self.framework) _lowerCAmelCase : str = candidate_labels _lowerCAmelCase : Dict = [hypothesis_template.format(__UpperCAmelCase) for x in candidate_labels] _lowerCAmelCase : Optional[int] = self.tokenizer(__UpperCAmelCase, return_tensors=self.framework, padding=__UpperCAmelCase) _lowerCAmelCase : int = [text_inputs] return inputs def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = model_inputs.pop("candidate_labels") _lowerCAmelCase : List[str] = model_inputs.pop("text_inputs") if isinstance(text_inputs[0], __UpperCAmelCase): _lowerCAmelCase : Tuple = text_inputs[0] else: # Batching case. _lowerCAmelCase : Union[str, Any] = text_inputs[0][0] _lowerCAmelCase : Optional[int] = self.model(**__UpperCAmelCase, **__UpperCAmelCase) _lowerCAmelCase : int = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = model_outputs.pop("candidate_labels") _lowerCAmelCase : Optional[Any] = model_outputs["""logits"""][0] if self.framework == "pt": _lowerCAmelCase : Optional[Any] = logits.softmax(dim=-1).squeeze(-1) _lowerCAmelCase : List[Any] = probs.tolist() if not isinstance(__UpperCAmelCase, __UpperCAmelCase): _lowerCAmelCase : List[str] = [scores] elif self.framework == "tf": _lowerCAmelCase : str = stable_softmax(__UpperCAmelCase, axis=-1) _lowerCAmelCase : Any = probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}") _lowerCAmelCase : List[str] = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase, __UpperCAmelCase), key=lambda __a: -x[0]) ] return result
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = KandinskyVaaImgaImgPipeline lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image'''] lowerCamelCase__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowerCamelCase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase__ = False @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return self.time_input_dim @property def snake_case__ ( self): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case__ ( self): '''simple docstring''' return 100 @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Dict = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _lowerCAmelCase : Dict = UNetaDConditionModel(**lowerCAmelCase__) return model @property def snake_case__ ( self): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Union[str, Any] = VQModel(**self.dummy_movq_kwargs) return model def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : str = self.dummy_movq _lowerCAmelCase : Optional[int] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _lowerCAmelCase : Union[str, Any] = DDIMScheduler(**lowerCAmelCase__) _lowerCAmelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' _lowerCAmelCase : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) _lowerCAmelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( lowerCAmelCase__) # create init_image _lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) _lowerCAmelCase : List[Any] = image.cpu().permute(0, 2, 3, 1)[0] _lowerCAmelCase : Dict = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("RGB").resize((256, 256)) if str(lowerCAmelCase__).startswith("mps"): _lowerCAmelCase : int = torch.manual_seed(lowerCAmelCase__) else: _lowerCAmelCase : int = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) _lowerCAmelCase : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = "cpu" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**lowerCAmelCase__) _lowerCAmelCase : Optional[Any] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) _lowerCAmelCase : int = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) _lowerCAmelCase : Any = output.images _lowerCAmelCase : str = pipe( **self.get_dummy_inputs(lowerCAmelCase__), return_dict=lowerCAmelCase__, )[0] _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy") _lowerCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png") _lowerCAmelCase : List[str] = "A red cartoon frog, 4k" _lowerCAmelCase : str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) _lowerCAmelCase : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.floataa) _lowerCAmelCase : List[Any] = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) _lowerCAmelCase : Tuple = torch.Generator(device="cpu").manual_seed(0) _lowerCAmelCase : Optional[Any] = pipe_prior( lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=5, negative_prompt="", ).to_tuple() _lowerCAmelCase : Dict = pipeline( image=lowerCAmelCase__, image_embeds=lowerCAmelCase__, negative_image_embeds=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=100, height=768, width=768, strength=0.2, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase__, lowerCAmelCase__)
367
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( _lowerCamelCase , _lowerCamelCase=() , _lowerCamelCase=None , _lowerCamelCase="no" , _lowerCamelCase="29500" ): '''simple docstring''' _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : List[Any] = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): _lowerCAmelCase : Dict = True elif "IPython" in sys.modules: _lowerCAmelCase : List[str] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: _lowerCAmelCase : str = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , _UpperCamelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: _lowerCAmelCase : Optional[Any] = 8 _lowerCAmelCase : Dict = PrepareForLaunch(_UpperCamelCase , distributed_type="TPU" ) print(F"Launching a training on {num_processes} TPU cores." ) xmp.spawn(_UpperCamelCase , args=_UpperCamelCase , nprocs=_UpperCamelCase , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*_UpperCamelCase ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCamelCase , master_addr="127.0.01" , master_port=_UpperCamelCase , mixed_precision=_UpperCamelCase ): _lowerCAmelCase : Optional[int] = PrepareForLaunch(_UpperCamelCase , distributed_type="MULTI_GPU" ) print(F"Launching training on {num_processes} GPUs." ) try: start_processes(_UpperCamelCase , args=_UpperCamelCase , nprocs=_UpperCamelCase , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _lowerCAmelCase : Dict = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*_UpperCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase=() , _lowerCamelCase=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCamelCase , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): _lowerCAmelCase : Optional[int] = PrepareForLaunch(_UpperCamelCase , debug=_UpperCamelCase ) start_processes(_UpperCamelCase , args=_UpperCamelCase , nprocs=_UpperCamelCase , start_method="fork" )
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
0
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _snake_case = "bert-base-cased" _snake_case = "fp16" _snake_case = "bf16" _snake_case = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase_ ( __UpperCamelCase): def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : int = dict( ACCELERATE_USE_FSDP="true", MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1", ) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_lowerCAmelCase): _lowerCAmelCase : str = self.dist_env.copy() _lowerCAmelCase : int = f"{i + 1}" _lowerCAmelCase : List[str] = strategy with mockenv_context(**_lowerCAmelCase): _lowerCAmelCase : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy, ShardingStrategy(i + 1)) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_lowerCAmelCase): _lowerCAmelCase : int = self.dist_env.copy() _lowerCAmelCase : int = prefetch_policy with mockenv_context(**_lowerCAmelCase): _lowerCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch, BackwardPrefetch(i + 1)) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_lowerCAmelCase): _lowerCAmelCase : Union[str, Any] = self.dist_env.copy() _lowerCAmelCase : Any = state_dict_type with mockenv_context(**_lowerCAmelCase): _lowerCAmelCase : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type, StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(_lowerCAmelCase) for policy in FSDP_AUTO_WRAP_POLICY: _lowerCAmelCase : str = self.dist_env.copy() _lowerCAmelCase : List[str] = policy if policy == "TRANSFORMER_BASED_WRAP": _lowerCAmelCase : List[str] = """BertLayer""" elif policy == "SIZE_BASED_WRAP": _lowerCAmelCase : str = """2000""" with mockenv_context(**_lowerCAmelCase): _lowerCAmelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_lowerCAmelCase) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) _lowerCAmelCase : int = self.dist_env.copy() _lowerCAmelCase : Any = """TRANSFORMER_BASED_WRAP""" _lowerCAmelCase : Optional[Any] = """T5Layer""" with mockenv_context(**_lowerCAmelCase): _lowerCAmelCase : str = FullyShardedDataParallelPlugin() with self.assertRaises(_lowerCAmelCase) as cm: fsdp_plugin.set_auto_wrap_policy(_lowerCAmelCase) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception)) _lowerCAmelCase : Any = self.dist_env.copy() _lowerCAmelCase : str = """SIZE_BASED_WRAP""" _lowerCAmelCase : Optional[int] = """0""" with mockenv_context(**_lowerCAmelCase): _lowerCAmelCase : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_lowerCAmelCase) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _lowerCAmelCase : int = self.dist_env.copy() _lowerCAmelCase : Any = mp_dtype with mockenv_context(**_lowerCAmelCase): _lowerCAmelCase : Optional[Any] = Accelerator() if mp_dtype == "fp16": _lowerCAmelCase : Tuple = torch.floataa elif mp_dtype == "bf16": _lowerCAmelCase : Tuple = torch.bfloataa _lowerCAmelCase : List[str] = MixedPrecision(param_dtype=_lowerCAmelCase, reduce_dtype=_lowerCAmelCase, buffer_dtype=_lowerCAmelCase) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy, _lowerCAmelCase) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler, _lowerCAmelCase)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(_lowerCAmelCase) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _lowerCAmelCase : List[Any] = self.dist_env.copy() _lowerCAmelCase : Tuple = str(_lowerCAmelCase).lower() with mockenv_context(**_lowerCAmelCase): _lowerCAmelCase : int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload, CPUOffload(offload_params=_lowerCAmelCase)) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase_ ( __UpperCamelCase): def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Optional[Any] = 0.82 _lowerCAmelCase : List[Any] = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] _lowerCAmelCase : Dict = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _lowerCAmelCase : List[str] = 160 _lowerCAmelCase : Dict = 160 _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils) _lowerCAmelCase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = os.path.join(self.test_scripts_folder, "test_performance.py") _lowerCAmelCase : Union[str, Any] = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: _lowerCAmelCase : Tuple = cmd.copy() for i, strategy in enumerate(_lowerCAmelCase): if strategy.lower() in config: cmd_config.append(f"--fsdp_sharding_strategy={i+1}") break if "fp32" in config: cmd_config.append("--mixed_precision=no") else: cmd_config.append("--mixed_precision=fp16") if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(_lowerCAmelCase, env=os.environ.copy()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = os.path.join(self.test_scripts_folder, "test_checkpointing.py") _lowerCAmelCase : Dict = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(_lowerCAmelCase): _lowerCAmelCase : int = cmd.copy() cmd_config.append(f"--fsdp_sharding_strategy={i+1}") if strategy != "FULL_SHARD": continue _lowerCAmelCase : List[Any] = len(_lowerCAmelCase) for state_dict_type in FSDP_STATE_DICT_TYPE: _lowerCAmelCase : List[str] = cmd_config[:state_dict_config_index] cmd_config.append(f"--fsdp_state_dict_type={state_dict_type}") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", "--partial_train_epoch=1", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(_lowerCAmelCase, env=os.environ.copy()) _lowerCAmelCase : Optional[int] = cmd_config[:-1] _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdir, "epoch_0") cmd_config.extend( [ f"--resume_from_checkpoint={resume_from_checkpoint}", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(_lowerCAmelCase, env=os.environ.copy()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = os.path.join(self.test_scripts_folder, "test_peak_memory_usage.py") _lowerCAmelCase : Dict = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _lowerCAmelCase : Any = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"]) else: cmd_config.extend(["--mixed_precision=no"]) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"]) for i, strategy in enumerate(_lowerCAmelCase): if strategy.lower() in spec: cmd_config.append(f"--fsdp_sharding_strategy={i+1}") break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--peak_memory_upper_bound={peak_mem_upper_bound}", f"--n_train={self.n_train}", f"--n_val={self.n_val}", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(_lowerCAmelCase, env=os.environ.copy())
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def A ( _lowerCamelCase="" ): '''simple docstring''' _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() return os.path.join(UpperCAmelCase__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = torch.rand(12, dtype=torch.floataa) - 0.5 _lowerCAmelCase : Optional[Any] = AgentAudio(lowercase_) _lowerCAmelCase : List[Any] = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_, agent_type.to_raw(), atol=1E-4)) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase_)) # Ensure that the file contains the same value as the original tensor _lowerCAmelCase : Tuple = sf.read(lowercase_) self.assertTrue(torch.allclose(lowercase_, torch.tensor(lowercase_), atol=1E-4)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = torch.rand(12, dtype=torch.floataa) - 0.5 _lowerCAmelCase : Dict = get_new_path(suffix=".wav") sf.write(lowercase_, lowercase_, 1_6000) _lowerCAmelCase : Optional[Any] = AgentAudio(lowercase_) self.assertTrue(torch.allclose(lowercase_, agent_type.to_raw(), atol=1E-4)) self.assertEqual(agent_type.to_string(), lowercase_) @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = torch.randint(0, 256, (64, 64, 3)) _lowerCAmelCase : int = AgentImage(lowercase_) _lowerCAmelCase : List[Any] = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_, agent_type._tensor, atol=1E-4)) self.assertIsInstance(agent_type.to_raw(), Image.Image) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = Path(get_tests_dir("fixtures/tests_samples/COCO")) / """000000039769.png""" _lowerCAmelCase : Optional[Any] = Image.open(lowercase_) _lowerCAmelCase : Union[str, Any] = AgentImage(lowercase_) self.assertTrue(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = Path(get_tests_dir("fixtures/tests_samples/COCO")) / """000000039769.png""" _lowerCAmelCase : Dict = Image.open(lowercase_) _lowerCAmelCase : Dict = AgentImage(lowercase_) self.assertFalse(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_)) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = """Hey!""" _lowerCAmelCase : Any = AgentText(lowercase_) self.assertEqual(lowercase_, agent_type.to_string()) self.assertEqual(lowercase_, agent_type.to_raw()) self.assertEqual(lowercase_, lowercase_)
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _snake_case = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class UpperCAmelCase_ ( __lowercase): lowerCamelCase__ = 'albert' def __init__( self, __a=3_0000, __a=128, __a=4096, __a=12, __a=1, __a=64, __a=1_6384, __a=1, __a="gelu_new", __a=0, __a=0, __a=512, __a=2, __a=0.02, __a=1E-12, __a=0.1, __a="absolute", __a=0, __a=2, __a=3, **__a, ): '''simple docstring''' super().__init__(pad_token_id=_a, bos_token_id=_a, eos_token_id=_a, **_a) _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Any = embedding_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : Dict = num_hidden_groups _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = inner_group_num _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : List[Any] = type_vocab_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : str = classifier_dropout_prob _lowerCAmelCase : Any = position_embedding_type class UpperCAmelCase_ ( __lowercase): @property def snake_case__ ( self): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _snake_case = "http://www.mocksite.com/file1.txt" _snake_case = "\"text\": [\"foo\", \"foo\"]" _snake_case = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class UpperCAmelCase_ : lowerCamelCase__ = 200 lowerCamelCase__ = {"""Content-Length""": """100"""} lowerCamelCase__ = {} def snake_case__ ( self, **__a): '''simple docstring''' return [bytes(lowercase_, "utf-8")] def A ( *_lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' import requests monkeypatch.setattr(__lowerCamelCase , "request" , __lowerCamelCase ) _lowerCAmelCase : Tuple = URL if issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = url elif issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Tuple = [url] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : List[str] = {"train": url} _lowerCAmelCase : Union[str, Any] = "dummy" _lowerCAmelCase : Optional[Any] = "downloads" _lowerCAmelCase : Optional[int] = tmp_path _lowerCAmelCase : List[str] = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase , __lowerCamelCase ) , use_etag=__lowerCamelCase , ) _lowerCAmelCase : List[Any] = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _lowerCAmelCase : List[Any] = dl_manager.download(__lowerCamelCase ) _lowerCAmelCase : List[Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : str = [downloaded_paths] _lowerCAmelCase : int = [urls] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in downloaded_paths.keys() _lowerCAmelCase : Tuple = downloaded_paths.values() _lowerCAmelCase : str = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase , __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _lowerCAmelCase : List[str] = Path(__lowerCamelCase ) _lowerCAmelCase : List[str] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _lowerCAmelCase : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT _lowerCAmelCase : str = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() _lowerCAmelCase : Dict = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = str(__lowerCamelCase ) if issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : List[str] = filename elif issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Optional[int] = [filename] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Optional[Any] = {"train": filename} _lowerCAmelCase : Optional[int] = "dummy" _lowerCAmelCase : List[Any] = xz_file.parent _lowerCAmelCase : List[Any] = "extracted" _lowerCAmelCase : Tuple = DownloadConfig( cache_dir=__lowerCamelCase , use_etag=__lowerCamelCase , ) _lowerCAmelCase : Any = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _lowerCAmelCase : List[str] = dl_manager.extract(__lowerCamelCase ) _lowerCAmelCase : Dict = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase : Optional[int] = [extracted_paths] _lowerCAmelCase : str = [paths] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in extracted_paths.keys() _lowerCAmelCase : str = extracted_paths.values() _lowerCAmelCase : Tuple = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase , __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _lowerCAmelCase : Union[str, Any] = Path(__lowerCamelCase ) _lowerCAmelCase : List[str] = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase , etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _lowerCAmelCase : List[str] = extracted_path.read_text() _lowerCAmelCase : str = text_file.read_text() assert extracted_file_content == expected_file_content def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert path.endswith(".jsonl" ) for num_items, line in enumerate(__lowerCamelCase , start=1 ): _lowerCAmelCase : Any = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = request.getfixturevalue(__lowerCamelCase ) _lowerCAmelCase : Dict = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = request.getfixturevalue(__lowerCamelCase ) _lowerCAmelCase : int = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ) , start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Optional[int] = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Tuple = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(a_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_uncond_unet _lowerCAmelCase : int = DDIMScheduler() _lowerCAmelCase : str = self.dummy_vq_model _lowerCAmelCase : Union[str, Any] = LDMPipeline(unet=a_, vqvae=a_, scheduler=a_) ldm.to(a_) ldm.set_progress_bar_config(disable=a_) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0) _lowerCAmelCase : Optional[Any] = ldm(generator=a_, num_inference_steps=2, output_type="numpy").images _lowerCAmelCase : Any = torch.manual_seed(0) _lowerCAmelCase : List[Any] = ldm(generator=a_, num_inference_steps=2, output_type="numpy", return_dict=a_)[0] _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[Any] = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172]) _lowerCAmelCase : str = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256") ldm.to(a_) ldm.set_progress_bar_config(disable=a_) _lowerCAmelCase : Tuple = torch.manual_seed(0) _lowerCAmelCase : Dict = ldm(generator=a_, num_inference_steps=5, output_type="numpy").images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : Dict = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447]) _lowerCAmelCase : str = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _snake_case = get_logger() _snake_case = None class UpperCAmelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping]): def __init__( self, __a=None, __a=None, **__a): '''simple docstring''' super().__init__(features=snake_case__) import jax from jaxlib.xla_client import Device if isinstance(snake_case__, snake_case__): raise ValueError( f"Expected {device} to be a `str` not {type(snake_case__)}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`.") _lowerCAmelCase : Tuple = device if isinstance(snake_case__, snake_case__) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : List[str] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default " f"device: {str(jax.devices()[0])}.") _lowerCAmelCase : Tuple = str(jax.devices()[0]) _lowerCAmelCase : Optional[int] = jnp_array_kwargs @staticmethod def snake_case__ ( ): '''simple docstring''' import jax return {str(snake_case__): device for device in jax.devices()} def snake_case__ ( self, __a): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(snake_case__, snake_case__) and column: if all( isinstance(snake_case__, jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(snake_case__, axis=0) return column def snake_case__ ( self, __a): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(snake_case__, (str, bytes, type(snake_case__))): return value elif isinstance(snake_case__, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() _lowerCAmelCase : Tuple = {} if isinstance(snake_case__, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : Union[str, Any] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Optional[Any] = {'dtype': jnp.intaa} elif isinstance(snake_case__, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): _lowerCAmelCase : Optional[Any] = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case__, PIL.Image.Image): _lowerCAmelCase : List[Any] = np.asarray(snake_case__) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Union[str, Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(snake_case__, **{**default_dtype, **self.jnp_array_kwargs}) def snake_case__ ( self, __a): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(snake_case__, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(snake_case__, "__array__") and not isinstance(snake_case__, jax.Array): _lowerCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case__, np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case__) for substruct in data_struct]) elif isinstance(snake_case__, (list, tuple)): return self._consolidate([self.recursive_tensorize(snake_case__) for substruct in data_struct]) return self._tensorize(snake_case__) def snake_case__ ( self, __a): '''simple docstring''' return map_nested(self._recursive_tensorize, snake_case__, map_list=snake_case__) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(snake_case__) _lowerCAmelCase : List[str] = self.python_features_decoder.decode_row(snake_case__) return self.recursive_tensorize(snake_case__) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = self.numpy_arrow_extractor().extract_column(snake_case__) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(snake_case__, pa_table.column_names[0]) _lowerCAmelCase : int = self.recursive_tensorize(snake_case__) _lowerCAmelCase : Dict = self._consolidate(snake_case__) return column def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(snake_case__) _lowerCAmelCase : Union[str, Any] = self.python_features_decoder.decode_batch(snake_case__) _lowerCAmelCase : int = self.recursive_tensorize(snake_case__) for column_name in batch: _lowerCAmelCase : List[Any] = self._consolidate(batch[column_name]) return batch
