code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _snake_case = False class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a=32): '''simple docstring''' set_seed(0) _lowerCAmelCase : Optional[int] = UNetaDModel(sample_size=_A, in_channels=3, out_channels=3) _lowerCAmelCase : Union[str, Any] = torch.optim.SGD(model.parameters(), lr=0.0_001) return model, optimizer @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _lowerCAmelCase : int = DDPMScheduler( num_train_timesteps=1000, beta_start=0.0_001, beta_end=0.02, beta_schedule="linear", clip_sample=_A, ) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000, beta_start=0.0_001, beta_end=0.02, beta_schedule="linear", clip_sample=_A, ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) _lowerCAmelCase : Any = [torch.randn((4, 3, 32, 32)).clip(-1, 1).to(_A) for _ in range(4)] _lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 32, 32)).to(_A) for _ in range(4)] _lowerCAmelCase : List[str] = [torch.randint(0, 1000, (4,)).long().to(_A) for _ in range(4)] # train with a DDPM scheduler _lowerCAmelCase : Dict = self.get_model_optimizer(resolution=32) model.train().to(_A) for i in range(4): optimizer.zero_grad() _lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) _lowerCAmelCase : str = model(_A, timesteps[i]).sample _lowerCAmelCase : Dict = torch.nn.functional.mse_loss(_A, noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _lowerCAmelCase : List[str] = self.get_model_optimizer(resolution=32) model.train().to(_A) for i in range(4): optimizer.zero_grad() _lowerCAmelCase : Any = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) _lowerCAmelCase : int = model(_A, timesteps[i]).sample _lowerCAmelCase : Tuple = torch.nn.functional.mse_loss(_A, noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_A, _A, atol=1E-5)) self.assertTrue(torch.allclose(_A, _A, atol=1E-5))
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=30, __a=2, __a=3, __a=True, __a=True, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=10, __a=0.02, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : int = type_sequence_label_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : List[Any] = num_patches + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = ViTMSNModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Any = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = self.type_sequence_label_size _lowerCAmelCase : Tuple = ViTMSNForImageClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model(__a, labels=__a) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}") print("Labels: {labels}") self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowerCAmelCase : Any = 1 _lowerCAmelCase : Tuple = ViTMSNForImageClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCAmelCase : int = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase : List[str] = config_and_inputs _lowerCAmelCase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase): lowerCamelCase__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = ViTMSNModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(__a) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowerCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a, nn.Linear)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(__a) _lowerCAmelCase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] _lowerCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = ViTMSNModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small") if is_vision_available() else None @slow def snake_case__ ( self): '''simple docstring''' torch.manual_seed(2) _lowerCAmelCase : Optional[Any] = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small").to(__a) _lowerCAmelCase : int = self.default_image_processor _lowerCAmelCase : str = prepare_img() _lowerCAmelCase : str = image_processor(images=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**__a) # verify the logits _lowerCAmelCase : List[str] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : int = torch.tensor([-0.0_803, -0.4_454, -0.2_375]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3], __a, atol=1E-4))
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = len(lowerCAmelCase__ ) while cur > 1: # Find the maximum number in arr _lowerCAmelCase : Dict = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowerCAmelCase : Tuple = arr[mi::-1] + arr[mi + 1 : len(lowerCAmelCase__ )] # Reverse whole list _lowerCAmelCase : Optional[int] = arr[cur - 1 :: -1] + arr[cur : len(lowerCAmelCase__ )] cur -= 1 return arr if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = checkpoint _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Union[str, Any] = vae_state_dict["encoder.conv_in.weight"] _lowerCAmelCase : Dict = vae_state_dict["encoder.conv_in.bias"] _lowerCAmelCase : int = vae_state_dict["encoder.conv_out.weight"] _lowerCAmelCase : str = vae_state_dict["encoder.conv_out.bias"] _lowerCAmelCase : List[str] = vae_state_dict["encoder.norm_out.weight"] _lowerCAmelCase : List[Any] = vae_state_dict["encoder.norm_out.bias"] _lowerCAmelCase : List[Any] = vae_state_dict["decoder.conv_in.weight"] _lowerCAmelCase : Union[str, Any] = vae_state_dict["decoder.conv_in.bias"] _lowerCAmelCase : Optional[int] = vae_state_dict["decoder.conv_out.weight"] _lowerCAmelCase : Union[str, Any] = vae_state_dict["decoder.conv_out.bias"] _lowerCAmelCase : Optional[int] = vae_state_dict["decoder.norm_out.weight"] _lowerCAmelCase : int = vae_state_dict["decoder.norm_out.bias"] _lowerCAmelCase : Optional[Any] = vae_state_dict["quant_conv.weight"] _lowerCAmelCase : Optional[int] = vae_state_dict["quant_conv.bias"] _lowerCAmelCase : List[str] = vae_state_dict["post_quant_conv.weight"] _lowerCAmelCase : List[str] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only _lowerCAmelCase : Optional[Any] = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) _lowerCAmelCase : Optional[int] = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(_lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only _lowerCAmelCase : str = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) _lowerCAmelCase : Optional[Any] = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(_lowerCamelCase ) } for i in range(_lowerCamelCase ): _lowerCAmelCase : str = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: _lowerCAmelCase : str = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) _lowerCAmelCase : Dict = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) _lowerCAmelCase : Tuple = renew_vae_resnet_paths(_lowerCamelCase ) _lowerCAmelCase : List[str] = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = [key for key in vae_state_dict if "encoder.mid.block" in key] _lowerCAmelCase : List[str] = 2 for i in range(1 , num_mid_res_blocks + 1 ): _lowerCAmelCase : int = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] _lowerCAmelCase : List[str] = renew_vae_resnet_paths(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) _lowerCAmelCase : List[Any] = [key for key in vae_state_dict if "encoder.mid.attn" in key] _lowerCAmelCase : Union[str, Any] = renew_vae_attention_paths(_lowerCamelCase ) _lowerCAmelCase : int = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) conv_attn_to_linear(_lowerCamelCase ) for i in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = num_up_blocks - 1 - i _lowerCAmelCase : Optional[int] = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: _lowerCAmelCase : Any = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] _lowerCAmelCase : Any = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] _lowerCAmelCase : str = renew_vae_resnet_paths(_lowerCamelCase ) _lowerCAmelCase : Dict = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) _lowerCAmelCase : List[str] = [key for key in vae_state_dict if "decoder.mid.block" in key] _lowerCAmelCase : Dict = 2 for i in range(1 , num_mid_res_blocks + 1 ): _lowerCAmelCase : Optional[int] = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] _lowerCAmelCase : int = renew_vae_resnet_paths(_lowerCamelCase ) _lowerCAmelCase : List[str] = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) _lowerCAmelCase : List[Any] = [key for key in vae_state_dict if "decoder.mid.attn" in key] _lowerCAmelCase : Optional[Any] = renew_vae_attention_paths(_lowerCamelCase ) _lowerCAmelCase : Any = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) conv_attn_to_linear(_lowerCamelCase ) return new_checkpoint def A ( _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : List[str] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) _lowerCAmelCase : Union[str, Any] = io.BytesIO(r.content ) _lowerCAmelCase : List[Any] = OmegaConf.load(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = 512 _lowerCAmelCase : str = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open _lowerCAmelCase : Dict = {} with safe_open(_lowerCamelCase , framework="pt" , device="cpu" ) as f: for key in f.keys(): _lowerCAmelCase : Optional[int] = f.get_tensor(_lowerCamelCase ) else: _lowerCAmelCase : List[str] = torch.load(_lowerCamelCase , map_location=_lowerCamelCase )["state_dict"] # Convert the VAE model. _lowerCAmelCase : Optional[Any] = create_vae_diffusers_config(_lowerCamelCase , image_size=_lowerCamelCase ) _lowerCAmelCase : List[str] = custom_convert_ldm_vae_checkpoint(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = AutoencoderKL(**_lowerCamelCase ) vae.load_state_dict(_lowerCamelCase ) vae.