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=30, __a=400, __a=True, __a=None, __a=True, __a=1 / 255, __a=True, __a=[0.5, 0.5, 0.5], __a=[0.5, 0.5, 0.5], __a=True, ): '''simple docstring''' _lowerCAmelCase : Tuple = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} _lowerCAmelCase : Dict = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[Any] = min_resolution _lowerCAmelCase : Tuple = max_resolution _lowerCAmelCase : Union[str, Any] = do_resize _lowerCAmelCase : List[str] = size _lowerCAmelCase : Optional[int] = do_rescale _lowerCAmelCase : Tuple = rescale_factor _lowerCAmelCase : Union[str, Any] = do_normalize _lowerCAmelCase : List[Any] = image_mean _lowerCAmelCase : Optional[Any] = image_std _lowerCAmelCase : str = do_pad def snake_case__ ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def snake_case__ ( self, __a, __a=False): '''simple docstring''' if not batched: _lowerCAmelCase : List[Any] = image_inputs[0] if isinstance(__UpperCAmelCase, Image.Image): _lowerCAmelCase , _lowerCAmelCase : int = image.size else: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase : Any = int(self.size["shortest_edge"] * h / w) _lowerCAmelCase : Any = self.size["shortest_edge"] elif w > h: _lowerCAmelCase : Dict = self.size["shortest_edge"] _lowerCAmelCase : str = int(self.size["shortest_edge"] * w / h) else: _lowerCAmelCase : Dict = self.size["shortest_edge"] _lowerCAmelCase : Union[str, Any] = self.size["shortest_edge"] else: _lowerCAmelCase : List[str] = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _lowerCAmelCase : int = max(__UpperCAmelCase, key=lambda __a: item[0])[0] _lowerCAmelCase : Optional[int] = max(__UpperCAmelCase, key=lambda __a: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = DetrImageProcessor if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = DetrImageProcessingTester(self) @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__UpperCAmelCase, "image_mean")) self.assertTrue(hasattr(__UpperCAmelCase, "image_std")) self.assertTrue(hasattr(__UpperCAmelCase, "do_normalize")) self.assertTrue(hasattr(__UpperCAmelCase, "do_rescale")) self.assertTrue(hasattr(__UpperCAmelCase, "rescale_factor")) self.assertTrue(hasattr(__UpperCAmelCase, "do_resize")) self.assertTrue(hasattr(__UpperCAmelCase, "size")) self.assertTrue(hasattr(__UpperCAmelCase, "do_pad")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333}) self.assertEqual(image_processor.do_pad, __UpperCAmelCase) _lowerCAmelCase : str = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=__UpperCAmelCase) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.do_pad, __UpperCAmelCase) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase, Image.Image) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCAmelCase) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase , _lowerCAmelCase : int = self.image_processor_tester.get_expected_values(__UpperCAmelCase, batched=__UpperCAmelCase) _lowerCAmelCase : List[Any] = image_processing(__UpperCAmelCase, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__UpperCAmelCase, numpify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase, np.ndarray) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : int = self.image_processor_tester.get_expected_values(__UpperCAmelCase) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase : Any = image_processing(__UpperCAmelCase, return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(__UpperCAmelCase, batched=__UpperCAmelCase) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=__UpperCAmelCase, torchify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase, torch.Tensor) # Test not batched input _lowerCAmelCase : Tuple = image_processing(image_inputs[0], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase : List[Any] = image_processing(__UpperCAmelCase, return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase, batched=__UpperCAmelCase) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: _lowerCAmelCase : Union[str, Any] = json.loads(f.read()) _lowerCAmelCase : str = {"image_id": 3_9769, "annotations": target} # encode them _lowerCAmelCase : Optional[int] = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") _lowerCAmelCase : Any = image_processing(images=__UpperCAmelCase, annotations=__UpperCAmelCase, return_tensors="pt") # verify pixel values _lowerCAmelCase : int = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, __UpperCAmelCase) _lowerCAmelCase : List[str] = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], __UpperCAmelCase, atol=1E-4)) # verify area _lowerCAmelCase : Optional[int] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], __UpperCAmelCase)) # verify boxes _lowerCAmelCase : List[str] = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, __UpperCAmelCase) _lowerCAmelCase : Union[str, Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], __UpperCAmelCase, atol=1E-3)) # verify image_id _lowerCAmelCase : Optional[int] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], __UpperCAmelCase)) # verify is_crowd _lowerCAmelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], __UpperCAmelCase)) # verify class_labels _lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], __UpperCAmelCase)) # verify orig_size _lowerCAmelCase : Dict = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], __UpperCAmelCase)) # verify size _lowerCAmelCase : Union[str, Any] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], __UpperCAmelCase)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f: _lowerCAmelCase : str = json.loads(f.read()) _lowerCAmelCase : Union[str, Any] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} _lowerCAmelCase : List[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them _lowerCAmelCase : int = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic") _lowerCAmelCase : str = image_processing(images=__UpperCAmelCase, annotations=__UpperCAmelCase, masks_path=__UpperCAmelCase, return_tensors="pt") # verify pixel values _lowerCAmelCase : Any = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, __UpperCAmelCase) _lowerCAmelCase : Any = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], __UpperCAmelCase, atol=1E-4)) # verify area _lowerCAmelCase : Optional[Any] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], __UpperCAmelCase)) # verify boxes _lowerCAmelCase : Optional[int] = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, __UpperCAmelCase) _lowerCAmelCase : Optional[int] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], __UpperCAmelCase, atol=1E-3)) # verify image_id _lowerCAmelCase : List[Any] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], __UpperCAmelCase)) # verify is_crowd _lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], __UpperCAmelCase)) # verify class_labels _lowerCAmelCase : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], __UpperCAmelCase)) # verify masks _lowerCAmelCase : Optional[int] = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(), __UpperCAmelCase) # verify orig_size _lowerCAmelCase : int = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], __UpperCAmelCase)) # verify size _lowerCAmelCase : str = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], __UpperCAmelCase))
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class UpperCAmelCase_ : def __init__( self, __a, __a=14, __a=7, __a=True, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Any = use_input_mask _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : Union[str, Any] = use_mc_token_ids _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : int = num_labels _lowerCAmelCase : str = num_choices _lowerCAmelCase : int = scope _lowerCAmelCase : Any = self.vocab_size - 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Dict = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[int] = None if self.use_mc_token_ids: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.num_choices], self.seq_length) _lowerCAmelCase : str = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : str = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Any = self.get_config() _lowerCAmelCase : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def snake_case__ ( self): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) def snake_case__ ( self, __a, __a, __a, __a, __a, *__a): '''simple docstring''' _lowerCAmelCase : List[Any] = CTRLModel(config=SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() model(SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, head_mask=SCREAMING_SNAKE_CASE_) model(SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_) _lowerCAmelCase : Dict = model(SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def snake_case__ ( self, __a, __a, __a, __a, __a, *__a): '''simple docstring''' _lowerCAmelCase : int = CTRLLMHeadModel(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() _lowerCAmelCase : Tuple = model(SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Optional[Any] = config_and_inputs _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def snake_case__ ( self, __a, __a, __a, __a, *__a): '''simple docstring''' _lowerCAmelCase : str = self.num_labels _lowerCAmelCase : List[Any] = CTRLForSequenceClassification(SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() _lowerCAmelCase : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) @require_torch class UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): lowerCamelCase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCamelCase__ = (CTRLLMHeadModel,) if is_torch_available() else () lowerCamelCase__ = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = CTRLModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, n_embd=37) def snake_case__ ( self): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*SCREAMING_SNAKE_CASE_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE_) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[Any] = CTRLModel.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_) @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def snake_case__ ( self): '''simple docstring''' pass @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = CTRLLMHeadModel.from_pretrained("ctrl") model.to(SCREAMING_SNAKE_CASE_) _lowerCAmelCase : List[str] = torch.tensor( [[1_1859, 0, 1611, 8]], dtype=torch.long, device=SCREAMING_SNAKE_CASE_) # Legal the president is _lowerCAmelCase : Any = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a _lowerCAmelCase : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE_, do_sample=SCREAMING_SNAKE_CASE_) self.assertListEqual(output_ids[0].tolist(), SCREAMING_SNAKE_CASE_)
355
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _snake_case = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for attribute in key.split("." ): _lowerCAmelCase : Dict = getattr(lowercase__ , lowercase__ ) if weight_type is not None: _lowerCAmelCase : Union[str, Any] = getattr(lowercase__ , lowercase__ ).shape else: _lowerCAmelCase : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Any = value elif weight_type == "weight_g": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": _lowerCAmelCase : int = value elif weight_type == "bias": _lowerCAmelCase : List[str] = value else: _lowerCAmelCase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : str = fairseq_model.state_dict() _lowerCAmelCase : Tuple = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == "group" , ) _lowerCAmelCase : int = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase : Union[str, Any] = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue _lowerCAmelCase : Dict = True if "*" in mapped_key: _lowerCAmelCase : Union[str, Any] = name.split(lowercase__ )[0].split("." )[-2] _lowerCAmelCase : Union[str, Any] = mapped_key.replace("*" , lowercase__ ) if "weight_g" in name: _lowerCAmelCase : Tuple = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name: _lowerCAmelCase : Dict = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : Union[str, Any] = """weight""" else: _lowerCAmelCase : Any = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(F"Unused weights: {unused_weights}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = full_name.split("conv_layers." )[-1] _lowerCAmelCase : Union[str, Any] = name.split("." ) _lowerCAmelCase : List[Any] = int(items[0] ) _lowerCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Optional[int] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) _lowerCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ): '''simple docstring''' if config_path is not None: _lowerCAmelCase : Dict = UniSpeechSatConfig.from_pretrained(lowercase__ ) else: _lowerCAmelCase : Any = UniSpeechSatConfig() _lowerCAmelCase : List[str] = """""" if is_finetuned: _lowerCAmelCase : List[str] = UniSpeechSatForCTC(lowercase__ ) else: _lowerCAmelCase : Optional[Any] = UniSpeechSatForPreTraining(lowercase__ ) _lowerCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) _lowerCAmelCase : Dict = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ ) hf_wavavec.save_pretrained(lowercase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _snake_case = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( __lowerCamelCase): lowerCamelCase__ = ['pixel_values'] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BICUBIC, __a = True, __a = None, __a = True, __a = 1 / 255, __a = True, __a = None, __a = None, __a = True, **__a, ): '''simple docstring''' super().__init__(**UpperCamelCase_) _lowerCAmelCase : List[str] = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase : List[Any] = get_size_dict(UpperCamelCase_, default_to_square=UpperCamelCase_) _lowerCAmelCase : List[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase : Optional[int] = get_size_dict(UpperCamelCase_, default_to_square=UpperCamelCase_, param_name="crop_size") _lowerCAmelCase : int = do_resize _lowerCAmelCase : str = size _lowerCAmelCase : int = resample _lowerCAmelCase : str = do_center_crop _lowerCAmelCase : Optional[Any] = crop_size _lowerCAmelCase : List[Any] = do_rescale _lowerCAmelCase : Optional[Any] = rescale_factor _lowerCAmelCase : Union[str, Any] = do_normalize _lowerCAmelCase : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase : Any = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase : List[str] = do_convert_rgb def snake_case__ ( self, __a, __a, __a = PILImageResampling.BICUBIC, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : str = get_size_dict(UpperCamelCase_, default_to_square=UpperCamelCase_) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") _lowerCAmelCase : int = get_resize_output_image_size(UpperCamelCase_, size=size["shortest_edge"], default_to_square=UpperCamelCase_) return resize(UpperCamelCase_, size=UpperCamelCase_, resample=UpperCamelCase_, data_format=UpperCamelCase_, **UpperCamelCase_) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = get_size_dict(UpperCamelCase_) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}") return center_crop(UpperCamelCase_, size=(size["height"], size["width"]), data_format=UpperCamelCase_, **UpperCamelCase_) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(UpperCamelCase_, scale=UpperCamelCase_, data_format=UpperCamelCase_, **UpperCamelCase_) def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ): '''simple docstring''' return normalize(UpperCamelCase_, mean=UpperCamelCase_, std=UpperCamelCase_, data_format=UpperCamelCase_, **UpperCamelCase_) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Optional[Any] = size if size is not None else self.size _lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_, param_name="size", default_to_square=UpperCamelCase_) _lowerCAmelCase : List[str] = resample if resample is not None else self.resample _lowerCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : List[Any] = get_size_dict(UpperCamelCase_, param_name="crop_size", default_to_square=UpperCamelCase_) _lowerCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Dict = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase : str = make_list_of_images(UpperCamelCase_) if not valid_images(UpperCamelCase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase : str = [convert_to_rgb(UpperCamelCase_) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase : List[str] = [to_numpy_array(UpperCamelCase_) for image in images] if do_resize: _lowerCAmelCase : Optional[int] = [self.resize(image=UpperCamelCase_, size=UpperCamelCase_, resample=UpperCamelCase_) for image in images] if do_center_crop: _lowerCAmelCase : str = [self.center_crop(image=UpperCamelCase_, size=UpperCamelCase_) for image in images] if do_rescale: _lowerCAmelCase : List[Any] = [self.rescale(image=UpperCamelCase_, scale=UpperCamelCase_) for image in images] if do_normalize: _lowerCAmelCase : Any = [self.normalize(image=UpperCamelCase_, mean=UpperCamelCase_, std=UpperCamelCase_) for image in images] _lowerCAmelCase : str = [to_channel_dimension_format(UpperCamelCase_, UpperCamelCase_) for image in images] _lowerCAmelCase : Optional[int] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase_, tensor_type=UpperCamelCase_)
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
import os import pytest from attr import dataclass _snake_case = "us-east-1" # defaults region @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' lowerCamelCase__ = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } lowerCamelCase__ = {**hyperparameters, 'max_steps': 1000} @property def snake_case__ ( self): '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case__ ( self): '''simple docstring''' return f"{self.framework}-transfromers-test" @property def snake_case__ ( self): '''simple docstring''' return f"./tests/sagemaker/scripts/{self.framework}" @property def snake_case__ ( self): '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = SageMakerTestEnvironment(framework=request.cls.framework )
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): lowerCamelCase__ = CLIPTokenizer lowerCamelCase__ = CLIPTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {} lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' super().setUp() # fmt: off _lowerCAmelCase : int = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Dict = dict(zip(a_, range(len(a_)))) _lowerCAmelCase : Tuple = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] _lowerCAmelCase : Tuple = {"unk_token": "<unk>"} _lowerCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(a_) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(a_)) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "lower newer" _lowerCAmelCase : Optional[Any] = "lower newer" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : Any = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] _lowerCAmelCase : List[str] = tokenizer.tokenize(a_) self.assertListEqual(a_, a_) _lowerCAmelCase : Optional[Any] = tokens + [tokenizer.unk_token] _lowerCAmelCase : Optional[int] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_), a_) @require_ftfy def snake_case__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : int = self.tokenizer_class.from_pretrained(a_, **a_) _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(a_, **a_) _lowerCAmelCase : Tuple = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." _lowerCAmelCase : List[str] = tokenizer_s.tokenize(a_) _lowerCAmelCase : int = tokenizer_r.tokenize(a_) self.assertListEqual(a_, a_) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _lowerCAmelCase : int = "xa\u0303y" + " " + "x\xe3y" _lowerCAmelCase : Union[str, Any] = tokenizer_s.tokenize(a_) _lowerCAmelCase : Tuple = tokenizer_r.tokenize(a_) self.assertListEqual(a_, a_) # Test that the tokenization is identical on unicode of space type _lowerCAmelCase : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _lowerCAmelCase : Optional[int] = tokenizer_s.tokenize(a_) _lowerCAmelCase : Any = tokenizer_r.tokenize(a_) self.assertListEqual(a_, a_) # Test that the tokenization is identical on unicode of line break type _lowerCAmelCase : Dict = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _lowerCAmelCase : str = tokenizer_s.tokenize(a_) _lowerCAmelCase : Optional[Any] = tokenizer_r.tokenize(a_) self.assertListEqual(a_, a_) def snake_case__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _lowerCAmelCase : List[Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` _lowerCAmelCase : int = f"{text_of_1_token} {text_of_1_token}" _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) _lowerCAmelCase : List[Any] = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_) self.assertEqual(encoding.offset_mapping[0], (0, len(a_))) self.assertEqual( encoding.offset_mapping[1], (len(a_) + 1, len(a_) + 1 + len(a_)), ) _lowerCAmelCase : int = f" {text}" _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) _lowerCAmelCase : Optional[Any] = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_))) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_) + 1, 1 + len(a_) + 1 + len(a_)), ) def snake_case__ ( self): '''simple docstring''' with self.assertRaises(a_) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer") self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format.")) @require_ftfy def snake_case__ ( self): '''simple docstring''' super().test_tokenization_python_rust_equals() def snake_case__ ( self): '''simple docstring''' pass
359
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
0
from math import factorial, pi def A ( _lowerCamelCase , _lowerCamelCase = 30 ): '''simple docstring''' if not isinstance(lowerCAmelCase__ , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) _lowerCAmelCase : Optional[Any] = float(lowerCAmelCase__ ) _lowerCAmelCase : str = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowerCAmelCase__ ) ) def A ( _lowerCamelCase , _lowerCamelCase = 30 ): '''simple docstring''' if not isinstance(lowerCAmelCase__ , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) _lowerCAmelCase : Tuple = float(lowerCAmelCase__ ) _lowerCAmelCase : Tuple = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
360
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
0
from math import pow, sqrt def A ( *_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = len(a__ ) > 0 and all(value > 0.0 for value in values ) return result def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(a__ , a__ , a__ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCAmelCase_ ( __snake_case , __snake_case): lowerCamelCase__ = 'nat' lowerCamelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, __a=4, __a=3, __a=64, __a=[3, 4, 6, 5], __a=[2, 4, 8, 16], __a=7, __a=3.0, __a=True, __a=0.0, __a=0.0, __a=0.1, __a="gelu", __a=0.02, __a=1E-5, __a=0.0, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Optional[int] = embed_dim _lowerCAmelCase : List[str] = depths _lowerCAmelCase : Optional[Any] = len(__a) _lowerCAmelCase : Optional[int] = num_heads _lowerCAmelCase : int = kernel_size _lowerCAmelCase : Tuple = mlp_ratio _lowerCAmelCase : Optional[int] = qkv_bias _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = drop_path_rate _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : List[str] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Optional[Any] = int(embed_dim * 2 ** (len(__a) - 1)) _lowerCAmelCase : Tuple = layer_scale_init_value _lowerCAmelCase : Union[str, Any] = ["stem"] + [f"stage{idx}" for idx in range(1, len(__a) + 1)] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
import re import string import numpy as np import datasets _snake_case = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" _snake_case = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" _snake_case = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), }), reference_urls=[], ) def snake_case__ ( self, __a, __a, __a=None, __a=False, __a=False, __a=False, ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase : str = np.array([re.sub(_a, "", _a) for x in predictions]) _lowerCAmelCase : Dict = np.array([re.sub(_a, "", _a) for x in references]) else: _lowerCAmelCase : Tuple = np.asarray(_a) _lowerCAmelCase : int = np.asarray(_a) if ignore_case: _lowerCAmelCase : Tuple = np.char.lower(_a) _lowerCAmelCase : Tuple = np.char.lower(_a) if ignore_punctuation: _lowerCAmelCase : Optional[Any] = string.punctuation.maketrans("", "", string.punctuation) _lowerCAmelCase : List[Any] = np.char.translate(_a, table=_a) _lowerCAmelCase : Any = np.char.translate(_a, table=_a) if ignore_numbers: _lowerCAmelCase : Any = string.digits.maketrans("", "", string.digits) _lowerCAmelCase : Tuple = np.char.translate(_a, table=_a) _lowerCAmelCase : Tuple = np.char.translate(_a, table=_a) _lowerCAmelCase : str = predictions == references return {"exact_match": np.mean(_a) * 100}
363
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__): lowerCamelCase__ = ['image_processor', 'tokenizer'] lowerCamelCase__ = 'CLIPImageProcessor' lowerCamelCase__ = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self, __a=None, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", _SCREAMING_SNAKE_CASE, ) _lowerCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor") _lowerCAmelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) def __call__( self, __a=None, __a=None, __a=None, **__a): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: _lowerCAmelCase : List[Any] = self.tokenizer(_SCREAMING_SNAKE_CASE, return_tensors=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) if images is not None: _lowerCAmelCase : Any = self.image_processor(_SCREAMING_SNAKE_CASE, return_tensors=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) if text is not None and images is not None: _lowerCAmelCase : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE), tensor_type=_SCREAMING_SNAKE_CASE) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer.model_input_names _lowerCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
364
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCAmelCase_ ( snake_case__): lowerCamelCase__ = 42 class UpperCAmelCase_ ( snake_case__ , snake_case__): @register_to_config def __init__( self, __a = 6_5536, __a = None, __a = 2, __a = 2, __a = 0, __a = "fourier", __a = True, __a = False, __a = 0.0, __a = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), __a = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), __a = "UNetMidBlock1D", __a = None, __a = (32, 32, 64), __a = None, __a = 8, __a = 1, __a = False, ): '''simple docstring''' super().__init__() _lowerCAmelCase : str = sample_size # time if time_embedding_type == "fourier": _lowerCAmelCase : int = GaussianFourierProjection( embedding_size=8, set_W_to_weight=UpperCAmelCase_, log=UpperCAmelCase_, flip_sin_to_cos=UpperCAmelCase_) _lowerCAmelCase : str = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCAmelCase : str = Timesteps( block_out_channels[0], flip_sin_to_cos=UpperCAmelCase_, downscale_freq_shift=UpperCAmelCase_) _lowerCAmelCase : Dict = block_out_channels[0] if use_timestep_embedding: _lowerCAmelCase : Union[str, Any] = block_out_channels[0] * 4 _lowerCAmelCase : str = TimestepEmbedding( in_channels=UpperCAmelCase_, time_embed_dim=UpperCAmelCase_, act_fn=UpperCAmelCase_, out_dim=block_out_channels[0], ) _lowerCAmelCase : Tuple = nn.ModuleList([]) _lowerCAmelCase : int = None _lowerCAmelCase : Optional[Any] = nn.ModuleList([]) _lowerCAmelCase : Dict = None # down _lowerCAmelCase : str = in_channels for i, down_block_type in enumerate(UpperCAmelCase_): _lowerCAmelCase : Optional[Any] = output_channel _lowerCAmelCase : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCAmelCase : Tuple = i == len(UpperCAmelCase_) - 1 _lowerCAmelCase : List[str] = get_down_block( UpperCAmelCase_, num_layers=UpperCAmelCase_, in_channels=UpperCAmelCase_, out_channels=UpperCAmelCase_, temb_channels=block_out_channels[0], add_downsample=not is_final_block or downsample_each_block, ) self.down_blocks.append(UpperCAmelCase_) # mid _lowerCAmelCase : Optional[Any] = get_mid_block( UpperCAmelCase_, in_channels=block_out_channels[-1], mid_channels=block_out_channels[-1], out_channels=block_out_channels[-1], embed_dim=block_out_channels[0], num_layers=UpperCAmelCase_, add_downsample=UpperCAmelCase_, ) # up _lowerCAmelCase : Tuple = list(reversed(UpperCAmelCase_)) _lowerCAmelCase : Any = reversed_block_out_channels[0] if out_block_type is None: _lowerCAmelCase : Union[str, Any] = out_channels else: _lowerCAmelCase : Dict = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_): _lowerCAmelCase : int = output_channel _lowerCAmelCase : str = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_) - 1 else final_upsample_channels ) _lowerCAmelCase : Tuple = i == len(UpperCAmelCase_) - 1 _lowerCAmelCase : Dict = get_up_block( UpperCAmelCase_, num_layers=UpperCAmelCase_, in_channels=UpperCAmelCase_, out_channels=UpperCAmelCase_, temb_channels=block_out_channels[0], add_upsample=not is_final_block, ) self.up_blocks.append(UpperCAmelCase_) _lowerCAmelCase : Union[str, Any] = output_channel # out _lowerCAmelCase : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32) _lowerCAmelCase : List[Any] = get_out_block( out_block_type=UpperCAmelCase_, num_groups_out=UpperCAmelCase_, embed_dim=block_out_channels[0], out_channels=UpperCAmelCase_, act_fn=UpperCAmelCase_, fc_dim=block_out_channels[-1] // 4, ) def snake_case__ ( self, __a, __a, __a = True, ): '''simple docstring''' _lowerCAmelCase : Dict = timestep if not torch.is_tensor(UpperCAmelCase_): _lowerCAmelCase : List[str] = torch.tensor([timesteps], dtype=torch.long, device=sample.device) elif torch.is_tensor(UpperCAmelCase_) and len(timesteps.shape) == 0: _lowerCAmelCase : List[str] = timesteps[None].to(sample.device) _lowerCAmelCase : List[str] = self.time_proj(UpperCAmelCase_) if self.config.use_timestep_embedding: _lowerCAmelCase : Any = self.time_mlp(UpperCAmelCase_) else: _lowerCAmelCase : Any = timestep_embed[..., None] _lowerCAmelCase : int = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) _lowerCAmelCase : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down _lowerCAmelCase : int = () for downsample_block in self.down_blocks: _lowerCAmelCase : int = downsample_block(hidden_states=UpperCAmelCase_, temb=UpperCAmelCase_) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCAmelCase : List[str] = self.mid_block(UpperCAmelCase_, UpperCAmelCase_) # 4. up for i, upsample_block in enumerate(self.up_blocks): _lowerCAmelCase : Any = down_block_res_samples[-1:] _lowerCAmelCase : List[Any] = down_block_res_samples[:-1] _lowerCAmelCase : str = upsample_block(UpperCAmelCase_, res_hidden_states_tuple=UpperCAmelCase_, temb=UpperCAmelCase_) # 5. post-process if self.out_block: _lowerCAmelCase : Tuple = self.out_block(UpperCAmelCase_, UpperCAmelCase_) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase_)
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
0
import copy import re class UpperCAmelCase_ : lowerCamelCase__ = """hp""" lowerCamelCase__ = {} lowerCamelCase__ = None @classmethod def snake_case__ ( cls, __a, __a): '''simple docstring''' _lowerCAmelCase : str = prefix _lowerCAmelCase : Optional[int] = defaults cls.build_naming_info() @staticmethod def snake_case__ ( __a, __a): '''simple docstring''' if len(lowerCAmelCase__) == 0: return "" _lowerCAmelCase : str = None if any(char.isdigit() for char in word): raise Exception(f"Parameters should not contain numbers: \'{word}\' contains a number") if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): _lowerCAmelCase : Dict = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _lowerCAmelCase : Union[str, Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__a): _lowerCAmelCase : List[str] = "" while integer != 0: _lowerCAmelCase : Any = chr(ord("A") + integer % 10) + s integer //= 10 return s _lowerCAmelCase : Dict = 0 while True: _lowerCAmelCase : int = word + "#" + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: _lowerCAmelCase : Dict = sword break _lowerCAmelCase : int = short_word _lowerCAmelCase : int = word return short_word @staticmethod def snake_case__ ( __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = param_name.split("_") _lowerCAmelCase : List[str] = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _lowerCAmelCase : Dict = ["", "_"] for separator in separators: _lowerCAmelCase : str = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: _lowerCAmelCase : Optional[Any] = shortname _lowerCAmelCase : List[str] = param_name return shortname return param_name @staticmethod def snake_case__ ( __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : int = short_name _lowerCAmelCase : List[Any] = param_name @classmethod def snake_case__ ( cls): '''simple docstring''' if cls.NAMING_INFO is not None: return _lowerCAmelCase : Tuple = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } _lowerCAmelCase : Optional[int] = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : List[str] = info @classmethod def snake_case__ ( cls, __a): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None _lowerCAmelCase : str = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"You should provide a default value for the param name {k} with value {v}") if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _lowerCAmelCase : List[Any] = cls.NAMING_INFO["short_param"][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): _lowerCAmelCase : List[str] = 1 if v else 0 _lowerCAmelCase : int = "" if isinstance(lowerCAmelCase__, (int, float)) else "-" _lowerCAmelCase : Dict = f"{key}{sep}{v}" name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def snake_case__ ( cls, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = repr[len(cls.PREFIX) + 1 :] if repr == "": _lowerCAmelCase : Optional[int] = [] else: _lowerCAmelCase : List[str] = repr.split("_") _lowerCAmelCase : str = {} for value in values: if "-" in value: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = value.split("-") else: _lowerCAmelCase : Tuple = re.sub("[0-9.]", "", lowerCAmelCase__) _lowerCAmelCase : Union[str, Any] = float(re.sub("[^0-9.]", "", lowerCAmelCase__)) _lowerCAmelCase : Any = cls.NAMING_INFO["reverse_short_param"][p_k] _lowerCAmelCase : Optional[Any] = p_v for k in cls.DEFAULTS: if k not in parameters: _lowerCAmelCase : List[Any] = cls.DEFAULTS[k] return parameters
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _lowerCAmelCase : List[str] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase, variant=__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _lowerCAmelCase : List[str] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase, variant=__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] _lowerCAmelCase : Union[str, Any] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase, variant=__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _lowerCAmelCase : Optional[int] = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase, variant=__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] _lowerCAmelCase : List[str] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase, variant=__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] _lowerCAmelCase : Tuple = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase, variant=__lowerCamelCase)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _lowerCAmelCase : str = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase, variant=__lowerCamelCase))
367
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( A_): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead.", _lowerCamelCase, ) super().__init__(*_lowerCamelCase, **_lowerCamelCase)
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
369
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( _a): lowerCamelCase__ = ['image_processor', 'tokenizer'] lowerCamelCase__ = 'CLIPImageProcessor' lowerCamelCase__ = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self, __a=None, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", _a, ) _lowerCAmelCase : Tuple = kwargs.pop("feature_extractor") _lowerCAmelCase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(_a, _a) def __call__( self, __a=None, __a=None, __a=None, **__a): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: _lowerCAmelCase : int = self.tokenizer(_a, return_tensors=_a, **_a) if images is not None: _lowerCAmelCase : Optional[Any] = self.image_processor(_a, return_tensors=_a, **_a) if text is not None and images is not None: _lowerCAmelCase : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a), tensor_type=_a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*_a, **_a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*_a, **_a) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer.model_input_names _lowerCAmelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
class UpperCAmelCase_ : def __init__( self, __a = "", __a = False): '''simple docstring''' _lowerCAmelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word _lowerCAmelCase : List[Any] = is_leaf _lowerCAmelCase : Tuple = prefix def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = 0 for q, w in zip(self.prefix, snake_case_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def snake_case__ ( self, __a): '''simple docstring''' for word in words: self.insert(snake_case_) def snake_case__ ( self, __a): '''simple docstring''' if self.prefix == word: _lowerCAmelCase : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _lowerCAmelCase : Any = RadixNode(prefix=snake_case_, is_leaf=snake_case_) else: _lowerCAmelCase : int = self.nodes[word[0]] _lowerCAmelCase : int = incoming_node.match( snake_case_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _lowerCAmelCase : Optional[int] = remaining_prefix _lowerCAmelCase : Dict = self.nodes[matching_string[0]] _lowerCAmelCase : int = RadixNode(snake_case_, snake_case_) _lowerCAmelCase : Optional[Any] = aux_node if remaining_word == "": _lowerCAmelCase : Optional[Any] = True else: self.nodes[matching_string[0]].insert(snake_case_) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.nodes.get(word[0], snake_case_) if not incoming_node: return False else: _lowerCAmelCase : str = incoming_node.match( snake_case_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case_) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.nodes.get(word[0], snake_case_) if not incoming_node: return False else: _lowerCAmelCase : Optional[Any] = incoming_node.match( snake_case_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: _lowerCAmelCase : Dict = list(self.nodes.values())[0] _lowerCAmelCase : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix _lowerCAmelCase : Optional[Any] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: _lowerCAmelCase : Tuple = False # If there is 1 edge, we merge it with its child else: _lowerCAmelCase : Optional[Any] = list(incoming_node.nodes.values())[0] _lowerCAmelCase : Any = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _lowerCAmelCase : Any = merging_node.nodes return True def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prefix != "": print("-" * height, self.prefix, " (leaf)" if self.is_leaf else "") for value in self.nodes.values(): value.print_tree(height + 1) def A ( ): '''simple docstring''' _lowerCAmelCase : str = """banana bananas bandana band apple all beast""".split() _lowerCAmelCase : Union[str, Any] = RadixNode() root.insert_many(_lowerCAmelCase ) assert all(root.find(_lowerCAmelCase ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def A ( ): '''simple docstring''' assert test_trie() def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = RadixNode() _lowerCAmelCase : str = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(_lowerCAmelCase ) print("Words:" , _lowerCAmelCase ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = k_size // 2 _lowerCAmelCase : int = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _lowerCAmelCase : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(__lowerCAmelCase ) + square(__lowerCAmelCase )) / (2 * square(__lowerCAmelCase )) ) return g def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = image.shape[0], image.shape[1] # dst image height and width _lowerCAmelCase : str = height - k_size + 1 _lowerCAmelCase : int = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _lowerCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) ) _lowerCAmelCase : str = 0 for i, j in product(range(__lowerCAmelCase ) , range(__lowerCAmelCase ) ): _lowerCAmelCase : Tuple = ravel(image[i : i + k_size, j : j + k_size] ) _lowerCAmelCase : Optional[Any] = window row += 1 # turn the kernel into shape(k*k, 1) _lowerCAmelCase : Tuple = gen_gaussian_kernel(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase : Tuple = ravel(__lowerCAmelCase ) # reshape and get the dst image _lowerCAmelCase : Tuple = dot(__lowerCAmelCase , __lowerCAmelCase ).reshape(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) return dst if __name__ == "__main__": # read original image _snake_case = imread(R"../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _snake_case = gaussian_filter(gray, 3, sigma=1) _snake_case = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 # setable values lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = None @classmethod def snake_case__ ( cls, __a, __a, __a): '''simple docstring''' return cls(common=__a, init_noise_sigma=__a, timesteps=__a) @dataclass class UpperCAmelCase_ ( __UpperCamelCase): lowerCamelCase__ = 42 class UpperCAmelCase_ ( __UpperCamelCase , __UpperCamelCase): lowerCamelCase__ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase__ = 42 @property def snake_case__ ( self): '''simple docstring''' return True @register_to_config def __init__( self, __a = 1000, __a = 0.0_001, __a = 0.02, __a = "linear", __a = None, __a = "fixed_small", __a = True, __a = "epsilon", __a = jnp.floataa, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dtype def snake_case__ ( self, __a = None): '''simple docstring''' if common is None: _lowerCAmelCase : Tuple = CommonSchedulerState.create(self) # standard deviation of the initial noise distribution _lowerCAmelCase : List[Any] = jnp.array(1.0, dtype=self.dtype) _lowerCAmelCase : str = jnp.arange(0, self.config.num_train_timesteps).round()[::-1] return DDPMSchedulerState.create( common=__a, init_noise_sigma=__a, timesteps=__a, ) def snake_case__ ( self, __a, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a, __a = ()): '''simple docstring''' _lowerCAmelCase : List[str] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _lowerCAmelCase : int = (jnp.arange(0, __a) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__a, timesteps=__a, ) def snake_case__ ( self, __a, __a, __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : List[str] = state.common.alphas_cumprod[t] _lowerCAmelCase : int = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype)) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCAmelCase : Dict = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _lowerCAmelCase : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _lowerCAmelCase : Optional[int] = jnp.clip(__a, a_min=1E-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _lowerCAmelCase : List[str] = jnp.log(jnp.clip(__a, a_min=1E-20)) elif variance_type == "fixed_large": _lowerCAmelCase : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _lowerCAmelCase : Tuple = jnp.log(state.common.