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") _snake_case = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _snake_case = False, False, False @dataclass class UpperCAmelCase_ : lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = None # Automatically constructed lowerCamelCase__ = "dict" lowerCamelCase__ = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) lowerCamelCase__ = field(default='Audio' , init=lowercase_ , repr=lowercase_) def __call__( self): '''simple docstring''' return self.pa_type def snake_case__ ( self, __a): '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'.") from err if isinstance(a__, a__): return {"bytes": None, "path": value} elif isinstance(a__, a__): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCAmelCase : Optional[Any] = BytesIO() sf.write(a__, value["array"], value["sampling_rate"], format="wav") return {"bytes": buffer.getvalue(), "path": None} elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm"): # "PCM" only has raw audio bytes if value.get("sampling_rate") is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object") if value.get("bytes"): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCAmelCase : Optional[int] = np.frombuffer(value["bytes"], dtype=np.intaa).astype(np.floataa) / 3_2767 else: _lowerCAmelCase : Optional[int] = np.memmap(value["path"], dtype="h", mode="r").astype(np.floataa) / 3_2767 _lowerCAmelCase : Tuple = BytesIO(bytes()) sf.write(a__, a__, value["sampling_rate"], format="wav") return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError( f"An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.") def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead.") _lowerCAmelCase , _lowerCAmelCase : int = (value["path"], BytesIO(value["bytes"])) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'.") from err _lowerCAmelCase : Any = xsplitext(a__)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ") elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. ") if file is None: _lowerCAmelCase : List[Any] = token_per_repo_id or {} _lowerCAmelCase : Dict = path.split("::")[-1] try: _lowerCAmelCase : List[Any] = string_to_dict(a__, config.HUB_DATASETS_URL)["repo_id"] _lowerCAmelCase : Union[str, Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCAmelCase : Union[str, Any] = None with xopen(a__, "rb", use_auth_token=a__) as f: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = sf.read(a__) else: _lowerCAmelCase , _lowerCAmelCase : Dict = sf.read(a__) _lowerCAmelCase : List[str] = array.T if self.mono: _lowerCAmelCase : str = librosa.to_mono(a__) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCAmelCase : Optional[Any] = librosa.resample(a__, orig_sr=a__, target_sr=self.sampling_rate) _lowerCAmelCase : Any = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def snake_case__ ( self): '''simple docstring''' from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature.") return { "bytes": Value("binary"), "path": Value("string"), } def snake_case__ ( self, __a): '''simple docstring''' if pa.types.is_string(storage.type): _lowerCAmelCase : Optional[Any] = pa.array([None] * len(a__), type=pa.binary()) _lowerCAmelCase : Dict = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_binary(storage.type): _lowerCAmelCase : int = pa.array([None] * len(a__), type=pa.string()) _lowerCAmelCase : str = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("array"): _lowerCAmelCase : Union[str, Any] = pa.array([Audio().encode_example(a__) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: _lowerCAmelCase : str = storage.field("bytes") else: _lowerCAmelCase : Any = pa.array([None] * len(a__), type=pa.binary()) if storage.type.get_field_index("path") >= 0: _lowerCAmelCase : str = storage.field("path") else: _lowerCAmelCase : Union[str, Any] = pa.array([None] * len(a__), type=pa.string()) _lowerCAmelCase : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null()) return array_cast(a__, self.pa_type) def snake_case__ ( self, __a): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__a): with xopen(a__, "rb") as f: _lowerCAmelCase : Dict = f.read() return bytes_ _lowerCAmelCase : Tuple = pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) _lowerCAmelCase : Tuple = pa.array( [os.path.basename(a__) if path is not None else None for path in storage.field("path").to_pylist()], type=pa.string(), ) _lowerCAmelCase : int = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) return array_cast(a__, self.pa_type)
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) _lowerCAmelCase : int = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=UpperCamelCase_, set_alpha_to_one=UpperCamelCase_, ) torch.manual_seed(0) _lowerCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0) _lowerCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, projection_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=5002, ) _lowerCAmelCase : Union[str, Any] = CLIPTextModel(UpperCamelCase_) _lowerCAmelCase : List[Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") _lowerCAmelCase : List[str] = 77 _lowerCAmelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' if str(UpperCamelCase_).startswith("mps"): _lowerCAmelCase : Union[str, Any] = torch.manual_seed(UpperCamelCase_) else: _lowerCAmelCase : int = torch.Generator(device=UpperCamelCase_).manual_seed(UpperCamelCase_) _lowerCAmelCase : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3) def snake_case__ ( self): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[int] = self.get_dummy_components() torch.manual_seed(0) _lowerCAmelCase : Tuple = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, vocab_size=5002, ) # TODO: remove after fixing the non-deterministic text encoder _lowerCAmelCase : int = RobertaSeriesModelWithTransformation(UpperCamelCase_) _lowerCAmelCase : Tuple = text_encoder _lowerCAmelCase : Any = AltDiffusionPipeline(**UpperCamelCase_) _lowerCAmelCase : Any = alt_pipe.to(UpperCamelCase_) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_) _lowerCAmelCase : Optional[int] = self.get_dummy_inputs(UpperCamelCase_) _lowerCAmelCase : Dict = "A photo of an astronaut" _lowerCAmelCase : str = alt_pipe(**UpperCamelCase_) _lowerCAmelCase : int = output.images _lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Dict = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : str = self.get_dummy_components() _lowerCAmelCase : Dict = PNDMScheduler(skip_prk_steps=UpperCamelCase_) torch.manual_seed(0) _lowerCAmelCase : List[str] = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, vocab_size=5002, ) # TODO: remove after fixing the non-deterministic text encoder _lowerCAmelCase : str = RobertaSeriesModelWithTransformation(UpperCamelCase_) _lowerCAmelCase : Optional[Any] = text_encoder _lowerCAmelCase : List[str] = AltDiffusionPipeline(**UpperCamelCase_) _lowerCAmelCase : List[Any] = alt_pipe.to(UpperCamelCase_) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_) _lowerCAmelCase : Optional[int] = self.get_dummy_inputs(UpperCamelCase_) _lowerCAmelCase : str = alt_pipe(**UpperCamelCase_) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : int = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=UpperCamelCase_) _lowerCAmelCase : List[str] = alt_pipe.to(UpperCamelCase_) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_) _lowerCAmelCase : List[Any] = "A painting of a squirrel eating a burger" _lowerCAmelCase : Optional[Any] = torch.manual_seed(0) _lowerCAmelCase : Optional[int] = alt_pipe([prompt], generator=UpperCamelCase_, guidance_scale=6.0, num_inference_steps=20, output_type="np") _lowerCAmelCase : str = output.images _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Optional[int] = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler") _lowerCAmelCase : Dict = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=UpperCamelCase_, safety_checker=UpperCamelCase_) _lowerCAmelCase : Union[str, Any] = alt_pipe.to(UpperCamelCase_) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_) _lowerCAmelCase : List[str] = "A painting of a squirrel eating a burger" _lowerCAmelCase : Tuple = torch.manual_seed(0) _lowerCAmelCase : str = alt_pipe([prompt], generator=UpperCamelCase_, num_inference_steps=2, output_type="numpy") _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
355
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowerCAmelCase : Any = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } _lowerCAmelCase : int = F"{src_lang}-{tgt_lang}" _lowerCAmelCase : List[Any] = F"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ ) _lowerCAmelCase : Union[str, Any] = os.path.join(lowerCamelCase_ , "README.md" ) print(F"Generating {path}" ) with open(lowerCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(lowerCamelCase_ ) # make sure we are under the root of the project _snake_case = Path(__file__).resolve().parent.parent.parent _snake_case = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _snake_case = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _snake_case = logging.get_logger(__name__) _snake_case = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class UpperCAmelCase_ : def __init__( self, __a=None, **__a): '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future.") _lowerCAmelCase : int = model _lowerCAmelCase : str = kwargs.get("model_save_dir", _A) _lowerCAmelCase : Union[str, Any] = kwargs.get("latest_model_name", _A) def __call__( self, **__a): '''simple docstring''' _lowerCAmelCase : Dict = {k: np.array(_A) for k, v in kwargs.items()} return self.model.run(_A, _A) @staticmethod def snake_case__ ( __a, __a=None, __a=None): '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider") _lowerCAmelCase : Optional[Any] = 'CPUExecutionProvider' return ort.InferenceSession(_A, providers=[provider], sess_options=_A) def snake_case__ ( self, __a, __a = None, **__a): '''simple docstring''' _lowerCAmelCase : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME _lowerCAmelCase : Any = self.model_save_dir.joinpath(self.latest_model_name) _lowerCAmelCase : Union[str, Any] = Path(_A).joinpath(_A) try: shutil.copyfile(_A, _A) except shutil.SameFileError: pass # copy external weights (for models >2GB) _lowerCAmelCase : Optional[Any] = self.model_save_dir.joinpath(_A) if src_path.exists(): _lowerCAmelCase : Tuple = Path(_A).joinpath(_A) try: shutil.copyfile(_A, _A) except shutil.SameFileError: pass def snake_case__ ( self, __a, **__a, ): '''simple docstring''' if os.path.isfile(_A): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(_A, exist_ok=_A) # saving model weights/files self._save_pretrained(_A, **_A) @classmethod def snake_case__ ( cls, __a, __a = None, __a = None, __a = False, __a = None, __a = None, __a = None, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_A): _lowerCAmelCase : int = OnnxRuntimeModel.load_model( os.path.join(_A, _A), provider=_A, sess_options=_A) _lowerCAmelCase : Tuple = Path(_A) # load model from hub else: # download model _lowerCAmelCase : int = hf_hub_download( repo_id=_A, filename=_A, use_auth_token=_A, revision=_A, cache_dir=_A, force_download=_A, ) _lowerCAmelCase : Any = Path(_A).parent _lowerCAmelCase : List[str] = Path(_A).name _lowerCAmelCase : int = OnnxRuntimeModel.load_model(_A, provider=_A, sess_options=_A) return cls(model=_A, **_A) @classmethod def snake_case__ ( cls, __a, __a = True, __a = None, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = None if len(str(_A).split("@")) == 2: _lowerCAmelCase : int = model_id.split("@") return cls._from_pretrained( model_id=_A, revision=_A, cache_dir=_A, force_download=_A, use_auth_token=_A, **_A, )