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _lowerCAmelCase : str = variance _lowerCAmelCase : Dict = state.common.betas[t] _lowerCAmelCase : int = (predicted_variance + 1) / 2 _lowerCAmelCase : str = frac * max_log + (1 - frac) * min_log return variance def snake_case__ ( self, __a, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' _lowerCAmelCase : List[Any] = timestep if key is None: _lowerCAmelCase : List[str] = jax.random.PRNGKey(0) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _lowerCAmelCase : List[Any] = jnp.split(__a, sample.shape[1], axis=1) else: _lowerCAmelCase : str = None # 1. compute alphas, betas _lowerCAmelCase : Tuple = state.common.alphas_cumprod[t] _lowerCAmelCase : Optional[int] = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype)) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCAmelCase : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler.") # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCAmelCase : List[str] = jnp.clip(__a, -1, 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase : Dict = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _lowerCAmelCase : Optional[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _lowerCAmelCase : int = jax.random.split(__a, num=1) _lowerCAmelCase : Tuple = jax.random.normal(__a, shape=model_output.shape, dtype=self.dtype) return (self._get_variance(__a, __a, predicted_variance=__a) ** 0.5) * noise _lowerCAmelCase : int = jnp.where(t > 0, random_variance(), jnp.zeros(model_output.shape, dtype=self.dtype)) _lowerCAmelCase : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__a, state=__a) def snake_case__ ( self, __a, __a, __a, __a, ): '''simple docstring''' return add_noise_common(state.common, __a, __a, __a) def snake_case__ ( self, __a, __a, __a, __a, ): '''simple docstring''' return get_velocity_common(state.common, __a, __a, __a) def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCAmelCase_ ( lowerCAmelCase_): lowerCamelCase__ = """encodec""" def __init__( self, __a=[1.5, 3.0, 6.0, 12.0, 24.0], __a=2_4000, __a=1, __a=False, __a=None, __a=None, __a=128, __a=32, __a=1, __a=[8, 5, 4, 2], __a="weight_norm", __a=7, __a=7, __a=3, __a=2, __a=True, __a="reflect", __a=2, __a=2, __a=1.0, __a=1024, __a=None, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = target_bandwidths _lowerCAmelCase : Any = sampling_rate _lowerCAmelCase : Any = audio_channels _lowerCAmelCase : Union[str, Any] = normalize _lowerCAmelCase : Optional[Any] = chunk_length_s _lowerCAmelCase : List[Any] = overlap _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Optional[int] = num_filters _lowerCAmelCase : List[str] = num_residual_layers _lowerCAmelCase : Optional[int] = upsampling_ratios _lowerCAmelCase : List[str] = norm_type _lowerCAmelCase : Union[str, Any] = kernel_size _lowerCAmelCase : Any = last_kernel_size _lowerCAmelCase : int = residual_kernel_size _lowerCAmelCase : int = dilation_growth_rate _lowerCAmelCase : Dict = use_causal_conv _lowerCAmelCase : List[Any] = pad_mode _lowerCAmelCase : List[str] = compress _lowerCAmelCase : Union[str, Any] = num_lstm_layers _lowerCAmelCase : str = trim_right_ratio _lowerCAmelCase : int = codebook_size _lowerCAmelCase : Optional[int] = codebook_dim if codebook_dim is not None else hidden_size _lowerCAmelCase : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}") super().__init__(**__SCREAMING_SNAKE_CASE) @property def snake_case__ ( self): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def snake_case__ ( self): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1, int((1.0 - self.overlap) * self.chunk_length)) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def snake_case__ ( self): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10))
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
_snake_case = "Alexander Joslin" import operator as op from .stack import Stack def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} _lowerCAmelCase : str = Stack() _lowerCAmelCase : Union[str, Any] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase__ ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase__ ) elif i == ")": # RULE 4 _lowerCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() _lowerCAmelCase : int = operand_stack.peek() operand_stack.pop() _lowerCAmelCase : str = operand_stack.peek() operand_stack.pop() _lowerCAmelCase : Dict = operators[opr](lowerCamelCase__ , lowerCamelCase__ ) operand_stack.push(lowerCamelCase__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _snake_case = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'blip_2_vision_model' def __init__( self, __a=1408, __a=6144, __a=39, __a=16, __a=224, __a=14, __a="gelu", __a=0.00_001, __a=0.0, __a=1E-10, __a=True, **__a, ): '''simple docstring''' super().__init__(**_lowerCAmelCase) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : List[str] = attention_dropout _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : List[Any] = qkv_bias @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' cls._set_token_in_kwargs(_lowerCAmelCase) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = cls.get_config_dict(_lowerCAmelCase, **_lowerCAmelCase) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": _lowerCAmelCase : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(_lowerCAmelCase, **_lowerCAmelCase) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'blip_2_qformer' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=0.02, __a=1E-12, __a=0, __a="absolute", __a=2, __a=1408, **__a, ): '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase, **_lowerCAmelCase) _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : int = position_embedding_type _lowerCAmelCase : int = cross_attention_frequency _lowerCAmelCase : List[str] = encoder_hidden_size @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' cls._set_token_in_kwargs(_lowerCAmelCase) _lowerCAmelCase , _lowerCAmelCase : int = cls.get_config_dict(_lowerCAmelCase, **_lowerCAmelCase) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": _lowerCAmelCase : Optional[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(_lowerCAmelCase, **_lowerCAmelCase) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'blip-2' lowerCamelCase__ = True def __init__( self, __a=None, __a=None, __a=None, __a=32, **__a): '''simple docstring''' super().__init__(**_lowerCAmelCase) if vision_config is None: _lowerCAmelCase : Dict = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.") if qformer_config is None: _lowerCAmelCase : List[Any] = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.") if text_config is None: _lowerCAmelCase : List[str] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") _lowerCAmelCase : Optional[Any] = BlipaVisionConfig(**_lowerCAmelCase) _lowerCAmelCase : Optional[int] = BlipaQFormerConfig(**_lowerCAmelCase) _lowerCAmelCase : List[Any] = text_config["model_type"] if "model_type" in text_config else "opt" _lowerCAmelCase : Any = CONFIG_MAPPING[text_model_type](**_lowerCAmelCase) _lowerCAmelCase : List[Any] = self.text_config.tie_word_embeddings _lowerCAmelCase : Optional[int] = self.text_config.is_encoder_decoder _lowerCAmelCase : Optional[Any] = num_query_tokens _lowerCAmelCase : Any = self.vision_config.hidden_size _lowerCAmelCase : Optional[int] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase : int = 1.0 _lowerCAmelCase : List[str] = 0.02 @classmethod def snake_case__ ( cls, __a, __a, __a, **__a, ): '''simple docstring''' return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **_lowerCAmelCase, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = copy.deepcopy(self.__dict__) _lowerCAmelCase : Any = self.vision_config.to_dict() _lowerCAmelCase : Union[str, Any] = self.qformer_config.to_dict() _lowerCAmelCase : Any = self.text_config.to_dict() _lowerCAmelCase : List[Any] = self.__class__.model_type return output
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if isinstance(_A , _A ): _lowerCAmelCase : Union[str, Any] = np.full((len(_A ), sequence_length, 2) , _A ) else: _lowerCAmelCase : Tuple = np.full((len(_A ), sequence_length) , _A ) for i, tensor in enumerate(_A ): if padding_side == "right": if isinstance(_A , _A ): _lowerCAmelCase : Optional[Any] = tensor[:sequence_length] else: _lowerCAmelCase : List[str] = tensor[:sequence_length] else: if isinstance(_A , _A ): _lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: _lowerCAmelCase : Dict = tensor[:sequence_length] return out_tensor.tolist() def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ord(_A ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True _lowerCAmelCase : Dict = unicodedata.category(_A ) if cat.startswith("P" ): return True return False @dataclass class UpperCAmelCase_ ( lowerCAmelCase__): lowerCamelCase__ = 42 lowerCamelCase__ = True lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = -100 lowerCamelCase__ = "pt" def snake_case__ ( self, __a): '''simple docstring''' import torch _lowerCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _lowerCAmelCase : Tuple = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _lowerCAmelCase : Any = self.tokenizer.pad( _SCREAMING_SNAKE_CASE, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt" if labels is None else None, ) if labels is None: return batch _lowerCAmelCase : Tuple = torch.tensor(batch["entity_ids"]).shape[1] _lowerCAmelCase : List[str] = self.tokenizer.padding_side if padding_side == "right": _lowerCAmelCase : Tuple = [ list(_SCREAMING_SNAKE_CASE) + [self.label_pad_token_id] * (sequence_length - len(_SCREAMING_SNAKE_CASE)) for label in labels ] else: _lowerCAmelCase : Optional[Any] = [ [self.label_pad_token_id] * (sequence_length - len(_SCREAMING_SNAKE_CASE)) + list(_SCREAMING_SNAKE_CASE) for label in labels ] _lowerCAmelCase : Optional[int] = [feature["ner_tags"] for feature in features] _lowerCAmelCase : Optional[Any] = padding_tensor(_SCREAMING_SNAKE_CASE, -1, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Any = [feature["original_entity_spans"] for feature in features] _lowerCAmelCase : Union[str, Any] = padding_tensor(_SCREAMING_SNAKE_CASE, (-1, -1), _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[Any] = {k: torch.tensor(_SCREAMING_SNAKE_CASE, dtype=torch.intaa) for k, v in batch.items()} return batch
355
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=2, __a=56, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=2, __a=2, __a=7, __a="gelu_new", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=4, __a="block_sparse", __a=True, __a=False, __a=2, __a=3, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[str] = seq_length _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : Dict = use_attention_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : List[Any] = type_vocab_size _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : int = num_choices _lowerCAmelCase : str = rescale_embeddings _lowerCAmelCase : List[Any] = attention_type _lowerCAmelCase : Optional[Any] = use_bias _lowerCAmelCase : List[str] = block_size _lowerCAmelCase : int = num_random_blocks def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_attention_mask: _lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : int = None if self.use_token_type_ids: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Tuple = BigBirdConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__a, initializer_range=self.initializer_range, attention_type=self.attention_type, block_size=self.block_size, num_random_blocks=self.num_random_blocks, use_bias=self.use_bias, rescale_embeddings=self.rescale_embeddings, ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase : int = config_and_inputs _lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class UpperCAmelCase_ ( snake_case_ , unittest.TestCase): lowerCamelCase__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = FlaxBigBirdModelTester(self) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self): '''simple docstring''' super().test_hidden_states_output() @slow def snake_case__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class_name.from_pretrained("google/bigbird-roberta-base") self.assertIsNotNone(__a) def snake_case__ ( self): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowerCAmelCase : Optional[Any] = self._prepare_for_class(__a, __a) _lowerCAmelCase : Optional[Any] = model_class(__a) @jax.jit def model_jitted(__a, __a=None, **__a): return model(input_ids=__a, attention_mask=__a, **__a) with self.subTest("JIT Enabled"): _lowerCAmelCase : List[str] = model_jitted(**__a).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _lowerCAmelCase : List[str] = model_jitted(**__a).to_tuple() self.assertEqual(len(__a), len(__a)) for jitted_output, output in zip(__a, __a): self.assertEqual(jitted_output.shape, output.shape) def snake_case__ ( self, __a, __a, __a, __a=1E-5, __a="outputs", __a=None): '''simple docstring''' if name.startswith("outputs.attentions"): return else: super().check_pt_flax_outputs(__a, __a, __a, __a, __a, __a)
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _snake_case = True except ImportError: _snake_case = False try: from torch.hub import _get_torch_home _snake_case = _get_torch_home() except ImportError: _snake_case = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) _snake_case = os.path.join(torch_cache_home, "transformers") _snake_case = "https://cdn.huggingface.co" _snake_case = "https://s3.amazonaws.com/models.huggingface.co/bert" _snake_case = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) _snake_case = os.path.join(PATH, "config.yaml") _snake_case = os.path.join(PATH, "attributes.txt") _snake_case = os.path.join(PATH, "objects.txt") _snake_case = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) _snake_case = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) _snake_case = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) _snake_case = "pytorch_model.bin" _snake_case = "config.yaml" def A ( _lowerCamelCase=OBJECTS , _lowerCamelCase=ATTRIBUTES ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _lowerCAmelCase : List[Any] = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = OrderedDict() with open(_lowerCamelCase , "rb" ) as f: _lowerCAmelCase : Tuple = pkl.load(_lowerCamelCase )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): _lowerCAmelCase : Optional[int] = ckp.pop(_lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): _lowerCAmelCase : Optional[int] = torch.tensor(_lowerCamelCase ) else: assert isinstance(_lowerCamelCase , torch.tensor ), type(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = v return r class UpperCAmelCase_ : lowerCamelCase__ = {} def __init__( self, __a, __a = "root", __a=0): '''simple docstring''' _lowerCAmelCase : Tuple = name _lowerCAmelCase : Union[str, Any] = level _lowerCAmelCase : Dict = {} for k, v in dictionary.items(): if v is None: raise ValueError() _lowerCAmelCase : Optional[int] = copy.deepcopy(lowerCamelCase__) _lowerCAmelCase : Optional[Any] = copy.deepcopy(lowerCamelCase__) if isinstance(lowerCamelCase__, lowerCamelCase__): _lowerCAmelCase : Union[str, Any] = Config(lowerCamelCase__, name=lowerCamelCase__, level=level + 1) _lowerCAmelCase : int = v setattr(self, lowerCamelCase__, lowerCamelCase__) _lowerCAmelCase : Tuple = d def __repr__( self): '''simple docstring''' return str(list((self._pointer.keys()))) def __setattr__( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = val _lowerCAmelCase : Dict = val _lowerCAmelCase : Dict = key.split(".") _lowerCAmelCase : int = len(lowerCamelCase__) - 1 _lowerCAmelCase : Dict = self._pointer if len(lowerCamelCase__) > 1: for i, l in enumerate(lowerCamelCase__): if hasattr(self, lowerCamelCase__) and isinstance(getattr(self, lowerCamelCase__), lowerCamelCase__): setattr(getattr(self, lowerCamelCase__), ".".join(levels[i:]), lowerCamelCase__) if l == last_level: _lowerCAmelCase : Dict = val else: _lowerCAmelCase : List[str] = pointer[l] def snake_case__ ( self): '''simple docstring''' return self._pointer def snake_case__ ( self, __a, __a): '''simple docstring''' with open(f"{file_name}", "w") as stream: dump(lowerCamelCase__, lowerCamelCase__) def snake_case__ ( self, __a, __a): '''simple docstring''' with open(f"{file_name}", "w") as stream: json.dump(lowerCamelCase__, lowerCamelCase__) @staticmethod def snake_case__ ( __a): '''simple docstring''' with open(lowerCamelCase__) as stream: _lowerCAmelCase : int = load(lowerCamelCase__, Loader=lowerCamelCase__) return data def __str__( self): '''simple docstring''' _lowerCAmelCase : str = ''' ''' if self._name != "root": _lowerCAmelCase : Dict = f"{t * (self._level-1)}{self._name}:\n" else: _lowerCAmelCase : Dict = '''''' _lowerCAmelCase : int = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(lowerCamelCase__, lowerCamelCase__): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(lowerCamelCase__).__name__})\n" _lowerCAmelCase : Optional[Any] = level return r[:-1] @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = cls.get_config_dict(lowerCamelCase__, **lowerCamelCase__) return cls(lowerCamelCase__) @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = kwargs.pop("cache_dir", lowerCamelCase__) _lowerCAmelCase : List[str] = kwargs.pop("force_download", lowerCamelCase__) _lowerCAmelCase : Optional[Any] = kwargs.pop("resume_download", lowerCamelCase__) _lowerCAmelCase : int = kwargs.pop("proxies", lowerCamelCase__) _lowerCAmelCase : Tuple = kwargs.pop("local_files_only", lowerCamelCase__) if os.path.isdir(lowerCamelCase__): _lowerCAmelCase : List[str] = os.path.join(lowerCamelCase__, lowerCamelCase__) elif os.path.isfile(lowerCamelCase__) or is_remote_url(lowerCamelCase__): _lowerCAmelCase : Dict = pretrained_model_name_or_path else: _lowerCAmelCase : Optional[int] = hf_bucket_url(lowerCamelCase__, filename=lowerCamelCase__, use_cdn=lowerCamelCase__) try: # Load from URL or cache if already cached _lowerCAmelCase : List[str] = cached_path( lowerCamelCase__, cache_dir=lowerCamelCase__, force_download=lowerCamelCase__, proxies=lowerCamelCase__, resume_download=lowerCamelCase__, local_files_only=lowerCamelCase__, ) # Load config dict if resolved_config_file is None: raise EnvironmentError _lowerCAmelCase : Dict = Config.load_yaml(lowerCamelCase__) except EnvironmentError: _lowerCAmelCase : Optional[Any] = '''Can\'t load config for''' raise EnvironmentError(lowerCamelCase__) if resolved_config_file == config_file: print("loading configuration file from path") else: print("loading configuration file cache") return Config.load_yaml(lowerCamelCase__), kwargs def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.load("dump.pt" , map_location=in_tensor.device ) _lowerCAmelCase : List[Any] = in_tensor.numpy() _lowerCAmelCase : List[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(_lowerCamelCase , _lowerCamelCase , rtol=0.01 , atol=0.1 ), ( F"{sum([1 for x in np.isclose(_lowerCamelCase , _lowerCamelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = urlparse(_lowerCamelCase ) return parsed.scheme in ("http", "https") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _lowerCAmelCase : int = '''/''' not in model_id if legacy_format: return F"{endpoint}/{model_id}-{filename}" else: return F"{endpoint}/{model_id}/{filename}" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=0 , _lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowerCamelCase , _lowerCamelCase ): ua += "; " + "; ".join("{}/{}".format(_lowerCamelCase , _lowerCamelCase ) for k, v in user_agent.items() ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): ua += "; " + user_agent _lowerCAmelCase : List[str] = {'''user-agent''': ua} if resume_size > 0: _lowerCAmelCase : Any = '''bytes=%d-''' % (resume_size,) _lowerCAmelCase : List[str] = requests.get(_lowerCamelCase , stream=_lowerCamelCase , proxies=_lowerCamelCase , headers=_lowerCamelCase ) if response.status_code == 416: # Range not satisfiable return _lowerCAmelCase : Tuple = response.headers.get("Content-Length" ) _lowerCAmelCase : Any = resume_size + int(_lowerCamelCase ) if content_length is not None else None _lowerCAmelCase : int = tqdm( unit="B" , unit_scale=_lowerCamelCase , total=_lowerCamelCase , initial=_lowerCamelCase , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowerCamelCase ) ) temp_file.write(_lowerCamelCase ) progress.close() def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=10 , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=False , ): '''simple docstring''' if cache_dir is None: _lowerCAmelCase : List[Any] = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : int = str(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowerCAmelCase : Tuple = None if not local_files_only: try: _lowerCAmelCase : List[str] = requests.head(_lowerCamelCase , allow_redirects=_lowerCamelCase , proxies=_lowerCamelCase , timeout=_lowerCamelCase ) if response.status_code == 200: _lowerCAmelCase : Tuple = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _lowerCAmelCase : int = url_to_filename(_lowerCamelCase , _lowerCamelCase ) # get cache path to put the file _lowerCAmelCase : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowerCamelCase ): return cache_path else: _lowerCAmelCase : List[Any] = [ file for file in fnmatch.filter(os.listdir(_lowerCamelCase ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(_lowerCamelCase ) > 0: return os.path.join(_lowerCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set \'local_files_only\'" " to False." ) return None # From now on, etag is not None. if os.path.exists(_lowerCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _lowerCAmelCase : int = cache_path + '''.lock''' with FileLock(_lowerCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(_lowerCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _lowerCAmelCase : Any = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(_lowerCamelCase , "a+b" ) as f: yield f _lowerCAmelCase : List[str] = _resumable_file_manager if os.path.exists(_lowerCamelCase ): _lowerCAmelCase : Dict = os.stat(_lowerCamelCase ).st_size else: _lowerCAmelCase : Dict = 0 else: _lowerCAmelCase : Tuple = partial(tempfile.NamedTemporaryFile , dir=_lowerCamelCase , delete=_lowerCamelCase ) _lowerCAmelCase : int = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , _lowerCamelCase , temp_file.name , ) http_get( _lowerCamelCase , _lowerCamelCase , proxies=_lowerCamelCase , resume_size=_lowerCamelCase , user_agent=_lowerCamelCase , ) os.replace(temp_file.name , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = {'''url''': url, '''etag''': etag} _lowerCAmelCase : Dict = cache_path + '''.json''' with open(_lowerCamelCase , "w" ) as meta_file: json.dump(_lowerCamelCase , _lowerCamelCase ) return cache_path def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = url.encode("utf-8" ) _lowerCAmelCase : Tuple = shaaaa(_lowerCamelCase ) _lowerCAmelCase : Dict = url_hash.hexdigest() if etag: _lowerCAmelCase : Optional[Any] = etag.encode("utf-8" ) _lowerCAmelCase : str = shaaaa(_lowerCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , ): '''simple docstring''' if cache_dir is None: _lowerCAmelCase : Tuple = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Tuple = str(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : int = str(_lowerCamelCase ) if is_remote_url(_lowerCamelCase ): # URL, so get it from the cache (downloading if necessary) _lowerCAmelCase : Optional[int] = get_from_cache( _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , user_agent=_lowerCamelCase , local_files_only=_lowerCamelCase , ) elif os.path.exists(_lowerCamelCase ): # File, and it exists. _lowerCAmelCase : Optional[Any] = url_or_filename elif urlparse(_lowerCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(_lowerCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(_lowerCamelCase ) ) if extract_compressed_file: if not is_zipfile(_lowerCamelCase ) and not tarfile.is_tarfile(_lowerCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _lowerCAmelCase : Union[str, Any] = os.path.split(_lowerCamelCase ) _lowerCAmelCase : List[str] = output_file.replace("." , "-" ) + '''-extracted''' _lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ) and os.listdir(_lowerCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions _lowerCAmelCase : Union[str, Any] = output_path + '''.lock''' with FileLock(_lowerCamelCase ): shutil.rmtree(_lowerCamelCase , ignore_errors=_lowerCamelCase ) os.makedirs(_lowerCamelCase ) if is_zipfile(_lowerCamelCase ): with ZipFile(_lowerCamelCase , "r" ) as zip_file: zip_file.extractall(_lowerCamelCase ) zip_file.close() elif tarfile.is_tarfile(_lowerCamelCase ): _lowerCAmelCase : Dict = tarfile.open(_lowerCamelCase ) tar_file.extractall(_lowerCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(_lowerCamelCase ) ) return output_path_extracted return output_path def A ( _lowerCamelCase , _lowerCamelCase="," ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): with open(_lowerCamelCase ) as f: _lowerCAmelCase : str = eval(f.read() ) else: _lowerCAmelCase : List[str] = requests.get(_lowerCamelCase ) try: _lowerCAmelCase : str = requests.json() except Exception: _lowerCAmelCase : int = req.content.decode() assert data is not None, "could not connect" try: _lowerCAmelCase : Dict = eval(_lowerCamelCase ) except Exception: _lowerCAmelCase : Any = data.split("\n" ) req.close() return data def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = requests.get(_lowerCamelCase ) _lowerCAmelCase : Tuple = np.array(Image.open(BytesIO(response.content ) ) ) return img def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowerCamelCase ) with open(_lowerCamelCase , "rb" ) as stream: _lowerCAmelCase : str = pkl.load(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = weights.pop("model" ) _lowerCAmelCase : Tuple = {} for k, v in model.items(): _lowerCAmelCase : Tuple = torch.from_numpy(_lowerCamelCase ) if "running_var" in k: _lowerCAmelCase : Optional[int] = torch.tensor([0] ) _lowerCAmelCase : Optional[int] = k.replace("running_var" , "num_batches_tracked" ) _lowerCAmelCase : Union[str, Any] = zero return new def A ( ): '''simple docstring''' print(F"{os.path.abspath(os.path.join(_lowerCamelCase , os.pardir ) )}/demo.ipynb" ) def A ( _lowerCamelCase , _lowerCamelCase="RGB" ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): _lowerCAmelCase : str = cva.imread(_lowerCamelCase ) else: _lowerCAmelCase : Dict = get_image_from_url(_lowerCamelCase ) assert img is not None, F"could not connect to: {im}" _lowerCAmelCase : Optional[int] = cva.cvtColor(_lowerCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": _lowerCAmelCase : Union[str, Any] = img[:, :, ::-1] return img def A ( _lowerCamelCase , _lowerCamelCase=1 ): '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ))
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger() @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = field(default_factory=lowerCamelCase__) lowerCamelCase__ = field(default_factory=lowerCamelCase__) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = len(list(m.modules())) == 1 or isinstance(lowercase__, nn.Convad) or isinstance(lowercase__, nn.BatchNormad) if has_not_submodules: self.traced.append(lowercase__) def __call__( self, __a): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(lowercase__) [x.remove() for x in self.handles] return self @property def snake_case__ ( self): '''simple docstring''' return list(filter(lambda __a: len(list(x.state_dict().keys())) > 0, self.traced)) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 1 lowerCamelCase__ = field(default_factory=lowerCamelCase__) lowerCamelCase__ = field(default_factory=lowerCamelCase__) lowerCamelCase__ = True def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Tracker(self.dest)(lowercase__).parametrized _lowerCAmelCase : Union[str, Any] = Tracker(self.src)(lowercase__).parametrized _lowerCAmelCase : Any = list(filter(lambda __a: type(lowercase__) not in self.src_skip, lowercase__)) _lowerCAmelCase : List[Any] = list(filter(lambda __a: type(lowercase__) not in self.dest_skip, lowercase__)) if len(lowercase__) != len(lowercase__) and self.raise_if_mismatch: raise Exception( f"Numbers of operations are different. Source module has {len(lowercase__)} operations while" f" destination module has {len(lowercase__)}.") for dest_m, src_m in zip(lowercase__, lowercase__): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") class UpperCAmelCase_ ( nn.Module): def __init__( self, __a): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = [] # - get the stem feature_blocks.append(("conv1", model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block"), f"Unexpected layer name {k}" _lowerCAmelCase : Optional[int] = len(lowercase__) + 1 feature_blocks.append((f"res{block_index}", v)) _lowerCAmelCase : Optional[int] = nn.ModuleDict(lowercase__) def snake_case__ ( self, __a): '''simple docstring''' return get_trunk_forward_outputs( lowercase__, out_feat_keys=lowercase__, feature_blocks=self._feature_blocks, ) class UpperCAmelCase_ ( lowerCamelCase__): def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = x.split("-") return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self, __a): '''simple docstring''' if x not in self: _lowerCAmelCase : Union[str, Any] = self.convert_name_to_timm(lowercase__) _lowerCAmelCase : Union[str, Any] = partial(lambda: (timm.create_model(lowercase__, pretrained=lowercase__).eval(), None)) else: _lowerCAmelCase : List[str] = super().__getitem__(lowercase__) return val class UpperCAmelCase_ ( lowerCamelCase__): def __getitem__( self, __a): '''simple docstring''' if "seer" in x and "in1k" not in x: _lowerCAmelCase : int = RegNetModel else: _lowerCAmelCase : Dict = RegNetForImageClassification return val def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for from_key, to_key in keys: _lowerCAmelCase : Tuple = from_state_dict[from_key].clone() print(F"Copied key={from_key} to={to_key}" ) return to_state_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ): '''simple docstring''' print(F"Converting {name}..." ) with torch.no_grad(): _lowerCAmelCase , _lowerCAmelCase : Any = from_model_func() _lowerCAmelCase : str = our_model_func(A__ ).eval() _lowerCAmelCase : Union[str, Any] = ModuleTransfer(src=A__ , dest=A__ , raise_if_mismatch=A__ ) _lowerCAmelCase : Any = torch.randn((1, 3, 224, 224) ) module_transfer(A__ ) if from_state_dict is not None: _lowerCAmelCase : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _lowerCAmelCase : Optional[Any] = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _lowerCAmelCase : Optional[int] = manually_copy_vissl_head(A__ , our_model.state_dict() , A__ ) our_model.load_state_dict(A__ ) _lowerCAmelCase : Optional[Any] = our_model(A__ , output_hidden_states=A__ ) _lowerCAmelCase : List[str] = ( our_outputs.logits if isinstance(A__ , A__ ) else our_outputs.last_hidden_state ) _lowerCAmelCase : Tuple = from_model(A__ ) _lowerCAmelCase : Tuple = from_output[-1] if type(A__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _lowerCAmelCase : Any = our_outputs.hidden_states[-1] assert torch.allclose(A__ , A__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=A__ , ) _lowerCAmelCase : int = 224 if "seer" not in name else 384 # we can use the convnext one _lowerCAmelCase : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=A__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=A__ , ) print(F"Pushed {name}" ) def A ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCAmelCase : Tuple = 1_000 _lowerCAmelCase : Union[str, Any] = (1, num_labels) _lowerCAmelCase : Any = "huggingface/label-files" _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : str = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="dataset" ) ) , "r" ) ) _lowerCAmelCase : int = {int(A__ ): v for k, v in idalabel.items()} _lowerCAmelCase : str = idalabel _lowerCAmelCase : str = {v: k for k, v in idalabel.items()} _lowerCAmelCase : Tuple = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ ) _lowerCAmelCase : Optional[Any] = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } _lowerCAmelCase : Union[str, Any] = NameToOurModelFuncMap() _lowerCAmelCase : Optional[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_lowerCamelCase , _lowerCamelCase ) -> Tuple[nn.Module, Dict]: _lowerCAmelCase : Any = torch.hub.load_state_dict_from_url(A__ , model_dir=str(A__ ) , map_location="cpu" ) _lowerCAmelCase : List[str] = model_func() # check if we have a head, if yes add it _lowerCAmelCase : Any = files["classy_state_dict"]["base_model"]["model"] _lowerCAmelCase : str = model_state_dict["trunk"] model.load_state_dict(A__ ) return model.eval(), model_state_dict["heads"] # pretrained _lowerCAmelCase : int = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase : Tuple = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase : Dict = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCAmelCase : Any = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _lowerCAmelCase : str = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase : Optional[int] = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _lowerCAmelCase : Any = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _lowerCAmelCase : Any = partial( A__ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( A__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , A__ , A__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( A__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , A__ , A__ , A__ , ) return config, expected_shape if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _snake_case = parser.parse_args() _snake_case = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _snake_case = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=18, __a=30, __a=400, __a=None, __a=True, __a=True, __a=None, ): '''simple docstring''' _lowerCAmelCase : int = size if size is not None else {'height': 20, 'width': 20} _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : int = min_resolution _lowerCAmelCase : Optional[int] = max_resolution _lowerCAmelCase : List[str] = size _lowerCAmelCase : List[str] = do_normalize _lowerCAmelCase : str = do_convert_rgb _lowerCAmelCase : Dict = [512, 1024, 2048, 4096] _lowerCAmelCase : Optional[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def snake_case__ ( self): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _lowerCAmelCase : Union[str, Any] = Image.open(requests.get(__a, stream=__a).raw).convert("RGB") return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): lowerCamelCase__ = PixaStructImageProcessor if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = PixaStructImageProcessingTester(self) @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a, "do_normalize")) self.assertTrue(hasattr(__a, "do_convert_rgb")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict) _lowerCAmelCase : int = 2048 _lowerCAmelCase : Optional[Any] = image_processor(__a, return_tensors="pt", max_patches=__a) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_606), atol=1E-3, rtol=1E-3)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a, Image.Image) # Test not batched input _lowerCAmelCase : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCAmelCase : int = image_processor( image_inputs[0], return_tensors="pt", max_patches=__a).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched _lowerCAmelCase : Any = image_processor( __a, return_tensors="pt", max_patches=__a).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a, Image.Image) # Test not batched input _lowerCAmelCase : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _lowerCAmelCase : Optional[Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__a): _lowerCAmelCase : List[str] = image_processor( image_inputs[0], return_tensors="pt", max_patches=__a).flattened_patches _lowerCAmelCase : List[Any] = 'Hello' _lowerCAmelCase : List[Any] = image_processor( image_inputs[0], return_tensors="pt", max_patches=__a, header_text=__a).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched _lowerCAmelCase : Union[str, Any] = image_processor( __a, return_tensors="pt", max_patches=__a, header_text=__a).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a, numpify=__a) for image in image_inputs: self.assertIsInstance(__a, np.ndarray) _lowerCAmelCase : Optional[int] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCAmelCase : List[str] = image_processor( image_inputs[0], return_tensors="pt", max_patches=__a).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched _lowerCAmelCase : List[str] = image_processor( __a, return_tensors="pt", max_patches=__a).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a, torchify=__a) for image in image_inputs: self.assertIsInstance(__a, torch.Tensor) # Test not batched input _lowerCAmelCase : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCAmelCase : str = image_processor( image_inputs[0], return_tensors="pt", max_patches=__a).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched _lowerCAmelCase : List[str] = image_processor( __a, return_tensors="pt", max_patches=__a).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): lowerCamelCase__ = PixaStructImageProcessor if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PixaStructImageProcessingTester(self, num_channels=4) _lowerCAmelCase : str = 3 @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a, "do_normalize")) self.assertTrue(hasattr(__a, "do_convert_rgb")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a, Image.Image) # Test not batched input _lowerCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCAmelCase : Union[str, Any] = image_processor( image_inputs[0], return_tensors="pt", max_patches=__a).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched _lowerCAmelCase : Optional[Any] = image_processor( __a, return_tensors="pt", max_patches=__a).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
359
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
0
from __future__ import annotations from random import choice def A ( _lowerCamelCase ): '''simple docstring''' return choice(a__ ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = random_pivot(a__ ) # partition based on pivot # linear time _lowerCAmelCase : Any = [e for e in lst if e < pivot] _lowerCAmelCase : Tuple = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(a__ ) < k - 1: return kth_number(a__ , k - len(a__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(a__ , a__ ) if __name__ == "__main__": import doctest doctest.testmod()
360
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
0
import numpy as np from transformers import Pipeline def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = np.max(_lowerCamelCase , axis=-1 , keepdims=_lowerCamelCase ) _lowerCAmelCase : Any = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class UpperCAmelCase_ ( __lowercase): def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : int = {} if "second_text" in kwargs: _lowerCAmelCase : str = kwargs["second_text"] return preprocess_kwargs, {}, {} def snake_case__ ( self, __a, __a=None): '''simple docstring''' return self.tokenizer(UpperCAmelCase__, text_pair=UpperCAmelCase__, return_tensors=self.framework) def snake_case__ ( self, __a): '''simple docstring''' return self.model(**UpperCAmelCase__) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = model_outputs.logits[0].numpy() _lowerCAmelCase : Optional[Any] = softmax(UpperCAmelCase__) _lowerCAmelCase : int = np.argmax(UpperCAmelCase__) _lowerCAmelCase : Tuple = self.model.config.idalabel[best_class] _lowerCAmelCase : Optional[Any] = probabilities[best_class].item() _lowerCAmelCase : Union[str, Any] = logits.tolist() return {"label": label, "score": score, "logits": logits}
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp _snake_case = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } _snake_case = { "RUCAIBox/mvp": 1024, } class UpperCAmelCase_ ( UpperCamelCase_): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = MvpTokenizer def __init__( self, __a=None, __a=None, __a=None, __a="replace", __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", __a=False, __a=True, **__a, ): '''simple docstring''' super().__init__( _a, _a, tokenizer_file=_a, errors=_a, bos_token=_a, eos_token=_a, sep_token=_a, cls_token=_a, unk_token=_a, pad_token=_a, mask_token=_a, add_prefix_space=_a, trim_offsets=_a, **_a, ) _lowerCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", _a) != add_prefix_space: _lowerCAmelCase : Union[str, Any] = getattr(_a, pre_tok_state.pop("type")) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : str = pre_tok_class(**_a) _lowerCAmelCase : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCAmelCase : List[str] = """post_processor""" _lowerCAmelCase : str = getattr(self.backend_tokenizer, _a, _a) if tokenizer_component_instance: _lowerCAmelCase : List[str] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : str = tuple(state["sep"]) if "cls" in state: _lowerCAmelCase : str = tuple(state["cls"]) _lowerCAmelCase : str = False if state.get("add_prefix_space", _a) != add_prefix_space: _lowerCAmelCase : List[str] = add_prefix_space _lowerCAmelCase : List[Any] = True if state.get("trim_offsets", _a) != trim_offsets: _lowerCAmelCase : Any = trim_offsets _lowerCAmelCase : Tuple = True if changes_to_apply: _lowerCAmelCase : Optional[int] = getattr(_a, state.pop("type")) _lowerCAmelCase : Dict = component_class(**_a) setattr(self.backend_tokenizer, _a, _a) @property def snake_case__ ( self): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = AddedToken(_a, lstrip=_a, rstrip=_a) if isinstance(_a, _a) else value _lowerCAmelCase : Any = value def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get("is_split_into_words", _a) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._batch_encode_plus(*_a, **_a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : int = kwargs.get("is_split_into_words", _a) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._encode_plus(*_a, **_a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[int] = self._tokenizer.model.save(_a, name=_a) return tuple(_a) def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