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = F"{sampling_rate}" _lowerCAmelCase : int = '1' _lowerCAmelCase : Tuple = 'f32le' _lowerCAmelCase : int = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(_A , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _lowerCAmelCase : Dict = ffmpeg_process.communicate(_A ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error _lowerCAmelCase : Union[str, Any] = output_stream[0] _lowerCAmelCase : Dict = np.frombuffer(_A , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "f32le" , ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"{sampling_rate}" _lowerCAmelCase : Any = '1' if format_for_conversion == "s16le": _lowerCAmelCase : Optional[int] = 2 elif format_for_conversion == "f32le": _lowerCAmelCase : Optional[int] = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) _lowerCAmelCase : Optional[Any] = platform.system() if system == "Linux": _lowerCAmelCase : Optional[int] = 'alsa' _lowerCAmelCase : Union[str, Any] = 'default' elif system == "Darwin": _lowerCAmelCase : Dict = 'avfoundation' _lowerCAmelCase : Optional[int] = ':0' elif system == "Windows": _lowerCAmelCase : Optional[int] = 'dshow' _lowerCAmelCase : int = 'default' _lowerCAmelCase : Optional[Any] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] _lowerCAmelCase : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _lowerCAmelCase : Optional[int] = _ffmpeg_stream(_A , _A ) for item in iterator: yield item def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: _lowerCAmelCase : Union[str, Any] = stream_chunk_s else: _lowerCAmelCase : str = chunk_length_s _lowerCAmelCase : List[Any] = ffmpeg_microphone(_A , _A , format_for_conversion=_A ) if format_for_conversion == "s16le": _lowerCAmelCase : Tuple = np.intaa _lowerCAmelCase : Optional[Any] = 2 elif format_for_conversion == "f32le": _lowerCAmelCase : Union[str, Any] = np.floataa _lowerCAmelCase : Optional[int] = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: _lowerCAmelCase : List[str] = chunk_length_s / 6 _lowerCAmelCase : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_A , (int, float) ): _lowerCAmelCase : Any = [stride_length_s, stride_length_s] _lowerCAmelCase : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _lowerCAmelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _lowerCAmelCase : List[Any] = datetime.datetime.now() _lowerCAmelCase : Any = datetime.timedelta(seconds=_A ) for item in chunk_bytes_iter(_A , _A , stride=(stride_left, stride_right) , stream=_A ): # Put everything back in numpy scale _lowerCAmelCase : List[str] = np.frombuffer(item["raw"] , dtype=_A ) _lowerCAmelCase : List[Any] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) _lowerCAmelCase : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' _lowerCAmelCase : int = B'' _lowerCAmelCase : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) _lowerCAmelCase : Dict = 0 for raw in iterator: acc += raw if stream and len(_A ) < chunk_len: _lowerCAmelCase : List[Any] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_A ) >= chunk_len: # We are flushing the accumulator _lowerCAmelCase : Optional[int] = (_stride_left, stride_right) _lowerCAmelCase : Tuple = {'raw': acc[:chunk_len], 'stride': stride} if stream: _lowerCAmelCase : int = False yield item _lowerCAmelCase : Dict = stride_left _lowerCAmelCase : List[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_A ) > stride_left: _lowerCAmelCase : Optional[int] = {'raw': acc, 'stride': (_stride_left, 0)} if stream: _lowerCAmelCase : int = False yield item def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 2**24 # 16Mo try: with subprocess.Popen(_A , stdout=subprocess.PIPE , bufsize=_A ) as ffmpeg_process: while True: _lowerCAmelCase : Dict = ffmpeg_process.stdout.read(_A ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=16, __a=36, __a=6, __a=6, __a=6, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : str = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Dict = use_token_type_ids _lowerCAmelCase : int = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : str = embedding_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : Any = num_hidden_groups _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[Any] = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : Union[str, Any] = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Tuple = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, num_hidden_groups=self.num_hidden_groups, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = AlbertModel(config=A__) model.to(A__) model.eval() _lowerCAmelCase : str = model(A__, attention_mask=A__, token_type_ids=A__) _lowerCAmelCase : Tuple = model(A__, token_type_ids=A__) _lowerCAmelCase : Optional[Any] = model(A__) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = AlbertForPreTraining(config=A__) model.to(A__) model.eval() _lowerCAmelCase : Optional[Any] = model( A__, attention_mask=A__, token_type_ids=A__, labels=A__, sentence_order_label=A__, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, config.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = AlbertForMaskedLM(config=A__) model.to(A__) model.eval() _lowerCAmelCase : Optional[int] = model(A__, attention_mask=A__, token_type_ids=A__, labels=A__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = AlbertForQuestionAnswering(config=A__) model.to(A__) model.eval() _lowerCAmelCase : Any = model( A__, attention_mask=A__, token_type_ids=A__, start_positions=A__, end_positions=A__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : Optional[Any] = AlbertForSequenceClassification(A__) model.to(A__) model.eval() _lowerCAmelCase : List[str] = model(A__, attention_mask=A__, token_type_ids=A__, labels=A__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Optional[Any] = AlbertForTokenClassification(config=A__) model.to(A__) model.eval() _lowerCAmelCase : str = model(A__, attention_mask=A__, token_type_ids=A__, labels=A__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.num_choices _lowerCAmelCase : Dict = AlbertForMultipleChoice(config=A__) model.to(A__) model.eval() _lowerCAmelCase : Any = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowerCAmelCase : Optional[int] = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowerCAmelCase : Union[str, Any] = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowerCAmelCase : int = model( A__, attention_mask=A__, token_type_ids=A__, labels=A__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Any = config_and_inputs _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): lowerCamelCase__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Any = super()._prepare_for_class(A__, A__, return_labels=A__) if return_labels: if model_class in get_values(A__): _lowerCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=A__) _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A__) return inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AlbertModelTester(self) _lowerCAmelCase : int = ConfigTester(self, config_class=A__, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Optional[Any] = type self.model_tester.create_and_check_model(*A__) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[Any] = AlbertModel.from_pretrained(A__) self.assertIsNotNone(A__) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = AlbertModel.from_pretrained("albert-base-v2") _lowerCAmelCase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) _lowerCAmelCase : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(A__, attention_mask=A__)[0] _lowerCAmelCase : Dict = torch.Size((1, 11, 768)) self.assertEqual(output.shape, A__) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], A__, atol=1E-4))
359
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if "." in tensor_name: _lowerCAmelCase : Union[str, Any] = tensor_name.split("." ) for split in splits[:-1]: _lowerCAmelCase : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) _lowerCAmelCase : Union[str, Any] = new_module _lowerCAmelCase : List[Any] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"{module} does not have a parameter or a buffer named {tensor_name}." ) _lowerCAmelCase : Tuple = tensor_name in module._buffers _lowerCAmelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : List[Any] = False if is_buffer or not is_bitsandbytes_available(): _lowerCAmelCase : str = False _lowerCAmelCase : str = False else: _lowerCAmelCase : Dict = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _lowerCAmelCase : List[Any] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _lowerCAmelCase : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _lowerCAmelCase : str = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): _lowerCAmelCase : Union[str, Any] = value.to("cpu" ) if value.dtype == torch.inta: _lowerCAmelCase : Optional[int] = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: _lowerCAmelCase : int = torch.tensor(_lowerCamelCase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowerCamelCase ) and fpaa_statistics is None: _lowerCAmelCase : Any = new_value.T _lowerCAmelCase : Union[str, Any] = old_value.__dict__ if is_abit: _lowerCAmelCase : Any = bnb.nn.IntaParams(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) elif is_abit: _lowerCAmelCase : Union[str, Any] = bnb.nn.Paramsabit(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) _lowerCAmelCase : Tuple = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(_lowerCamelCase ) ) else: if value is None: _lowerCAmelCase : Optional[int] = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): _lowerCAmelCase : int = value.to(_lowerCamelCase ) else: _lowerCAmelCase : List[str] = torch.tensor(_lowerCamelCase , device=_lowerCamelCase ) if is_buffer: _lowerCAmelCase : List[str] = new_value else: _lowerCAmelCase : int = nn.Parameter(_lowerCamelCase , requires_grad=old_value.requires_grad ) _lowerCAmelCase : Union[str, Any] = new_value def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: _lowerCAmelCase : List[str] = [] current_key_name.append(_lowerCamelCase ) if (isinstance(_lowerCamelCase , nn.Linear ) or isinstance(_lowerCamelCase , _lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(_lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = module.weight.shape else: _lowerCAmelCase : Tuple = module.in_features _lowerCAmelCase : Any = module.out_features if quantization_config.quantization_method() == "llm_int8": _lowerCAmelCase : List[Any] = bnb.nn.LinearabitLt( _lowerCamelCase , _lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _lowerCAmelCase : Dict = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _lowerCAmelCase : str = bnb.nn.Linearabit( _lowerCamelCase , _lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _lowerCAmelCase : Optional[Any] = True # Store the module class in case we need to transpose the weight later _lowerCAmelCase : str = type(_lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowerCamelCase ) if len(list(module.children() ) ) > 0: _lowerCAmelCase , _lowerCAmelCase : int = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_been_replaced=_lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert _lowerCAmelCase , _lowerCAmelCase : List[Any] = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def A ( *_lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , _lowerCamelCase , ) return replace_with_bnb_linear(*_lowerCamelCase , **_lowerCamelCase ) def A ( *_lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , _lowerCamelCase , ) return set_module_quantized_tensor_to_device(*_lowerCamelCase , **_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = deepcopy(_lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _lowerCAmelCase : List[Any] = find_tied_parameters(_lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowerCAmelCase : Union[str, Any] = sum(_lowerCamelCase , [] ) _lowerCAmelCase : List[Any] = len(_lowerCamelCase ) > 0 # Check if it is a base model _lowerCAmelCase : Optional[int] = not hasattr(_lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowerCAmelCase : Tuple = list(model.named_children() ) _lowerCAmelCase : List[Any] = [list_modules[-1][0]] # add last module together with tied weights _lowerCAmelCase : Any = set(_lowerCamelCase ) - set(_lowerCamelCase ) _lowerCAmelCase : List[str] = list(set(_lowerCamelCase ) ) + list(_lowerCamelCase ) # remove ".weight" from the keys _lowerCAmelCase : Tuple = [".weight", ".bias"] _lowerCAmelCase : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowerCAmelCase : str = name.replace(_lowerCamelCase , "" ) filtered_module_names.append(_lowerCamelCase ) return filtered_module_names