import os from collections import deque import torch from torch.utils.data import Dataset class UpperCAmelCase_ ( _A): def __init__( self, __a="", __a="train"): '''simple docstring''' assert os.path.isdir(__SCREAMING_SNAKE_CASE) _lowerCAmelCase : str = [] _lowerCAmelCase : Tuple = os.listdir(__SCREAMING_SNAKE_CASE) for story_filename in story_filenames_list: if "summary" in story_filename: continue _lowerCAmelCase : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) if not os.path.isfile(__SCREAMING_SNAKE_CASE): continue self.documents.append(__SCREAMING_SNAKE_CASE) def __len__( self): '''simple docstring''' return len(self.documents) def __getitem__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.documents[idx] _lowerCAmelCase : int = document_path.split("/")[-1] with open(__SCREAMING_SNAKE_CASE, encoding="utf-8") as source: _lowerCAmelCase : List[Any] = source.read() _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = process_story(__SCREAMING_SNAKE_CASE) return document_name, story_lines, summary_lines def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = list(filter(lambda _lowerCamelCase : len(lowercase__ ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it _lowerCAmelCase : Any = [_add_missing_period(lowercase__ ) for line in nonempty_lines] # gather article lines _lowerCAmelCase : str = [] _lowerCAmelCase : str = deque(lowercase__ ) while True: try: _lowerCAmelCase : Optional[Any] = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(lowercase__ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines _lowerCAmelCase : Optional[Any] = list(filter(lambda _lowerCamelCase : not t.startswith("@highlight" ) , lowercase__ ) ) return story_lines, summary_lines def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if len(lowercase__ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(lowercase__ )) ) return sequence def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.ones_like(lowercase__ ) _lowerCAmelCase : List[Any] = sequence == pad_token_id _lowerCAmelCase : List[Any] = 0 return mask def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [tokenizer.encode(lowercase__ ) for line in story_lines] _lowerCAmelCase : List[str] = [token for sentence in story_lines_token_ids for token in sentence] _lowerCAmelCase : List[str] = [tokenizer.encode(lowercase__ ) for line in summary_lines] _lowerCAmelCase : Optional[Any] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for sequence in batch: _lowerCAmelCase : List[Any] = -1 _lowerCAmelCase : Optional[Any] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(lowercase__ ) return torch.tensor(lowercase__ )
363
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase): pass @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = ort.SessionOptions() _lowerCAmelCase : Tuple = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", safety_checker=_SCREAMING_SNAKE_CASE, feature_extractor=_SCREAMING_SNAKE_CASE, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[int] = np.random.RandomState(0) _lowerCAmelCase : str = pipe( prompt=_SCREAMING_SNAKE_CASE, image=_SCREAMING_SNAKE_CASE, mask_image=_SCREAMING_SNAKE_CASE, guidance_scale=7.5, num_inference_steps=10, generator=_SCREAMING_SNAKE_CASE, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx") _lowerCAmelCase : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", scheduler=_SCREAMING_SNAKE_CASE, safety_checker=_SCREAMING_SNAKE_CASE, feature_extractor=_SCREAMING_SNAKE_CASE, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[int] = np.random.RandomState(0) _lowerCAmelCase : Optional[int] = pipe( prompt=_SCREAMING_SNAKE_CASE, image=_SCREAMING_SNAKE_CASE, mask_image=_SCREAMING_SNAKE_CASE, guidance_scale=7.5, num_inference_steps=20, generator=_SCREAMING_SNAKE_CASE, output_type="np", ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Tuple = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
364
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
0
import os def A ( _lowerCamelCase = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(_a ) , _a ) ) as input_file: _lowerCAmelCase : Dict = [ [int(_a ) for element in line.split("," )] for line in input_file.readlines() ] _lowerCAmelCase : Any = len(_a ) _lowerCAmelCase : Tuple = len(matrix[0] ) _lowerCAmelCase : Optional[int] = [[-1 for _ in range(_a )] for _ in range(_a )] for i in range(_a ): _lowerCAmelCase : Optional[Any] = matrix[i][0] for j in range(1 , _a ): for i in range(_a ): _lowerCAmelCase : str = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _a ): _lowerCAmelCase : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowerCAmelCase : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
0
class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = val _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[Any] = None def snake_case__ ( self, __a): '''simple docstring''' if self.val: if val < self.val: if self.left is None: _lowerCAmelCase : str = Node(_lowercase) else: self.left.insert(_lowercase) elif val > self.val: if self.right is None: _lowerCAmelCase : Tuple = Node(_lowercase) else: self.right.insert(_lowercase) else: _lowerCAmelCase : Tuple = val def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if root: inorder(root.left , SCREAMING_SNAKE_CASE_ ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE_ ) def A ( _lowerCamelCase ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) == 0: return arr _lowerCAmelCase : List[str] = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): root.insert(arr[i] ) # Traverse BST in order. _lowerCAmelCase : Union[str, Any] = [] inorder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _snake_case = { "camembert-base": 512, } _snake_case = "▁" class UpperCAmelCase_ ( lowerCamelCase_): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = CamembertTokenizer def __init__( self, __a=None, __a=None, __a="<s>", __a="</s>", __a="</s>", __a="<s>", __a="<unk>", __a="<pad>", __a="<mask>", __a=["<s>NOTUSED", "</s>NOTUSED"], **__a, ): '''simple docstring''' _lowerCAmelCase : Tuple = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase, _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase, tokenizer_file=_UpperCAmelCase, bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, **_UpperCAmelCase, ) _lowerCAmelCase : Any = vocab_file _lowerCAmelCase : str = False if not self.vocab_file else True def snake_case__ ( self, __a, __a = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] _lowerCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(_UpperCAmelCase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : List[Any] = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file, _UpperCAmelCase) return (out_vocab_file,)
367
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _a): lowerCamelCase__ = (DEISMultistepScheduler,) lowerCamelCase__ = (("""num_inference_steps""", 25),) def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**__lowerCamelCase) return config def snake_case__ ( self, __a=0, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs) _lowerCAmelCase : Dict = kwargs.pop("num_inference_steps", __lowerCamelCase) _lowerCAmelCase : Dict = self.dummy_sample _lowerCAmelCase : Any = 0.1 * sample _lowerCAmelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**__lowerCamelCase) _lowerCAmelCase : List[Any] = scheduler_class(**__lowerCamelCase) scheduler.set_timesteps(__lowerCamelCase) # copy over dummy past residuals _lowerCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase) _lowerCAmelCase : Dict = scheduler_class.from_pretrained(__lowerCamelCase) new_scheduler.set_timesteps(__lowerCamelCase) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : str = sample, sample for t in range(__lowerCamelCase, time_step + scheduler.config.solver_order + 1): _lowerCAmelCase : Optional[Any] = scheduler.step(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase).prev_sample _lowerCAmelCase : Optional[int] = new_scheduler.step(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self, __a=0, **__a): '''simple docstring''' _lowerCAmelCase : Dict = dict(self.forward_default_kwargs) _lowerCAmelCase : Union[str, Any] = kwargs.pop("num_inference_steps", __lowerCamelCase) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : List[Any] = 0.1 * sample _lowerCAmelCase : Any = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**__lowerCamelCase) scheduler.set_timesteps(__lowerCamelCase) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase) _lowerCAmelCase : Optional[Any] = scheduler_class.from_pretrained(__lowerCamelCase) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Tuple = scheduler.step(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase).prev_sample _lowerCAmelCase : Tuple = new_scheduler.step(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, __a=None, **__a): '''simple docstring''' if scheduler is None: _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config(**__lowerCamelCase) _lowerCAmelCase : Optional[int] = scheduler_class(**__lowerCamelCase) _lowerCAmelCase : List[Any] = self.scheduler_classes[0] _lowerCAmelCase : Any = self.get_scheduler_config(**__lowerCamelCase) _lowerCAmelCase : Dict = scheduler_class(**__lowerCamelCase) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Dict = self.dummy_model() _lowerCAmelCase : int = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCAmelCase : List[Any] = model(__lowerCamelCase, __lowerCamelCase) _lowerCAmelCase : Optional[int] = scheduler.step(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase).prev_sample return sample def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs) _lowerCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps", __lowerCamelCase) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : List[str] = self.get_scheduler_config() _lowerCAmelCase : int = scheduler_class(**__lowerCamelCase) _lowerCAmelCase : Tuple = self.dummy_sample _lowerCAmelCase : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCamelCase, "set_timesteps"): scheduler.set_timesteps(__lowerCamelCase) elif num_inference_steps is not None and not hasattr(__lowerCamelCase, "set_timesteps"): _lowerCAmelCase : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] _lowerCAmelCase : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : str = scheduler.timesteps[5] _lowerCAmelCase : List[Any] = scheduler.timesteps[6] _lowerCAmelCase : Any = scheduler.step(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase).prev_sample _lowerCAmelCase : Union[str, Any] = scheduler.step(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = DEISMultistepScheduler(**self.get_scheduler_config()) _lowerCAmelCase : int = self.full_loop(scheduler=__lowerCamelCase) _lowerCAmelCase : List[Any] = torch.mean(torch.abs(__lowerCamelCase)) assert abs(result_mean.item() - 0.23_916) < 1E-3 _lowerCAmelCase : str = DPMSolverSinglestepScheduler.from_config(scheduler.config) _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config) _lowerCAmelCase : Dict = UniPCMultistepScheduler.from_config(scheduler.config) _lowerCAmelCase : int = DEISMultistepScheduler.from_config(scheduler.config) _lowerCAmelCase : List[str] = self.full_loop(scheduler=__lowerCamelCase) _lowerCAmelCase : List[str] = torch.mean(torch.abs(__lowerCamelCase)) assert abs(result_mean.item() - 0.23_916) < 1E-3 def snake_case__ ( self): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase) def snake_case__ ( self): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCamelCase, prediction_type=__lowerCamelCase, sample_max_value=__lowerCamelCase, algorithm_type="deis", solver_order=__lowerCamelCase, solver_type=__lowerCamelCase, ) def snake_case__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase) def snake_case__ ( self): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCamelCase, solver_type=__lowerCamelCase, prediction_type=__lowerCamelCase, algorithm_type=__lowerCamelCase, ) _lowerCAmelCase : int = self.full_loop( solver_order=__lowerCamelCase, solver_type=__lowerCamelCase, prediction_type=__lowerCamelCase, algorithm_type=__lowerCamelCase, ) assert not torch.isnan(__lowerCamelCase).any(), "Samples have nan numbers" def snake_case__ ( self): '''simple docstring''' self.check_over_configs(lower_order_final=__lowerCamelCase) self.check_over_configs(lower_order_final=__lowerCamelCase) def snake_case__ ( self): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCamelCase, time_step=0) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.full_loop() _lowerCAmelCase : Any = torch.mean(torch.abs(__lowerCamelCase)) assert abs(result_mean.item() - 0.23_916) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.full_loop(prediction_type="v_prediction") _lowerCAmelCase : List[str] = torch.mean(torch.abs(__lowerCamelCase)) assert abs(result_mean.item() - 0.091) < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config(thresholding=__lowerCamelCase, dynamic_thresholding_ratio=0) _lowerCAmelCase : Tuple = scheduler_class(**__lowerCamelCase) _lowerCAmelCase : Tuple = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCAmelCase : Optional[Any] = model(__lowerCamelCase, __lowerCamelCase) _lowerCAmelCase : List[str] = scheduler.step(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase).prev_sample assert sample.dtype == torch.floataa
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase_ : def __init__( self, __a=2, __a=3, __a=64, __a=None): '''simple docstring''' _lowerCAmelCase : Tuple = np.random.default_rng(lowercase_) _lowerCAmelCase : Any = length _lowerCAmelCase : Optional[Any] = rng.normal(size=(length,)).astype(np.floataa) _lowerCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1, size=(length,)).astype(np.floataa) def __len__( self): '''simple docstring''' return self.length def __getitem__( self, __a): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase_ ( torch.nn.Module): def __init__( self, __a=0, __a=0, __a=False): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = torch.nn.Parameter(torch.tensor([2, 3]).float()) _lowerCAmelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3]).float()) _lowerCAmelCase : List[Any] = True def snake_case__ ( self, __a=None): '''simple docstring''' if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") _lowerCAmelCase : Union[str, Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase_ ( torch.nn.Module): def __init__( self, __a=0, __a=0, __a=False): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = torch.nn.Parameter(torch.tensor(lowercase_).float()) _lowerCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(lowercase_).float()) _lowerCAmelCase : List[str] = True def snake_case__ ( self, __a=None): '''simple docstring''' if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") _lowerCAmelCase : List[str] = False return x * self.a + self.b def A ( _lowerCamelCase , _lowerCamelCase = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCAmelCase : List[str] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCAmelCase : List[Any] = load_dataset("csv" , data_files=a__ ) _lowerCAmelCase : Optional[Any] = datasets["train"].unique("label" ) _lowerCAmelCase : int = {v: i for i, v in enumerate(a__ )} def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : Dict = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=a__ , max_length=a__ , padding="max_length" ) if "label" in examples: _lowerCAmelCase : Any = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase : List[Any] = datasets.map( a__ , batched=a__ , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a__ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(a__ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["train"] , shuffle=a__ , collate_fn=a__ , batch_size=2 ) _lowerCAmelCase : int = DataLoader(tokenized_datasets["validation"] , shuffle=a__ , collate_fn=a__ , batch_size=1 ) return train_dataloader, eval_dataloader
369
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } _snake_case = { "google/fnet-base": 512, "google/fnet-large": 512, } _snake_case = "▁" class UpperCAmelCase_ ( a__): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'token_type_ids'] lowerCamelCase__ = FNetTokenizer def __init__( self, __a=None, __a=None, __a=False, __a=True, __a=True, __a="<unk>", __a="[SEP]", __a="<pad>", __a="[CLS]", __a="[MASK]", **__a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ( AddedToken(__a, lstrip=__a, rstrip=__a, normalized=__a) if isinstance(__a, __a) else mask_token ) super().__init__( __a, tokenizer_file=__a, do_lower_case=__a, remove_space=__a, keep_accents=__a, unk_token=__a, sep_token=__a, pad_token=__a, cls_token=__a, mask_token=__a, **__a, ) _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : str = keep_accents _lowerCAmelCase : Union[str, Any] = vocab_file _lowerCAmelCase : List[Any] = False if not self.vocab_file else True def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Optional[int] = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Dict = [self.sep_token_id] _lowerCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Optional[Any] = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file, __a) return (out_vocab_file,)
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wavlm' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=320, __a=800, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="mean", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=80, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, **__a, ): '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE, pad_token_id=_SCREAMING_SNAKE_CASE, bos_token_id=_SCREAMING_SNAKE_CASE, eos_token_id=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : List[Any] = feat_extract_norm _lowerCAmelCase : Optional[int] = feat_extract_activation _lowerCAmelCase : List[str] = list(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : int = list(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : str = list(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[int] = conv_bias _lowerCAmelCase : List[Any] = num_buckets _lowerCAmelCase : Dict = max_bucket_distance _lowerCAmelCase : int = num_conv_pos_embeddings _lowerCAmelCase : Union[str, Any] = num_conv_pos_embedding_groups _lowerCAmelCase : List[str] = len(self.conv_dim) _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : Optional[int] = activation_dropout _lowerCAmelCase : List[Any] = feat_proj_dropout _lowerCAmelCase : Union[str, Any] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : int = initializer_range _lowerCAmelCase : int = num_ctc_classes _lowerCAmelCase : int = vocab_size _lowerCAmelCase : List[Any] = do_stable_layer_norm _lowerCAmelCase : int = use_weighted_layer_sum _lowerCAmelCase : int = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Union[str, Any] = apply_spec_augment _lowerCAmelCase : str = mask_time_prob _lowerCAmelCase : List[str] = mask_time_length _lowerCAmelCase : Optional[Any] = mask_time_min_masks _lowerCAmelCase : List[str] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations _lowerCAmelCase : List[Any] = num_codevectors_per_group _lowerCAmelCase : List[Any] = num_codevector_groups _lowerCAmelCase : Optional[Any] = contrastive_logits_temperature _lowerCAmelCase : Tuple = num_negatives _lowerCAmelCase : Union[str, Any] = codevector_dim _lowerCAmelCase : Optional[Any] = proj_codevector_dim _lowerCAmelCase : List[Any] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[int] = ctc_loss_reduction _lowerCAmelCase : Dict = ctc_zero_infinity # adapter _lowerCAmelCase : List[str] = add_adapter _lowerCAmelCase : Dict = adapter_kernel_size _lowerCAmelCase : List[Any] = adapter_stride _lowerCAmelCase : Dict = num_adapter_layers _lowerCAmelCase : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : Tuple = list(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[Any] = list(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[Any] = list(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Any = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _snake_case = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" _snake_case = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" _snake_case = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), ) def snake_case__ ( self, __a, __a, __a = 1, __a = 4, ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a, hypotheses=__a, min_len=__a, max_len=__a) }
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): _snake_case = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: _snake_case = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase : Any = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase : List[Any] = numpy_to_pil(_SCREAMING_SNAKE_CASE ) return images def A ( _lowerCamelCase ): '''simple docstring''' if images.ndim == 3: _lowerCAmelCase : Dict = images[None, ...] _lowerCAmelCase : Optional[Any] = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _lowerCAmelCase : int = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: _lowerCAmelCase : int = [Image.fromarray(_SCREAMING_SNAKE_CASE ) for image in images] return pil_images
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase_ ( a): def __get__( self, __a, __a=None): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") _lowerCAmelCase : List[Any] = '''__cached_''' + self.fget.__name__ _lowerCAmelCase : Tuple = getattr(__a, __a, __a) if cached is None: _lowerCAmelCase : Optional[Any] = self.fget(__a) setattr(__a, __a, __a) return cached def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def A ( _lowerCamelCase ): '''simple docstring''' if is_torch_fx_proxy(UpperCamelCase__ ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase__ , np.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return isinstance(UpperCamelCase__ , np.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return _is_numpy(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import torch return isinstance(UpperCamelCase__ , torch.Tensor ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import torch return isinstance(UpperCamelCase__ , torch.device ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_device(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import torch if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): _lowerCAmelCase : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) else: return False return isinstance(UpperCamelCase__ , torch.dtype ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import tensorflow as tf return isinstance(UpperCamelCase__ , tf.Tensor ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase__ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(UpperCamelCase__ ) return type(UpperCamelCase__ ) == tf.Tensor def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase__ , jnp.ndarray ) def A ( _lowerCamelCase ): '''simple docstring''' return False if not is_flax_available() else _is_jax(UpperCamelCase__ ) def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_py_obj(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return [to_py_obj(UpperCamelCase__ ) for o in obj] elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ).tolist() elif isinstance(UpperCamelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_numpy(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return np.array(UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ) else: return obj class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = fields(self) # Safety and consistency checks if not len(__a): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") _lowerCAmelCase : Union[str, Any] = getattr(self, class_fields[0].name) _lowerCAmelCase : List[Any] = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(__a): if isinstance(__a, __a): _lowerCAmelCase : List[str] = first_field.items() _lowerCAmelCase : Any = True else: try: _lowerCAmelCase : int = iter(__a) _lowerCAmelCase : Tuple = True except TypeError: _lowerCAmelCase : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__a): if ( not isinstance(__a, (list, tuple)) or not len(__a) == 2 or not isinstance(element[0], __a) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowerCAmelCase : str = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value).") break setattr(self, element[0], element[1]) if element[1] is not None: _lowerCAmelCase : Any = element[1] elif first_field is not None: _lowerCAmelCase : Any = first_field else: for field in class_fields: _lowerCAmelCase : Dict = getattr(self, field.name) if v is not None: _lowerCAmelCase : Optional[Any] = v def __delitem__( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def snake_case__ ( self, *__a, **__a): '''simple docstring''' raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__( self, __a): '''simple docstring''' if isinstance(__a, __a): _lowerCAmelCase : str = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self, __a, __a): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__a, __a) super().__setattr__(__a, __a) def __setitem__( self, __a, __a): '''simple docstring''' super().__setitem__(__a, __a) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__a, __a) def snake_case__ ( self): '''simple docstring''' return tuple(self[k] for k in self.keys()) class UpperCAmelCase_ ( a , a): @classmethod def snake_case__ ( cls, __a): '''simple docstring''' raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}") class UpperCAmelCase_ ( a): lowerCamelCase__ = 'longest' lowerCamelCase__ = 'max_length' lowerCamelCase__ = 'do_not_pad' class UpperCAmelCase_ ( a): lowerCamelCase__ = 'pt' lowerCamelCase__ = 'tf' lowerCamelCase__ = 'np' lowerCamelCase__ = 'jax' class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : str = context_managers _lowerCAmelCase : Optional[int] = ExitStack() def __enter__( self): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(__a) def __exit__( self, *__a, **__a): '''simple docstring''' self.stack.__exit__(*__a, **__a) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = infer_framework(UpperCamelCase__ ) if framework == "tf": _lowerCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : Any = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : int = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = model_class.__name__ _lowerCAmelCase : Union[str, Any] = infer_framework(UpperCamelCase__ ) if framework == "tf": _lowerCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : List[str] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def A ( _lowerCamelCase , _lowerCamelCase = "" , _lowerCamelCase = "." ): '''simple docstring''' def _flatten_dict(_lowerCamelCase , _lowerCamelCase="" , _lowerCamelCase="." ): for k, v in d.items(): _lowerCAmelCase : Tuple = str(UpperCamelCase__ ) + delimiter + str(UpperCamelCase__ ) if parent_key else k if v and isinstance(UpperCamelCase__ , UpperCamelCase__ ): yield from flatten_dict(UpperCamelCase__ , UpperCamelCase__ , delimiter=UpperCamelCase__ ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) @contextmanager def A ( _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.T if axes is None else array.permute(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.transpose(UpperCamelCase__ , perm=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) else: raise ValueError(F"Type not supported for transpose: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.reshape(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.reshape(UpperCamelCase__ , UpperCamelCase__ ) else: raise ValueError(F"Type not supported for reshape: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F"Type not supported for squeeze: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.expand_dims(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.unsqueeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F"Type not supported for expand_dims: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase ): '''simple docstring''' if is_numpy_array(UpperCamelCase__ ): return np.size(UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.numel() elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.size(UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(UpperCamelCase__ )}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key, value in auto_map.items(): if isinstance(UpperCamelCase__ , (tuple, list) ): _lowerCAmelCase : List[Any] = [F"{repo_id}--{v}" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: _lowerCAmelCase : str = F"{repo_id}--{value}" return auto_map def A ( _lowerCamelCase ): '''simple docstring''' for base_class in inspect.getmro(UpperCamelCase__ ): _lowerCAmelCase : List[Any] = base_class.__module__ _lowerCAmelCase : Union[str, Any] = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _snake_case = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def A ( _lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def A ( _lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _lowerCAmelCase : Tuple = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ )
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = 10 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = [1, 2, 3, 4] _lowerCAmelCase : str = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCamelCase_, self.block_size, 0), lowerCamelCase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _lowerCAmelCase : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase_, self.block_size, 0), lowerCamelCase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _lowerCAmelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase_, self.block_size, 0), lowerCamelCase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." _lowerCAmelCase , _lowerCAmelCase : Dict = process_story(lowerCamelCase_) self.assertEqual(lowerCamelCase_, []) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "" _lowerCAmelCase , _lowerCAmelCase : Dict = process_story(lowerCamelCase_) self.assertEqual(lowerCamelCase_, []) self.assertEqual(lowerCamelCase_, []) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) _lowerCAmelCase , _lowerCAmelCase : Dict = process_story(lowerCamelCase_) _lowerCAmelCase : str = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(lowerCamelCase_, lowerCamelCase_) _lowerCAmelCase : Dict = ["It was the best of times."] self.assertEqual(lowerCamelCase_, lowerCamelCase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = torch.tensor([1, 2, 3, 4]) _lowerCAmelCase : int = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(lowerCamelCase_, 0).numpy(), expected.numpy()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23]) _lowerCAmelCase : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(lowerCamelCase_, 23).numpy(), expected.numpy()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1]) _lowerCAmelCase : Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(lowerCamelCase_, 1).numpy(), expected.numpy()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 101 _lowerCAmelCase : List[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) _lowerCAmelCase : str = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) _lowerCAmelCase : List[Any] = compute_token_type_ids(lowerCamelCase_, lowerCamelCase_) np.testing.assert_array_equal(lowerCamelCase_, lowerCamelCase_)
355
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
0
import numpy as np import datasets _snake_case = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' _snake_case = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' _snake_case = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float", id="sequence"), id="X"), }), ) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = np.array(lowercase_) _lowerCAmelCase : str = np.array(lowercase_) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError("Expected `X` to be a 2D vector") if len(reference_distribution.shape) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector") if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension") # Get mahalanobis distance for each prediction _lowerCAmelCase : Dict = X - np.mean(lowercase_) _lowerCAmelCase : Optional[Any] = np.cov(reference_distribution.T) try: _lowerCAmelCase : Any = np.linalg.inv(lowercase_) except np.linalg.LinAlgError: _lowerCAmelCase : Optional[int] = np.linalg.pinv(lowercase_) _lowerCAmelCase : Any = np.dot(lowercase_, lowercase_) _lowerCAmelCase : Union[str, Any] = np.dot(lowercase_, X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) _lowerCAmelCase : Union[str, Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname, lowercase_) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(lowercase_, lowercase_) def snake_case__ ( self, **__a): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname, **lowercase_) def snake_case__ ( self, **__a): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname, **lowercase_) def snake_case__ ( self, **__a): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname, **lowercase_) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[Any] = [Image.fromarray(np.moveaxis(lowercase_, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : int = self.get_rust_tokenizer() _lowerCAmelCase : str = self.get_image_processor() _lowerCAmelCase : Tuple = AlignProcessor(tokenizer=lowercase_, image_processor=lowercase_) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname, use_fast=lowercase_) _lowerCAmelCase : List[Any] = AlignProcessor(tokenizer=lowercase_, image_processor=lowercase_) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = AlignProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, lowercase_) self.assertIsInstance(processor_fast.tokenizer, lowercase_) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, lowercase_) self.assertIsInstance(processor_fast.image_processor, lowercase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = AlignProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=lowercase_, padding_value=1.0) _lowerCAmelCase : Optional[int] = AlignProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=lowercase_, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, lowercase_) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowercase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : List[str] = AlignProcessor(tokenizer=lowercase_, image_processor=lowercase_) _lowerCAmelCase : Optional[int] = self.prepare_image_inputs() _lowerCAmelCase : str = image_processor(lowercase_, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=lowercase_, return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : List[Any] = AlignProcessor(tokenizer=lowercase_, image_processor=lowercase_) _lowerCAmelCase : Dict = '''lower newer''' _lowerCAmelCase : List[str] = processor(text=lowercase_) _lowerCAmelCase : Dict = tokenizer(lowercase_, padding="max_length", max_length=64) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_image_processor() _lowerCAmelCase : str = self.get_tokenizer() _lowerCAmelCase : List[Any] = AlignProcessor(tokenizer=lowercase_, image_processor=lowercase_) _lowerCAmelCase : Optional[int] = '''lower newer''' _lowerCAmelCase : Any = self.prepare_image_inputs() _lowerCAmelCase : Dict = processor(text=lowercase_, images=lowercase_) self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : str = AlignProcessor(tokenizer=lowercase_, image_processor=lowercase_) _lowerCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : Tuple = processor.batch_decode(lowercase_) _lowerCAmelCase : int = tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_, lowercase_) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = AlignProcessor(tokenizer=lowercase_, image_processor=lowercase_) _lowerCAmelCase : str = '''lower newer''' _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : Tuple = processor(text=lowercase_, images=lowercase_) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = VideoMAEConfig() set_architecture_configs(_lowercase , _lowercase ) if "finetuned" not in model_name: _lowerCAmelCase : Tuple = False if "finetuned" in model_name: _lowerCAmelCase : Any = "huggingface/label-files" if "kinetics" in model_name: _lowerCAmelCase : Optional[Any] = 400 _lowerCAmelCase : Optional[Any] = "kinetics400-id2label.json" elif "ssv2" in model_name: _lowerCAmelCase : int = 174 _lowerCAmelCase : Dict = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned." ) _lowerCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : Optional[int] = {int(_lowercase ): v for k, v in idalabel.items()} _lowerCAmelCase : List[str] = idalabel _lowerCAmelCase : str = {v: k for k, v in idalabel.items()} return config def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if "small" in model_name: _lowerCAmelCase : str = 384 _lowerCAmelCase : Union[str, Any] = 1_536 _lowerCAmelCase : Optional[int] = 12 _lowerCAmelCase : List[str] = 16 _lowerCAmelCase : Tuple = 12 _lowerCAmelCase : Any = 3 _lowerCAmelCase : str = 192 _lowerCAmelCase : str = 768 elif "large" in model_name: _lowerCAmelCase : Optional[int] = 1_024 _lowerCAmelCase : List[Any] = 4_096 _lowerCAmelCase : str = 24 _lowerCAmelCase : Any = 16 _lowerCAmelCase : Optional[Any] = 12 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : List[str] = 512 _lowerCAmelCase : Any = 2_048 elif "huge" in model_name: _lowerCAmelCase : List[Any] = 1_280 _lowerCAmelCase : int = 5_120 _lowerCAmelCase : List[Any] = 32 _lowerCAmelCase : List[str] = 16 _lowerCAmelCase : Optional[int] = 12 _lowerCAmelCase : List[Any] = 8 _lowerCAmelCase : List[str] = 640 _lowerCAmelCase : Any = 2_560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def A ( _lowerCamelCase ): '''simple docstring''' if "encoder." in name: _lowerCAmelCase : int = name.replace("encoder." , "" ) if "cls_token" in name: _lowerCAmelCase : int = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: _lowerCAmelCase : Optional[int] = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: _lowerCAmelCase : Union[str, Any] = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: _lowerCAmelCase : Optional[Any] = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _lowerCAmelCase : Optional[Any] = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: _lowerCAmelCase : int = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: _lowerCAmelCase : int = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: _lowerCAmelCase : List[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: _lowerCAmelCase : Optional[int] = name.replace("attn" , "attention.self" ) if "attn" in name: _lowerCAmelCase : int = name.replace("attn" , "attention.attention" ) if "norm1" in name: _lowerCAmelCase : Any = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowerCAmelCase : Optional[int] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowerCAmelCase : str = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCAmelCase : Any = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: _lowerCAmelCase : str = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: _lowerCAmelCase : Union[str, Any] = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: _lowerCAmelCase : List[Any] = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _lowerCAmelCase : Tuple = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _lowerCAmelCase : Any = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: _lowerCAmelCase : List[str] = name.replace("head" , "classifier" ) return name def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_lowercase ) if key.startswith("encoder." ): _lowerCAmelCase : str = key.replace("encoder." , "" ) if "qkv" in key: _lowerCAmelCase : Optional[Any] = key.split("." ) if key.startswith("decoder.blocks" ): _lowerCAmelCase : List[str] = config.decoder_hidden_size _lowerCAmelCase : Dict = int(key_split[2] ) _lowerCAmelCase : str = "decoder.decoder_layers." if "weight" in key: _lowerCAmelCase : List[str] = val[:dim, :] _lowerCAmelCase : str = val[dim : dim * 2, :] _lowerCAmelCase : int = val[-dim:, :] else: _lowerCAmelCase : Union[str, Any] = config.hidden_size _lowerCAmelCase : Union[str, Any] = int(key_split[1] ) _lowerCAmelCase : Tuple = "videomae.encoder.layer." if "weight" in key: _lowerCAmelCase : List[str] = val[:dim, :] _lowerCAmelCase : Any = val[dim : dim * 2, :] _lowerCAmelCase : Union[str, Any] = val[-dim:, :] else: _lowerCAmelCase : Tuple = val return orig_state_dict def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) _lowerCAmelCase : Any = np.load(_lowercase ) return list(_lowercase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = get_videomae_config(_lowercase ) if "finetuned" in model_name: _lowerCAmelCase : int = VideoMAEForVideoClassification(_lowercase ) else: _lowerCAmelCase : int = VideoMAEForPreTraining(_lowercase ) # download original checkpoint, hosted on Google Drive _lowerCAmelCase : Any = "pytorch_model.bin" gdown.cached_download(_lowercase , _lowercase , quiet=_lowercase ) _lowerCAmelCase : List[str] = torch.load(_lowercase , map_location="cpu" ) if "model" in files: _lowerCAmelCase : Optional[int] = files["model"] else: _lowerCAmelCase : str = files["module"] _lowerCAmelCase : List[str] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify model on basic input _lowerCAmelCase : int = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _lowerCAmelCase : Union[str, Any] = prepare_video() _lowerCAmelCase : Optional[int] = image_processor(_lowercase , return_tensors="pt" ) if "finetuned" not in model_name: _lowerCAmelCase : Optional[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) _lowerCAmelCase : int = torch.load(_lowercase ) _lowerCAmelCase : List[str] = model(**_lowercase ) _lowerCAmelCase : Dict = outputs.logits _lowerCAmelCase : Tuple = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _lowerCAmelCase : Optional[int] = torch.Size([1, 400] ) _lowerCAmelCase : Optional[int] = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": _lowerCAmelCase : List[str] = torch.Size([1, 174] ) _lowerCAmelCase : Optional[int] = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": _lowerCAmelCase : Tuple = torch.Size([1, 1_408, 1_536] ) _lowerCAmelCase : str = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": _lowerCAmelCase : Optional[Any] = torch.Size([1, 1_408, 1_536] ) _lowerCAmelCase : Optional[Any] = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one _lowerCAmelCase : int = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": _lowerCAmelCase : str = torch.Size([1, 1_408, 1_536] ) _lowerCAmelCase : List[str] = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": _lowerCAmelCase : Dict = torch.Size([1, 400] ) _lowerCAmelCase : Optional[int] = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": _lowerCAmelCase : List[Any] = torch.Size([1, 400] ) _lowerCAmelCase : Optional[Any] = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": _lowerCAmelCase : List[Any] = torch.Size([1, 400] ) _lowerCAmelCase : List[str] = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": _lowerCAmelCase : Dict = torch.Size([1, 400] ) _lowerCAmelCase : Tuple = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": _lowerCAmelCase : Tuple = torch.Size([1, 1_408, 1_536] ) _lowerCAmelCase : Union[str, Any] = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _lowerCAmelCase : Any = torch.Size([1, 174] ) _lowerCAmelCase : int = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": _lowerCAmelCase : Union[str, Any] = torch.Size([1, 1_408, 1_536] ) _lowerCAmelCase : Dict = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": _lowerCAmelCase : List[str] = torch.Size([1, 174] ) _lowerCAmelCase : List[str] = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(F"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1e-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": _lowerCAmelCase : Optional[Any] = outputs.loss assert torch.allclose(_lowercase , _lowercase , atol=1e-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowercase ) model.save_pretrained(_lowercase ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(_lowercase , organization="nielsr" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