360
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCAmelCase_ ( lowerCamelCase__): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__A, "hidden_sizes")) self.parent.assertTrue(hasattr(__A, "num_attention_heads")) self.parent.assertTrue(hasattr(__A, "num_encoder_blocks")) class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=64, __a=3, __a=4, __a=[2, 2, 2, 2], __a=[8, 4, 2, 1], __a=[16, 32, 64, 128], __a=[1, 4, 8, 16], __a=[1, 2, 4, 8], __a=True, __a=True, __a="gelu", __a=0.1, __a=0.1, __a=0.02, __a=3, __a=None, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = num_encoder_blocks _lowerCAmelCase : int = sr_ratios _lowerCAmelCase : Tuple = depths _lowerCAmelCase : List[Any] = hidden_sizes _lowerCAmelCase : Tuple = downsampling_rates _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : Tuple = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' return SegformerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = SegformerModel(config=__A) model.to(__A) model.eval() _lowerCAmelCase : Optional[Any] = model(__A) _lowerCAmelCase : Tuple = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Dict = SegformerForSemanticSegmentation(__A) model.to(__A) model.eval() _lowerCAmelCase : Optional[Any] = model(__A) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) _lowerCAmelCase : Union[str, Any] = model(__A, labels=__A) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss, 0.0) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = 1 _lowerCAmelCase : Dict = SegformerForSemanticSegmentation(config=__A) model.to(__A) model.eval() _lowerCAmelCase : str = torch.randint(0, 1, (self.batch_size, self.image_size, self.image_size)).to(__A) _lowerCAmelCase : List[str] = model(__A, labels=__A) self.parent.assertGreater(result.loss, 0.0) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() _lowerCAmelCase : Optional[Any] = config_and_inputs _lowerCAmelCase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): lowerCamelCase__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = SegformerModelTester(self) _lowerCAmelCase : Optional[Any] = SegformerConfigTester(self, config_class=__A) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__A) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__A) @unittest.skip("SegFormer does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(__A) _lowerCAmelCase : Optional[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Tuple = True for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Dict = True _lowerCAmelCase : int = model_class(__A) model.to(__A) model.eval() with torch.no_grad(): _lowerCAmelCase : int = model(**self._prepare_for_class(__A, __A)) _lowerCAmelCase : List[str] = outputs.attentions _lowerCAmelCase : str = sum(self.model_tester.depths) self.assertEqual(len(__A), __A) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : List[str] = model_class(__A) model.to(__A) model.eval() with torch.no_grad(): _lowerCAmelCase : List[str] = model(**self._prepare_for_class(__A, __A)) _lowerCAmelCase : Union[str, Any] = outputs.attentions self.assertEqual(len(__A), __A) # verify the first attentions (first block, first layer) _lowerCAmelCase : Optional[int] = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase : str = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) _lowerCAmelCase : Union[str, Any] = (self.model_tester.image_size // 32) ** 2 _lowerCAmelCase : Dict = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) _lowerCAmelCase : Dict = len(__A) # Check attention is always last and order is fine _lowerCAmelCase : str = True _lowerCAmelCase : List[Any] = True _lowerCAmelCase : List[Any] = model_class(__A) model.to(__A) model.eval() with torch.no_grad(): _lowerCAmelCase : Any = model(**self._prepare_for_class(__A, __A)) self.assertEqual(out_len + 1, len(__A)) _lowerCAmelCase : Optional[int] = outputs.attentions self.assertEqual(len(__A), __A) # verify the first attentions (first block, first layer) _lowerCAmelCase : Any = (self.model_tester.image_size // 4) ** 2 _lowerCAmelCase : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def snake_case__ ( self): '''simple docstring''' def check_hidden_states_output(__a, __a, __a): _lowerCAmelCase : int = model_class(__A) model.to(__A) model.eval() with torch.no_grad(): _lowerCAmelCase : Any = model(**self._prepare_for_class(__A, __A)) _lowerCAmelCase : Tuple = outputs.hidden_states _lowerCAmelCase : Dict = self.model_tester.num_encoder_blocks self.assertEqual(len(__A), __A) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = True check_hidden_states_output(__A, __A, __A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Dict = True check_hidden_states_output(__A, __A, __A) def snake_case__ ( self): '''simple docstring''' if not self.model_tester.is_training: return _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : str = True for model_class in self.all_model_classes: if model_class in get_values(__A): continue _lowerCAmelCase : Optional[Any] = model_class(__A) model.to(__A) model.train() _lowerCAmelCase : Tuple = self._prepare_for_class(__A, __A, return_labels=__A) _lowerCAmelCase : str = model(**__A).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = SegformerModel.from_pretrained(__A) self.assertIsNotNone(__A) def A ( ): '''simple docstring''' _lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=__A, align=__A, do_random_crop=__A) _lowerCAmelCase : Tuple = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( __A) _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[Any] = image_processor(images=__A, return_tensors="pt") _lowerCAmelCase : List[Any] = encoded_inputs.pixel_values.to(__A) with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(__A) _lowerCAmelCase : int = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, __A) _lowerCAmelCase : Any = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ]).to(__A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], __A, atol=1E-4)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=__A, align=__A, do_random_crop=__A) _lowerCAmelCase : List[str] = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024").to(__A) _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : Optional[int] = image_processor(images=__A, return_tensors="pt") _lowerCAmelCase : List[Any] = encoded_inputs.pixel_values.to(__A) with torch.no_grad(): _lowerCAmelCase : str = model(__A) _lowerCAmelCase : Any = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, __A) _lowerCAmelCase : Any = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ]).to(__A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], __A, atol=1E-1)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=__A, align=__A, do_random_crop=__A) _lowerCAmelCase : Union[str, Any] = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( __A) _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[Any] = image_processor(images=__A, return_tensors="pt") _lowerCAmelCase : Dict = encoded_inputs.pixel_values.to(__A) with torch.no_grad(): _lowerCAmelCase : str = model(__A) _lowerCAmelCase : Tuple = outputs.logits.detach().cpu() _lowerCAmelCase : str = image_processor.post_process_semantic_segmentation(outputs=__A, target_sizes=[(500, 300)]) _lowerCAmelCase : List[Any] = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape, __A) _lowerCAmelCase : str = image_processor.post_process_semantic_segmentation(outputs=__A) _lowerCAmelCase : List[str] = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape, __A)
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _snake_case = "bert-base-cased" _snake_case = "fp16" _snake_case = "bf16" _snake_case = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Tuple = dict( ACCELERATE_USE_FSDP="true", MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1", ) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__a): _lowerCAmelCase : List[str] = self.dist_env.copy() _lowerCAmelCase : List[Any] = f"{i + 1}" _lowerCAmelCase : List[str] = strategy with mockenv_context(**__a): _lowerCAmelCase : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy, ShardingStrategy(i + 1)) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__a): _lowerCAmelCase : Union[str, Any] = self.dist_env.copy() _lowerCAmelCase : Optional[Any] = prefetch_policy with mockenv_context(**__a): _lowerCAmelCase : Optional[Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch, BackwardPrefetch(i + 1)) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__a): _lowerCAmelCase : int = self.dist_env.copy() _lowerCAmelCase : List[Any] = state_dict_type with mockenv_context(**__a): _lowerCAmelCase : Optional[int] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type, StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoModel.from_pretrained(__a) for policy in FSDP_AUTO_WRAP_POLICY: _lowerCAmelCase : Union[str, Any] = self.dist_env.copy() _lowerCAmelCase : Tuple = policy if policy == "TRANSFORMER_BASED_WRAP": _lowerCAmelCase : Any = "BertLayer" elif policy == "SIZE_BASED_WRAP": _lowerCAmelCase : int = "2000" with mockenv_context(**__a): _lowerCAmelCase : Dict = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) _lowerCAmelCase : Dict = self.dist_env.copy() _lowerCAmelCase : int = "TRANSFORMER_BASED_WRAP" _lowerCAmelCase : int = "T5Layer" with mockenv_context(**__a): _lowerCAmelCase : str = FullyShardedDataParallelPlugin() with self.assertRaises(__a) as cm: fsdp_plugin.set_auto_wrap_policy(__a) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception)) _lowerCAmelCase : List[str] = self.dist_env.copy() _lowerCAmelCase : Dict = "SIZE_BASED_WRAP" _lowerCAmelCase : Optional[int] = "0" with mockenv_context(**__a): _lowerCAmelCase : Dict = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _lowerCAmelCase : Tuple = self.dist_env.copy() _lowerCAmelCase : List[str] = mp_dtype with mockenv_context(**__a): _lowerCAmelCase : Union[str, Any] = Accelerator() if mp_dtype == "fp16": _lowerCAmelCase : Dict = torch.floataa elif mp_dtype == "bf16": _lowerCAmelCase : Optional[Any] = torch.bfloataa _lowerCAmelCase : Tuple = MixedPrecision(param_dtype=__a, reduce_dtype=__a, buffer_dtype=__a) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy, __a) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler, __a)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(__a) def snake_case__ ( self): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _lowerCAmelCase : Union[str, Any] = self.dist_env.copy() _lowerCAmelCase : List[Any] = str(__a).lower() with mockenv_context(**__a): _lowerCAmelCase : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload, CPUOffload(offload_params=__a)) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : str = 0.82 _lowerCAmelCase : Dict = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _lowerCAmelCase : Union[str, Any] = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _lowerCAmelCase : Any = 160 _lowerCAmelCase : int = 160 _lowerCAmelCase : List[str] = inspect.getfile(accelerate.test_utils) _lowerCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = os.path.join(self.test_scripts_folder, "test_performance.py") _lowerCAmelCase : Optional[int] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _lowerCAmelCase : List[Any] = cmd.copy() for i, strategy in enumerate(__a): if strategy.lower() in config: cmd_config.append(f"--fsdp_sharding_strategy={i+1}") break if "fp32" in config: cmd_config.append("--mixed_precision=no") else: cmd_config.append("--mixed_precision=fp16") if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__a, env=os.environ.copy()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = os.path.join(self.test_scripts_folder, "test_checkpointing.py") _lowerCAmelCase : Tuple = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(__a): _lowerCAmelCase : List[Any] = cmd.copy() cmd_config.append(f"--fsdp_sharding_strategy={i+1}") if strategy != "FULL_SHARD": continue _lowerCAmelCase : int = len(__a) for state_dict_type in FSDP_STATE_DICT_TYPE: _lowerCAmelCase : int = cmd_config[:state_dict_config_index] cmd_config.append(f"--fsdp_state_dict_type={state_dict_type}") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", "--partial_train_epoch=1", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__a, env=os.environ.copy()) _lowerCAmelCase : Optional[int] = cmd_config[:-1] _lowerCAmelCase : Tuple = os.path.join(self.tmpdir, "epoch_0") cmd_config.extend( [ f"--resume_from_checkpoint={resume_from_checkpoint}", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__a, env=os.environ.copy()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = os.path.join(self.test_scripts_folder, "test_peak_memory_usage.py") _lowerCAmelCase : List[str] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _lowerCAmelCase : List[str] = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"]) else: cmd_config.extend(["--mixed_precision=no"]) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"]) for i, strategy in enumerate(__a): if strategy.lower() in spec: cmd_config.append(f"--fsdp_sharding_strategy={i+1}") break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--peak_memory_upper_bound={peak_mem_upper_bound}", f"--n_train={self.n_train}", f"--n_val={self.n_val}", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__a, env=os.environ.copy())
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = len(UpperCAmelCase__ ) while cur > 1: # Find the maximum number in arr _lowerCAmelCase : Optional[Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowerCAmelCase : Optional[int] = arr[mi::-1] + arr[mi + 1 : len(UpperCAmelCase__ )] # Reverse whole list _lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(UpperCAmelCase__ )] cur -= 1 return arr if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
363
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( snake_case__): lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """Pix2StructImageProcessor""" lowerCamelCase__ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self, __a, __a): '''simple docstring''' _lowerCAmelCase : int = False super().__init__(_A, _A) def __call__( self, __a=None, __a = None, __a = True, __a = False, __a = None, __a = None, __a = 2048, __a = 0, __a = None, __a = None, __a = False, __a = False, __a = False, __a = False, __a = False, __a = True, __a = None, **__a, ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text.") # Get only text if images is None and not self.image_processor.is_vqa: _lowerCAmelCase : List[Any] = self.tokenizer _lowerCAmelCase : Tuple = self.tokenizer( text=_A, add_special_tokens=_A, padding=_A, truncation=_A, max_length=_A, stride=_A, pad_to_multiple_of=_A, return_attention_mask=_A, return_overflowing_tokens=_A, return_special_tokens_mask=_A, return_offsets_mapping=_A, return_token_type_ids=_A, return_length=_A, verbose=_A, return_tensors=_A, **_A, ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _lowerCAmelCase : Tuple = self.image_processor( _A, return_tensors=_A, max_patches=_A, **_A) else: # add pixel_values and bbox _lowerCAmelCase : str = self.image_processor( _A, return_tensors=_A, max_patches=_A, header_text=_A, **_A) if text is not None and not self.image_processor.is_vqa: _lowerCAmelCase : List[str] = self.tokenizer( text=_A, add_special_tokens=_A, padding=_A, truncation=_A, max_length=_A, stride=_A, pad_to_multiple_of=_A, return_attention_mask=_A, return_overflowing_tokens=_A, return_special_tokens_mask=_A, return_offsets_mapping=_A, return_token_type_ids=_A, return_length=_A, verbose=_A, return_tensors=_A, **_A, ) if "attention_mask" in text_encoding: _lowerCAmelCase : Any = text_encoding.pop("attention_mask") if "input_ids" in text_encoding: _lowerCAmelCase : List[Any] = text_encoding.pop("input_ids") else: _lowerCAmelCase : Tuple = None if text_encoding is not None: encoding_image_processor.update(_A) return encoding_image_processor def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*_A, **_A) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*_A, **_A) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer.model_input_names _lowerCAmelCase : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
364
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCAmelCase_ ( a__ , a__): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 1000, __a = None): '''simple docstring''' self.set_timesteps(SCREAMING_SNAKE_CASE_) # standard deviation of the initial noise distribution _lowerCAmelCase : Optional[Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _lowerCAmelCase : Any = 4 # running values _lowerCAmelCase : Union[str, Any] = [] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = num_inference_steps _lowerCAmelCase : str = torch.linspace(1, 0, num_inference_steps + 1)[:-1] _lowerCAmelCase : List[Any] = torch.cat([steps, torch.tensor([0.0])]) if self.config.trained_betas is not None: _lowerCAmelCase : Tuple = torch.tensor(self.config.trained_betas, dtype=torch.floataa) else: _lowerCAmelCase : str = torch.sin(steps * math.pi / 2) ** 2 _lowerCAmelCase : str = (1.0 - self.betas**2) ** 0.5 _lowerCAmelCase : Tuple = (torch.atana(self.betas, self.alphas) / math.pi * 2)[:-1] _lowerCAmelCase : Dict = timesteps.to(SCREAMING_SNAKE_CASE_) _lowerCAmelCase : List[Any] = [] def snake_case__ ( self, __a, __a, __a, __a = True, ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler") _lowerCAmelCase : Optional[int] = (self.timesteps == timestep).nonzero().item() _lowerCAmelCase : Union[str, Any] = timestep_index + 1 _lowerCAmelCase : Dict = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(SCREAMING_SNAKE_CASE_) if len(self.ets) == 1: _lowerCAmelCase : Optional[int] = self.ets[-1] elif len(self.ets) == 2: _lowerCAmelCase : List[str] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: _lowerCAmelCase : Any = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _lowerCAmelCase : Optional[int] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _lowerCAmelCase : Any = self._get_prev_sample(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_) def snake_case__ ( self, __a, *__a, **__a): '''simple docstring''' return sample def snake_case__ ( self, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.alphas[timestep_index] _lowerCAmelCase : List[Any] = self.betas[timestep_index] _lowerCAmelCase : int = self.alphas[prev_timestep_index] _lowerCAmelCase : Optional[Any] = self.betas[prev_timestep_index] _lowerCAmelCase : int = (sample - sigma * ets) / max(SCREAMING_SNAKE_CASE_, 1E-8) _lowerCAmelCase : Any = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
0
def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("check_bouncy() accepts only integer arguments" ) _lowerCAmelCase : str = str(lowerCAmelCase__ ) _lowerCAmelCase : Optional[Any] = "".join(sorted(lowerCAmelCase__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def A ( _lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Union[str, Any] = 1 while True: if check_bouncy(lowerCAmelCase__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
from __future__ import annotations from math import pi def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
367
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _snake_case = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCamelCase): lowerCamelCase__ = 'albert' def __init__( self, __a=3_0000, __a=128, __a=4096, __a=12, __a=1, __a=64, __a=1_6384, __a=1, __a="gelu_new", __a=0, __a=0, __a=512, __a=2, __a=0.02, __a=1E-12, __a=0.1, __a="absolute", __a=0, __a=2, __a=3, **__a, ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase) _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : List[str] = embedding_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_hidden_groups _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : List[str] = inner_group_num _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : List[str] = classifier_dropout_prob _lowerCAmelCase : str = position_embedding_type class UpperCAmelCase_ ( _UpperCamelCase): @property def snake_case__ ( self): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
369
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" ) _lowerCAmelCase : int = chkpt["model"] # We have the base model one level deeper than the original XLM repository _lowerCAmelCase : Optional[int] = {} for k, v in state_dict.items(): if "pred_layer" in k: _lowerCAmelCase : Any = v else: _lowerCAmelCase : List[str] = v _lowerCAmelCase : Optional[Any] = chkpt["params"] _lowerCAmelCase : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__SCREAMING_SNAKE_CASE , (torch.FloatTensor, numpy.ndarray) )} _lowerCAmelCase : Optional[Any] = chkpt["dico_word2id"] _lowerCAmelCase : Optional[int] = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model _lowerCAmelCase : Union[str, Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _lowerCAmelCase : List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME _lowerCAmelCase : Dict = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__SCREAMING_SNAKE_CASE , indent=2 ) + "\n" ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__SCREAMING_SNAKE_CASE , indent=2 ) + "\n" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: _lowerCAmelCase : List[str] = ksize + 1 _lowerCAmelCase : Optional[Any] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): # distance from center _lowerCAmelCase : Dict = x - ksize // 2 _lowerCAmelCase : Optional[Any] = y - ksize // 2 # degree to radiant _lowerCAmelCase : Any = theta / 180 * np.pi _lowerCAmelCase : List[str] = np.cos(_theta ) _lowerCAmelCase : Union[str, Any] = np.sin(_theta ) # get kernel x _lowerCAmelCase : List[str] = cos_theta * px + sin_theta * py # get kernel y _lowerCAmelCase : Union[str, Any] = -sin_theta * px + cos_theta * py # fill kernel _lowerCAmelCase : Tuple = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case = imread("../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _snake_case = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case = out / out.max() * 255 _snake_case = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small") _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("google/mt5-small") _lowerCAmelCase : str = tokenizer("Hello there", return_tensors="np").input_ids _lowerCAmelCase : Dict = tokenizer("Hi I am", return_tensors="np").input_ids _lowerCAmelCase : int = shift_tokens_right(__a, model.config.pad_token_id, model.config.decoder_start_token_id) _lowerCAmelCase : List[Any] = model(__a, decoder_input_ids=__a).logits _lowerCAmelCase : Union[str, Any] = optax.softmax_cross_entropy(__a, onehot(__a, logits.shape[-1])).mean() _lowerCAmelCase : List[str] = -(labels.shape[-1] * loss.item()) _lowerCAmelCase : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Union[str, Any] = "pt" _lowerCAmelCase : List[Any] = "tf" def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained(self.test_model, from_pt=__a) model_tf.save_pretrained(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "mock_framework" # Framework provided - return whatever the user provides _lowerCAmelCase : List[str] = FeaturesManager.determine_framework(self.test_model, __a) self.assertEqual(__a, __a) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a) _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(__a, __a) self.assertEqual(__a, __a) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a) _lowerCAmelCase : int = FeaturesManager.determine_framework(__a, __a) self.assertEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(__a) self.assertEqual(__a, self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a) _lowerCAmelCase : List[Any] = FeaturesManager.determine_framework(__a) self.assertEqual(__a, self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=__a) with patch("transformers.onnx.features.is_tf_available", __a): _lowerCAmelCase : str = FeaturesManager.determine_framework(self.test_model) self.assertEqual(__a, self.framework_pt) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Tuple = MagicMock(return_value=__a) with patch("transformers.onnx.features.is_torch_available", __a): _lowerCAmelCase : int = FeaturesManager.determine_framework(self.test_model) self.assertEqual(__a, self.framework_tf) # Both in environment -> use PyTorch _lowerCAmelCase : Union[str, Any] = MagicMock(return_value=__a) _lowerCAmelCase : str = MagicMock(return_value=__a) with patch("transformers.onnx.features.is_tf_available", __a), patch( "transformers.onnx.features.is_torch_available", __a): _lowerCAmelCase : str = FeaturesManager.determine_framework(self.test_model) self.assertEqual(__a, self.framework_pt) # Both not in environment -> raise error _lowerCAmelCase : Optional[int] = MagicMock(return_value=__a) _lowerCAmelCase : str = MagicMock(return_value=__a) with patch("transformers.onnx.features.is_tf_available", __a), patch( "transformers.onnx.features.is_torch_available", __a): with self.assertRaises(__a): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model)
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__) class UpperCAmelCase_ ( a): lowerCamelCase__ = field(default=a , metadata={'help': 'Whether to use SortishSampler or not.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = super().to_dict() for k, v in d.items(): if isinstance(__a, __a): _lowerCAmelCase : str = v.to_dict() return d
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _snake_case = False _snake_case = True _snake_case = False if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") _snake_case = parser.parse_args() _snake_case = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } _snake_case = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } _snake_case = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: _snake_case = reader.read() _snake_case = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): _snake_case = UNetaDModel(**config) else: _snake_case = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel _snake_case = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _snake_case = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _snake_case = config[key] del config[key] _snake_case = [k.replace("UNetRes", "") for k in config["down_block_types"]] _snake_case = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: _snake_case = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) _snake_case = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue _snake_case = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: _snake_case = param_value _snake_case = True if not has_changed: _snake_case = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( a): def __init__( self, __a, __a): '''simple docstring''' super().__init__() self.register_modules(unet=__a, scheduler=__a) @torch.no_grad() def __call__( self, __a = 1, __a = 100, __a = None, __a = None, __a = True, ): '''simple docstring''' if audio_length_in_s is None: _lowerCAmelCase : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate _lowerCAmelCase : List[Any] = audio_length_in_s * self.unet.config.sample_rate _lowerCAmelCase : Dict = 2 ** len(self.unet.up_blocks) if sample_size < 3 * down_scale_factor: raise ValueError( f"{audio_length_in_s} is too small. Make sure it's bigger or equal to" f" {3 * down_scale_factor / self.unet.config.sample_rate}.") _lowerCAmelCase : Optional[int] = int(__a) if sample_size % down_scale_factor != 0: _lowerCAmelCase : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" " process.") _lowerCAmelCase : Union[str, Any] = int(__a) _lowerCAmelCase : Dict = next(iter(self.unet.parameters())).dtype _lowerCAmelCase : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a, __a) and len(__a) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__a)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators.") _lowerCAmelCase : List[str] = randn_tensor(__a, generator=__a, device=self.device, dtype=__a) # set step values self.scheduler.set_timesteps(__a, device=audio.device) _lowerCAmelCase : int = self.scheduler.timesteps.to(__a) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _lowerCAmelCase : Union[str, Any] = self.unet(__a, __a).sample # 2. compute previous image: x_t -> t_t-1 _lowerCAmelCase : str = self.scheduler.step(__a, __a, __a).prev_sample _lowerCAmelCase : Tuple = audio.clamp(-1, 1).float().cpu().numpy() _lowerCAmelCase : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a)
355
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 @flax_register_to_config class UpperCAmelCase_ ( nn.Module , a , a): lowerCamelCase__ = 32 lowerCamelCase__ = 4 lowerCamelCase__ = 4 lowerCamelCase__ = ( 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D', ) lowerCamelCase__ = ('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D') lowerCamelCase__ = False lowerCamelCase__ = (320, 640, 1280, 1280) lowerCamelCase__ = 2 lowerCamelCase__ = 8 lowerCamelCase__ = None lowerCamelCase__ = 1280 lowerCamelCase__ = 0.0 lowerCamelCase__ = False lowerCamelCase__ = jnp.floataa lowerCamelCase__ = True lowerCamelCase__ = 0 lowerCamelCase__ = False def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = (1, self.in_channels, self.sample_size, self.sample_size) _lowerCAmelCase : str = jnp.zeros(__a, dtype=jnp.floataa) _lowerCAmelCase : Optional[int] = jnp.ones((1,), dtype=jnp.intaa) _lowerCAmelCase : int = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.floataa) _lowerCAmelCase : int = jax.random.split(__a) _lowerCAmelCase : Tuple = {"params": params_rng, "dropout": dropout_rng} return self.init(__a, __a, __a, __a)["params"] def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.block_out_channels _lowerCAmelCase : Optional[Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.") # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowerCAmelCase : Dict = self.num_attention_heads or self.attention_head_dim # input _lowerCAmelCase : int = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time _lowerCAmelCase : Optional[int] = FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift) _lowerCAmelCase : Dict = FlaxTimestepEmbedding(__a, dtype=self.dtype) _lowerCAmelCase : List[Any] = self.only_cross_attention if isinstance(__a, __a): _lowerCAmelCase : List[Any] = (only_cross_attention,) * len(self.down_block_types) if isinstance(__a, __a): _lowerCAmelCase : Any = (num_attention_heads,) * len(self.down_block_types) # down _lowerCAmelCase : str = [] _lowerCAmelCase : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): _lowerCAmelCase : Union[str, Any] = output_channel _lowerCAmelCase : Tuple = block_out_channels[i] _lowerCAmelCase : Dict = i == len(__a) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowerCAmelCase : Optional[int] = FlaxCrossAttnDownBlockaD( in_channels=__a, out_channels=__a, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) else: _lowerCAmelCase : List[Any] = FlaxDownBlockaD( in_channels=__a, out_channels=__a, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(__a) _lowerCAmelCase : Any = down_blocks # mid _lowerCAmelCase : Tuple = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1], dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) # up _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Optional[int] = list(reversed(__a)) _lowerCAmelCase : str = list(reversed(__a)) _lowerCAmelCase : Optional[Any] = list(reversed(__a)) _lowerCAmelCase : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): _lowerCAmelCase : Dict = output_channel _lowerCAmelCase : Dict = reversed_block_out_channels[i] _lowerCAmelCase : Union[str, Any] = reversed_block_out_channels[min(i + 1, len(__a) - 1)] _lowerCAmelCase : Union[str, Any] = i == len(__a) - 1 if up_block_type == "CrossAttnUpBlock2D": _lowerCAmelCase : Tuple = FlaxCrossAttnUpBlockaD( in_channels=__a, out_channels=__a, prev_output_channel=__a, num_layers=self.layers_per_block + 1, num_attention_heads=reversed_num_attention_heads[i], add_upsample=not