359
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = Dict[str, Any] _snake_case = List[Prediction] @add_end_docstrings(UpperCAmelCase__) class UpperCAmelCase_ ( UpperCAmelCase__): def __init__( self, *__a, **__a): '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch.") requires_backends(self, "vision") self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = {} if "threshold" in kwargs: _lowerCAmelCase : List[str] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self, *__a, **__a): '''simple docstring''' return super().__call__(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = load_image(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[int] = torch.IntTensor([[image.height, image.width]]) _lowerCAmelCase : Union[str, Any] = self.image_processor(images=[image], return_tensors="pt") if self.tokenizer is not None: _lowerCAmelCase : Union[str, Any] = self.tokenizer(text=inputs["words"], boxes=inputs["boxes"], return_tensors="pt") _lowerCAmelCase : List[Any] = target_size return inputs def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = model_inputs.pop("target_size") _lowerCAmelCase : int = self.model(**_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[int] = outputs.__class__({"target_size": target_size, **outputs}) if self.tokenizer is not None: _lowerCAmelCase : Optional[Any] = model_inputs["""bbox"""] return model_outputs def snake_case__ ( self, __a, __a=0.9): '''simple docstring''' _lowerCAmelCase : int = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _lowerCAmelCase : Dict = target_size[0].tolist() def unnormalize(__a): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ])) _lowerCAmelCase : int = model_outputs["""logits"""].squeeze(0).softmax(dim=-1).max(dim=-1) _lowerCAmelCase : Tuple = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _lowerCAmelCase : List[str] = [unnormalize(_SCREAMING_SNAKE_CASE) for bbox in model_outputs["""bbox"""].squeeze(0)] _lowerCAmelCase : List[str] = ["""score""", """label""", """box"""] _lowerCAmelCase : List[Any] = [dict(zip(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE)) for vals in zip(scores.tolist(), _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _lowerCAmelCase : Tuple = self.image_processor.post_process_object_detection(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[Any] = raw_annotations[0] _lowerCAmelCase : Optional[Any] = raw_annotation["""scores"""] _lowerCAmelCase : str = raw_annotation["""labels"""] _lowerCAmelCase : List[str] = raw_annotation["""boxes"""] _lowerCAmelCase : Optional[int] = scores.tolist() _lowerCAmelCase : Tuple = [self.model.config.idalabel[label.item()] for label in labels] _lowerCAmelCase : Dict = [self._get_bounding_box(_SCREAMING_SNAKE_CASE) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _lowerCAmelCase : Optional[int] = ["""score""", """label""", """box"""] _lowerCAmelCase : Union[str, Any] = [ dict(zip(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE)) for vals in zip(raw_annotation["scores"], raw_annotation["labels"], raw_annotation["boxes"]) ] return annotation def snake_case__ ( self, __a): '''simple docstring''' if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch.") _lowerCAmelCase : Tuple = box.int().tolist() _lowerCAmelCase : Union[str, Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
360
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
0
from math import pi def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase_ ( lowerCamelCase__): lowerCamelCase__ = """beit""" def __init__( self, __a=8192, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**snake_case__) _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : str = num_channels _lowerCAmelCase : int = use_mask_token _lowerCAmelCase : Optional[Any] = use_absolute_position_embeddings _lowerCAmelCase : int = use_relative_position_bias _lowerCAmelCase : Any = use_shared_relative_position_bias _lowerCAmelCase : Dict = layer_scale_init_value _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : List[str] = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Optional[Any] = out_indices _lowerCAmelCase : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : int = use_auxiliary_head _lowerCAmelCase : Optional[Any] = auxiliary_loss_weight _lowerCAmelCase : Dict = auxiliary_channels _lowerCAmelCase : Any = auxiliary_num_convs _lowerCAmelCase : List[str] = auxiliary_concat_input _lowerCAmelCase : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( lowerCamelCase__): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowercase , collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCAmelCase_ : def snake_case__ ( self, __a, __a): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = np.abs((a - b)).max() self.assertLessEqual(lowerCAmelCase__, lowerCAmelCase__, f"Difference between torch and flax is {diff} (>= {tol}).") def snake_case__ ( self, __a, __a, __a, __a, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : List[str] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__) _lowerCAmelCase : int = model(input_ids=lowerCAmelCase__, pixel_values=lowerCAmelCase__, attention_mask=lowerCAmelCase__) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], config.projection_dim)) def snake_case__ ( self, __a, __a, __a, __a, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_vision_text_model(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : Dict = {"vision_model": vision_model, "text_model": text_model} _lowerCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__) _lowerCAmelCase : List[str] = model(input_ids=lowerCAmelCase__, pixel_values=lowerCAmelCase__, attention_mask=lowerCAmelCase__) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], model.config.projection_dim)) def snake_case__ ( self, __a, __a, __a, __a, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : Dict = self.get_vision_text_model(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : Tuple = {"vision_model": vision_model, "text_model": text_model} _lowerCAmelCase : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__) _lowerCAmelCase : List[str] = model(input_ids=lowerCAmelCase__, pixel_values=lowerCAmelCase__, attention_mask=lowerCAmelCase__) _lowerCAmelCase : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__) _lowerCAmelCase : str = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__) _lowerCAmelCase : Dict = model(input_ids=lowerCAmelCase__, pixel_values=lowerCAmelCase__, attention_mask=lowerCAmelCase__) _lowerCAmelCase : List[Any] = after_output[0] _lowerCAmelCase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCAmelCase__, 1E-3) def snake_case__ ( self, __a, __a, __a, __a, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_vision_text_model(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : List[Any] = {"vision_model": vision_model, "text_model": text_model} _lowerCAmelCase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__) _lowerCAmelCase : Tuple = model( input_ids=lowerCAmelCase__, pixel_values=lowerCAmelCase__, attention_mask=lowerCAmelCase__, output_attentions=lowerCAmelCase__) _lowerCAmelCase : int = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Optional[int] = to_atuple(vision_model.config.image_size) _lowerCAmelCase : Tuple = to_atuple(vision_model.config.patch_size) _lowerCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowerCAmelCase : str = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' pt_model.to(lowerCAmelCase__) pt_model.eval() # prepare inputs _lowerCAmelCase : List[Any] = inputs_dict _lowerCAmelCase : Any = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowerCAmelCase : int = pt_model(**lowerCAmelCase__).to_tuple() _lowerCAmelCase : Union[str, Any] = fx_model(**lowerCAmelCase__).to_tuple() self.assertEqual(len(lowerCAmelCase__), len(lowerCAmelCase__), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCAmelCase__, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__) _lowerCAmelCase : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__, from_pt=lowerCAmelCase__) _lowerCAmelCase : Optional[int] = fx_model_loaded(**lowerCAmelCase__).to_tuple() self.assertEqual(len(lowerCAmelCase__), len(lowerCAmelCase__), "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCAmelCase__, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__) _lowerCAmelCase : Optional[int] = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__, from_flax=lowerCAmelCase__) pt_model_loaded.to(lowerCAmelCase__) pt_model_loaded.eval() with torch.no_grad(): _lowerCAmelCase : int = pt_model_loaded(**lowerCAmelCase__).to_tuple() self.assertEqual(len(lowerCAmelCase__), len(lowerCAmelCase__), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(lowerCAmelCase__, pt_output_loaded.numpy(), 4E-2) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : Dict = VisionTextDualEncoderModel(lowerCAmelCase__) _lowerCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__) _lowerCAmelCase : Dict = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCAmelCase__) _lowerCAmelCase : List[str] = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__, lowerCAmelCase__) _lowerCAmelCase : Optional[int] = VisionTextDualEncoderModel(lowerCAmelCase__) _lowerCAmelCase : List[Any] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__) _lowerCAmelCase : int = load_flax_weights_in_pytorch_model(lowerCAmelCase__, fx_model.params) self.check_pt_flax_equivalence(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__) @is_pt_flax_cross_test def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() _lowerCAmelCase : Tuple = config_inputs_dict.pop("vision_config") _lowerCAmelCase : int = config_inputs_dict.pop("text_config") _lowerCAmelCase : List[str] = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) self.check_equivalence_flax_to_pt(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_pretrained_model_and_inputs() _lowerCAmelCase : Optional[int] = model_a(**lowerCAmelCase__) _lowerCAmelCase : Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__) _lowerCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__) _lowerCAmelCase : str = model_a(**lowerCAmelCase__) _lowerCAmelCase : Dict = after_outputs[0] _lowerCAmelCase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCAmelCase__, 1E-5) @require_flax class UpperCAmelCase_ ( a__ , unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert", vision_from_pt=lowerCAmelCase__, text_from_pt=lowerCAmelCase__, ) _lowerCAmelCase : Any = 13 _lowerCAmelCase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowerCAmelCase : str = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowerCAmelCase : Optional[Any] = random_attention_mask([batch_size, 4]) _lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = FlaxViTModel(lowerCAmelCase__) _lowerCAmelCase : Dict = FlaxBertModel(lowerCAmelCase__) return vision_model, text_model def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = FlaxViTModelTester(self) _lowerCAmelCase : Dict = FlaxBertModelTester(self) _lowerCAmelCase : str = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Any = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Optional[int] = vision_config_and_inputs _lowerCAmelCase : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCAmelCase_ ( a__ , unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip", "hf-internal-testing/tiny-bert", vision_from_pt=lowerCAmelCase__, text_from_pt=lowerCAmelCase__, ) _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowerCAmelCase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowerCAmelCase : Tuple = random_attention_mask([batch_size, 4]) _lowerCAmelCase : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = FlaxCLIPVisionModel(lowerCAmelCase__) _lowerCAmelCase : Tuple = FlaxBertModel(lowerCAmelCase__) return vision_model, text_model def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = FlaxCLIPVisionModelTester(self) _lowerCAmelCase : Union[str, Any] = FlaxBertModelTester(self) _lowerCAmelCase : Dict = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Optional[int] = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Dict = vision_config_and_inputs _lowerCAmelCase : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", logit_scale_init_value=1.0) _lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian") _lowerCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") _lowerCAmelCase : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"], images=lowerCAmelCase__, padding=lowerCAmelCase__, return_tensors="np") _lowerCAmelCase : Optional[Any] = model(**lowerCAmelCase__) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowerCAmelCase : List[str] = np.array([[1.2_284_727, 0.3_104_122]]) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCAmelCase__, atol=1E-3))
363
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
0
from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
364
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
0
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return int(input_a == input_a == 0 ) def A ( ): '''simple docstring''' print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(F"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(F"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(F"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( _lowerCAmelCase): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead.", SCREAMING_SNAKE_CASE_, ) super().__init__(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_)
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE): lowerCamelCase__ = 'visual_bert' def __init__( self, __a=3_0522, __a=768, __a=512, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=False, __a=True, __a=1, __a=0, __a=2, **__a, ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__) _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : int = visual_embedding_dim _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : int = type_vocab_size _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : int = bypass_transformer _lowerCAmelCase : List[str] = special_visual_initialize
367
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 3 _lowerCAmelCase : Any = 250 _lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, length), __a) _lowerCAmelCase : Optional[int] = torch.ones((batch_size, length), device=__a, dtype=torch.float) / length return input_ids, scores def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self._get_tensors(5) _lowerCAmelCase : List[Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10), MaxTimeCriteria(max_time=0.1), ]) self.assertFalse(criteria(__a, __a)) _lowerCAmelCase : int = self._get_tensors(9) self.assertFalse(criteria(__a, __a)) _lowerCAmelCase : List[str] = self._get_tensors(10) self.assertTrue(criteria(__a, __a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = MaxLengthCriteria(max_length=10) _lowerCAmelCase : str = self._get_tensors(5) self.assertFalse(criteria(__a, __a)) _lowerCAmelCase : List[str] = self._get_tensors(9) self.assertFalse(criteria(__a, __a)) _lowerCAmelCase : str = self._get_tensors(10) self.assertTrue(criteria(__a, __a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = MaxNewTokensCriteria(start_length=5, max_new_tokens=5) _lowerCAmelCase : int = self._get_tensors(5) self.assertFalse(criteria(__a, __a)) _lowerCAmelCase : int = self._get_tensors(9) self.assertFalse(criteria(__a, __a)) _lowerCAmelCase : Any = self._get_tensors(10) self.assertTrue(criteria(__a, __a)) _lowerCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria]) self.assertEqual(criteria_list.max_length, 10) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self._get_tensors(5) _lowerCAmelCase : Dict = MaxTimeCriteria(max_time=0.1) self.assertFalse(criteria(__a, __a)) _lowerCAmelCase : Dict = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2) self.assertTrue(criteria(__a, __a)) def snake_case__ ( self): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 10) with self.assertWarns(__a): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 11) _lowerCAmelCase : str = validate_stopping_criteria(StoppingCriteriaList(), 11) self.assertEqual(len(__a), 1)
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
import math def A ( _lowerCamelCase = 100 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) _lowerCAmelCase : Optional[int] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
369
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _lowerCAmelCase , unittest.TestCase): lowerCamelCase__ = DiTPipeline lowerCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } lowerCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : List[Any] = TransformeraDModel( sample_size=16, num_layers=2, patch_size=4, attention_head_dim=8, num_attention_heads=2, in_channels=4, out_channels=8, attention_bias=_lowercase, activation_fn="gelu-approximate", num_embeds_ada_norm=1000, norm_type="ada_norm_zero", norm_elementwise_affine=_lowercase, ) _lowerCAmelCase : Optional[Any] = AutoencoderKL() _lowerCAmelCase : Dict = DDIMScheduler() _lowerCAmelCase : int = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' if str(_lowercase).startswith("mps"): _lowerCAmelCase : Optional[int] = torch.manual_seed(_lowercase) else: _lowerCAmelCase : Optional[int] = torch.Generator(device=_lowercase).manual_seed(_lowercase) _lowerCAmelCase : Union[str, Any] = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = "cpu" _lowerCAmelCase : str = self.get_dummy_components() _lowerCAmelCase : int = self.pipeline_class(**_lowercase) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) _lowerCAmelCase : Tuple = self.get_dummy_inputs(_lowercase) _lowerCAmelCase : int = pipe(**_lowercase).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 16, 16, 3)) _lowerCAmelCase : List[str] = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457]) _lowerCAmelCase : Tuple = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(_lowercase, 1E-3) def snake_case__ ( self): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=_lowercase, expected_max_diff=1E-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def snake_case__ ( self): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(0) _lowerCAmelCase : Optional[int] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256") pipe.to("cuda") _lowerCAmelCase : List[Any] = ["vase", "umbrella", "white shark", "white wolf"] _lowerCAmelCase : int = pipe.get_label_ids(_lowercase) _lowerCAmelCase : Tuple = pipe(_lowercase, generator=_lowercase, num_inference_steps=40, output_type="np").images for word, image in zip(_lowercase, _lowercase): _lowerCAmelCase : Dict = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy") assert np.abs((expected_image - image).max()) < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512") _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") _lowerCAmelCase : Optional[int] = ["vase", "umbrella"] _lowerCAmelCase : str = pipe.get_label_ids(_lowercase) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0) _lowerCAmelCase : Optional[int] = pipe(_lowercase, generator=_lowercase, num_inference_steps=25, output_type="np").images for word, image in zip(_lowercase, _lowercase): _lowerCAmelCase : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f"/dit/{word}_512.npy") assert np.abs((expected_image - image).max()) < 1E-1
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging _snake_case = logging.get_logger(__name__) _snake_case = R"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class UpperCAmelCase_ ( _a): @add_start_docstrings(__lowerCAmelCase) def __call__( self, __a, __a, **__a): '''simple docstring''' raise NotImplementedError("StoppingCriteria needs to be subclassed") class UpperCAmelCase_ ( _a): def __init__( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = max_length _lowerCAmelCase : Dict = max_position_embeddings @add_start_docstrings(__lowerCAmelCase) def __call__( self, __a, __a, **__a): '''simple docstring''' _lowerCAmelCase : Tuple = input_ids.shape[-1] _lowerCAmelCase : int = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " "exceptions, performance degradation, or nothing at all.") return is_done class UpperCAmelCase_ ( _a): def __init__( self, __a, __a): '''simple docstring''' warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " "with `max_length = start_length + max_new_tokens` instead.", __lowerCAmelCase, ) _lowerCAmelCase : Tuple = start_length _lowerCAmelCase : str = max_new_tokens _lowerCAmelCase : Dict = start_length + max_new_tokens @add_start_docstrings(__lowerCAmelCase) def __call__( self, __a, __a, **__a): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class UpperCAmelCase_ ( _a): def __init__( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Any = max_time _lowerCAmelCase : Any = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__lowerCAmelCase) def __call__( self, __a, __a, **__a): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class UpperCAmelCase_ ( _a): @add_start_docstrings(__lowerCAmelCase) def __call__( self, __a, __a, **__a): '''simple docstring''' return any(criteria(__lowerCAmelCase, __lowerCAmelCase) for criteria in self) @property def snake_case__ ( self): '''simple docstring''' for stopping_criterium in self: if isinstance(__lowerCAmelCase, __lowerCAmelCase): return stopping_criterium.max_length elif isinstance(__lowerCAmelCase, __lowerCAmelCase): return stopping_criterium.max_length return None def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = stopping_criteria.max_length _lowerCAmelCase : str = deepcopy(a__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , a__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=a__ ) ) return new_stopping_criteria
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
0