is_final_block, dropout=self.dropout, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) else: _lowerCAmelCase : Optional[int] = FlaxUpBlockaD( in_channels=__a, out_channels=__a, prev_output_channel=__a, num_layers=self.layers_per_block + 1, add_upsample=not is_final_block, dropout=self.dropout, dtype=self.dtype, ) up_blocks.append(__a) _lowerCAmelCase : Optional[int] = output_channel _lowerCAmelCase : Union[str, Any] = up_blocks # out _lowerCAmelCase : List[str] = nn.GroupNorm(num_groups=32, epsilon=1E-5) _lowerCAmelCase : Optional[int] = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__( self, __a, __a, __a, __a=None, __a=None, __a = True, __a = False, ): '''simple docstring''' if not isinstance(__a, jnp.ndarray): _lowerCAmelCase : Union[str, Any] = jnp.array([timesteps], dtype=jnp.intaa) elif isinstance(__a, jnp.ndarray) and len(timesteps.shape) == 0: _lowerCAmelCase : int = timesteps.astype(dtype=jnp.floataa) _lowerCAmelCase : Dict = jnp.expand_dims(__a, 0) _lowerCAmelCase : str = self.time_proj(__a) _lowerCAmelCase : List[str] = self.time_embedding(__a) # 2. pre-process _lowerCAmelCase : str = jnp.transpose(__a, (0, 2, 3, 1)) _lowerCAmelCase : Any = self.conv_in(__a) # 3. down _lowerCAmelCase : Any = (sample,) for down_block in self.down_blocks: if isinstance(__a, __a): _lowerCAmelCase : Any = down_block(__a, __a, __a, deterministic=not train) else: _lowerCAmelCase : Dict = down_block(__a, __a, deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _lowerCAmelCase : List[Any] = () for down_block_res_sample, down_block_additional_residual in zip( __a, __a): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _lowerCAmelCase : str = new_down_block_res_samples # 4. mid _lowerCAmelCase : Optional[int] = self.mid_block(__a, __a, __a, deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _lowerCAmelCase : Optional[int] = down_block_res_samples[-(self.layers_per_block + 1) :] _lowerCAmelCase : Tuple = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__a, __a): _lowerCAmelCase : Union[str, Any] = up_block( __a, temb=__a, encoder_hidden_states=__a, res_hidden_states_tuple=__a, deterministic=not train, ) else: _lowerCAmelCase : Optional[int] = up_block(__a, temb=__a, res_hidden_states_tuple=__a, deterministic=not train) # 6. post-process _lowerCAmelCase : Union[str, Any] = self.conv_norm_out(__a) _lowerCAmelCase : Tuple = nn.silu(__a) _lowerCAmelCase : Optional[int] = self.conv_out(__a) _lowerCAmelCase : Any = jnp.transpose(__a, (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__a)
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model"} _snake_case = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 _snake_case = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } _snake_case = "▁" class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self, __a, __a="</s>", __a="<unk>", __a="<pad>", __a=100, __a=None, __a = None, __a=True, **__a, ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _lowerCAmelCase : Union[str, Any] = [f"<extra_id_{i}>" for i in range(__a)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _lowerCAmelCase : Dict = len(set(filter(lambda __a: bool("extra_id" in str(__a)), __a))) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens") if legacy: logger.warning_once( f"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565") _lowerCAmelCase : List[Any] = legacy _lowerCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__a, unk_token=__a, pad_token=__a, extra_ids=__a, additional_special_tokens=__a, sp_model_kwargs=self.sp_model_kwargs, legacy=__a, **__a, ) _lowerCAmelCase : str = vocab_file _lowerCAmelCase : Union[str, Any] = extra_ids _lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__a) @staticmethod def snake_case__ ( __a, __a, __a): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _lowerCAmelCase : Dict = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value.", __a, ) return max_model_length @property def snake_case__ ( self): '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(__a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def snake_case__ ( self, __a, __a = None, __a = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a, token_ids_a=__a, already_has_special_tokens=__a) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__a)) + [1] return ([0] * len(__a)) + [1] + ([0] * len(__a)) + [1] def snake_case__ ( self): '''simple docstring''' return list( set(filter(lambda __a: bool(re.search(R"<extra_id_\d+>", __a)) is not None, self.additional_special_tokens))) def snake_case__ ( self): '''simple docstring''' return [self._convert_token_to_id(__a) for token in self.get_sentinel_tokens()] def snake_case__ ( self, __a): '''simple docstring''' if len(__a) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added.") return token_ids else: return token_ids + [self.eos_token_id] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[Any] = self._add_eos_if_not_present(__a) if token_ids_a is None: return token_ids_a else: _lowerCAmelCase : List[str] = self._add_eos_if_not_present(__a) return token_ids_a + token_ids_a def __getstate__( self): '''simple docstring''' _lowerCAmelCase : Dict = self.__dict__.copy() _lowerCAmelCase : Any = None return state def __setstate__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): _lowerCAmelCase : Any = {} _lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case__ ( self, __a, **__a): '''simple docstring''' if not self.legacy: _lowerCAmelCase : Tuple = SPIECE_UNDERLINE + text.replace(__a, " ") return super().tokenize(__a, **__a) def snake_case__ ( self, __a, **__a): '''simple docstring''' if not self.legacy: _lowerCAmelCase : Union[str, Any] = text.startswith(__a) if is_first: _lowerCAmelCase : Dict = text[1:] _lowerCAmelCase : List[Any] = self.sp_model.encode(__a, out_type=__a) if not self.legacy and not is_first and not text.startswith(" ") and tokens[0].startswith(__a): _lowerCAmelCase : List[str] = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:] return tokens def snake_case__ ( self, __a): '''simple docstring''' if token.startswith("<extra_id_"): _lowerCAmelCase : str = re.match(R"<extra_id_(\d+)>", __a) _lowerCAmelCase : Optional[int] = int(match.group(1)) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__a) def snake_case__ ( self, __a): '''simple docstring''' if index < self.sp_model.get_piece_size(): _lowerCAmelCase : Union[str, Any] = self.sp_model.IdToPiece(__a) else: _lowerCAmelCase : Optional[int] = f"<extra_id_{self.vocab_size - 1 - index}>" return token def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Any = "" _lowerCAmelCase : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a) + token _lowerCAmelCase : Dict = True _lowerCAmelCase : int = [] else: current_sub_tokens.append(__a) _lowerCAmelCase : Dict = False out_string += self.sp_model.decode(__a) return out_string.strip() def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : List[str] = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, __a) elif not os.path.isfile(self.vocab_file): with open(__a, "wb") as fi: _lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(__a) return (out_vocab_file,)
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=12, __a=7, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a=0.1, __a=0.1, __a=512, __a=0.02, __a=0, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Any = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : Any = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : str = projection_dim _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : int = attention_dropout _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Optional[Any] = scope _lowerCAmelCase : Optional[int] = bos_token_id def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: _lowerCAmelCase : Union[str, Any] = input_mask.numpy() _lowerCAmelCase : int = input_mask.shape _lowerCAmelCase : List[str] = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(__a): _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : int = self.get_config() return config, input_ids, tf.convert_to_tensor(__a) def snake_case__ ( self): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = TFBlipTextModel(config=__a) _lowerCAmelCase : List[Any] = model(__a, attention_mask=__a, training=__a) _lowerCAmelCase : str = model(__a, training=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase : str = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = (TFBlipTextModel,) if is_tf_available() else () lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BlipTextModelTester(self) _lowerCAmelCase : Optional[int] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = TFBlipTextModel.from_pretrained(__a) self.assertIsNotNone(__a) def snake_case__ ( self, __a=True): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__a)
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCAmelCase : Dict = array[indexa], array[indexa] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if length > 1: _lowerCAmelCase : List[str] = int(length / 2 ) for i in range(_lowerCamelCase , low + middle ): comp_and_swap(_lowerCamelCase , _lowerCamelCase , i + middle , _lowerCamelCase ) bitonic_merge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) bitonic_merge(_lowerCamelCase , low + middle , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if length > 1: _lowerCAmelCase : Any = int(length / 2 ) bitonic_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 1 ) bitonic_sort(_lowerCamelCase , low + middle , _lowerCamelCase , 0 ) bitonic_merge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
359
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
360
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'unispeech' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="mean", __a=False, __a=False, __a=256, __a=80, __a=0, __a=1, __a=2, __a=0.5, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : int = feat_extract_norm _lowerCAmelCase : Tuple = feat_extract_activation _lowerCAmelCase : str = list(__a) _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : Tuple = conv_bias _lowerCAmelCase : Optional[int] = num_conv_pos_embeddings _lowerCAmelCase : int = num_conv_pos_embedding_groups _lowerCAmelCase : Union[str, Any] = len(self.conv_dim) _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = hidden_dropout _lowerCAmelCase : Dict = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : str = final_dropout _lowerCAmelCase : List[str] = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : int = num_ctc_classes _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Dict = do_stable_layer_norm _lowerCAmelCase : str = use_weighted_layer_sum _lowerCAmelCase : int = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : Dict = mask_time_prob _lowerCAmelCase : Dict = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : Any = mask_feature_prob _lowerCAmelCase : Optional[int] = mask_feature_length _lowerCAmelCase : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : Any = num_codevectors_per_group _lowerCAmelCase : List[Any] = num_codevector_groups _lowerCAmelCase : Dict = contrastive_logits_temperature _lowerCAmelCase : Union[str, Any] = feat_quantizer_dropout _lowerCAmelCase : Union[str, Any] = num_negatives _lowerCAmelCase : Any = codevector_dim _lowerCAmelCase : List[Any] = proj_codevector_dim _lowerCAmelCase : List[Any] = diversity_loss_weight # ctc loss _lowerCAmelCase : Union[str, Any] = ctc_loss_reduction _lowerCAmelCase : Union[str, Any] = ctc_zero_infinity # pretraining loss _lowerCAmelCase : str = replace_prob @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'lxmert' lowerCamelCase__ = {} def __init__( self, __a=3_0522, __a=768, __a=12, __a=9500, __a=1600, __a=400, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=9, __a=5, __a=5, __a=2048, __a=4, __a=6.67, __a=True, __a=True, __a=True, __a=True, __a=True, __a=True, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = hidden_act _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = type_vocab_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Tuple = num_qa_labels _lowerCAmelCase : Union[str, Any] = num_object_labels _lowerCAmelCase : Optional[Any] = num_attr_labels _lowerCAmelCase : Any = l_layers _lowerCAmelCase : Any = x_layers _lowerCAmelCase : Optional[Any] = r_layers _lowerCAmelCase : Any = visual_feat_dim _lowerCAmelCase : List[str] = visual_pos_dim _lowerCAmelCase : Optional[Any] = visual_loss_normalizer _lowerCAmelCase : Optional[int] = task_matched _lowerCAmelCase : str = task_mask_lm _lowerCAmelCase : Optional[Any] = task_obj_predict _lowerCAmelCase : str = task_qa _lowerCAmelCase : Union[str, Any] = visual_obj_loss _lowerCAmelCase : Union[str, Any] = visual_attr_loss _lowerCAmelCase : Dict = visual_feat_loss _lowerCAmelCase : List[str] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**__a)
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
363
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
0
from itertools import count def A ( _lowerCamelCase = 50 ): '''simple docstring''' _lowerCAmelCase : Dict = [1] * min_block_length for n in count(_lowerCamelCase ): fill_count_functions.append(1 ) for block_length in range(_lowerCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_000_000: break return n if __name__ == "__main__": print(f'''{solution() = }''')
364
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCAmelCase_ : def __init__( self, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : List[Any] = 13 _lowerCAmelCase : List[str] = 7 _lowerCAmelCase : Any = True _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : str = 99 _lowerCAmelCase : Union[str, Any] = 32 _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : Tuple = 4 _lowerCAmelCase : Dict = 37 _lowerCAmelCase : List[str] = "gelu" _lowerCAmelCase : int = 0.1 _lowerCAmelCase : Tuple = 0.1 _lowerCAmelCase : Optional[Any] = 512 _lowerCAmelCase : Dict = 16 _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : Tuple = 0.02 _lowerCAmelCase : Optional[Any] = 3 _lowerCAmelCase : List[Any] = 4 _lowerCAmelCase : str = None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: _lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : int = None _lowerCAmelCase : str = None _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, pad_token_id=1, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): '''simple docstring''' ( _lowerCAmelCase ) : str = self.prepare_config_and_inputs() _lowerCAmelCase : List[str] = True _lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = TFEsmModel(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} _lowerCAmelCase : Optional[Any] = model(__a) _lowerCAmelCase : Any = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[int] = TFEsmModel(config=__a) _lowerCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } _lowerCAmelCase : Optional[int] = model(__a) _lowerCAmelCase : List[str] = [input_ids, input_mask] _lowerCAmelCase : Any = model(__a, encoder_hidden_states=__a) # Also check the case where encoder outputs are not passed _lowerCAmelCase : List[str] = model(__a, attention_mask=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFEsmForMaskedLM(config=__a) _lowerCAmelCase : Any = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Any = TFEsmForTokenClassification(config=__a) _lowerCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} _lowerCAmelCase : Tuple = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Optional[Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFEsmModelTester(self) _lowerCAmelCase : Tuple = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFEsmModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip("Protein models do not support embedding resizing.") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip("Protein models do not support embedding resizing.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(__a) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _lowerCAmelCase : Union[str, Any] = model.get_bias() assert isinstance(__a, __a) for k, v in name.items(): assert isinstance(__a, tf.Variable) else: _lowerCAmelCase : str = model.get_output_embeddings() assert x is None _lowerCAmelCase : Tuple = model.get_bias() assert name is None @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D") _lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Optional[Any] = model(__a)[0] _lowerCAmelCase : int = [1, 6, 33] self.assertEqual(list(output.numpy().shape), __a) # compare the actual values for a slice. _lowerCAmelCase : Optional[Any] = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-2)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D") _lowerCAmelCase : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) _lowerCAmelCase : Tuple = model(__a)[0] # compare the actual values for a slice. _lowerCAmelCase : Optional[Any] = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4))
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
0
from PIL import Image def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = image.size _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : str = image.load() for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowerCamelCase ): for i in range(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _snake_case = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _snake_case = logging.getLogger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'sequence-classification' def __init__( self, __a): '''simple docstring''' if type(__a) == dict: _lowerCAmelCase : Union[str, Any] = Namespace(**__a) _lowerCAmelCase : str = glue_output_modes[hparams.task] _lowerCAmelCase : Tuple = glue_tasks_num_labels[hparams.task] super().__init__(__a, __a, self.mode) def snake_case__ ( self, **__a): '''simple docstring''' return self.model(**__a) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : str = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase : Dict = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None _lowerCAmelCase : str = self(**__a) _lowerCAmelCase : Any = outputs[0] _lowerCAmelCase : Tuple = self.trainer.lr_schedulers[0]["scheduler"] _lowerCAmelCase : List[Any] = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.hparams _lowerCAmelCase : Any = processors[args.task]() _lowerCAmelCase : List[str] = processor.get_labels() for mode in ["train", "dev"]: _lowerCAmelCase : Optional[int] = self._feature_file(__a) if os.path.exists(__a) and not args.overwrite_cache: logger.info("Loading features from cached file %s", __a) else: logger.info("Creating features from dataset file at %s", args.data_dir) _lowerCAmelCase : Optional[int] = ( processor.get_dev_examples(args.data_dir) if mode == "dev" else processor.get_train_examples(args.data_dir) ) _lowerCAmelCase : Union[str, Any] = convert_examples_to_features( __a, self.tokenizer, max_length=args.max_seq_length, label_list=self.labels, output_mode=args.glue_output_mode, ) logger.info("Saving features into cached file %s", __a) torch.save(__a, __a) def snake_case__ ( self, __a, __a, __a = False): '''simple docstring''' _lowerCAmelCase : Any = "dev" if mode == "test" else mode _lowerCAmelCase : Optional[int] = self._feature_file(__a) logger.info("Loading features from cached file %s", __a) _lowerCAmelCase : int = torch.load(__a) _lowerCAmelCase : int = torch.tensor([f.input_ids for f in features], dtype=torch.long) _lowerCAmelCase : List[str] = torch.tensor([f.attention_mask for f in features], dtype=torch.long) _lowerCAmelCase : List[str] = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase : Optional[Any] = torch.tensor([f.label for f in features], dtype=torch.long) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase : Tuple = torch.tensor([f.label for f in features], dtype=torch.float) return DataLoader( TensorDataset(__a, __a, __a, __a), batch_size=__a, shuffle=__a, ) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCAmelCase : Optional[int] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None _lowerCAmelCase : Any = self(**__a) _lowerCAmelCase : Tuple = outputs[:2] _lowerCAmelCase : List[str] = logits.detach().cpu().numpy() _lowerCAmelCase : Any = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int = torch.stack([x["val_loss"] for x in outputs]).mean().detach().cpu().item() _lowerCAmelCase : Union[str, Any] = np.concatenate([x["pred"] for x in outputs], axis=0) if self.hparams.glue_output_mode == "classification": _lowerCAmelCase : Dict = np.argmax(__a, axis=1) elif self.hparams.glue_output_mode == "regression": _lowerCAmelCase : Dict = np.squeeze(__a) _lowerCAmelCase : Any = np.concatenate([x["target"] for x in outputs], axis=0) _lowerCAmelCase : List[str] = [[] for _ in range(out_label_ids.shape[0])] _lowerCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0])] _lowerCAmelCase : Dict = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task, __a, __a)} _lowerCAmelCase : List[Any] = dict(results.items()) _lowerCAmelCase : Dict = results return ret, preds_list, out_label_list def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : int = self._eval_end(__a) _lowerCAmelCase : int = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Dict = self._eval_end(__a) _lowerCAmelCase : str = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def snake_case__ ( __a, __a): '''simple docstring''' BaseTransformer.add_model_specific_args(__a, __a) parser.add_argument( "--max_seq_length", default=128, type=__a, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--task", default="", type=__a, required=__a, help="The GLUE task to run", ) parser.add_argument( "--gpus", default=0, type=__a, help="The number of GPUs allocated for this, it is by default 0 meaning none", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") return parser def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(_lowerCamelCase , os.getcwd() ) _lowerCAmelCase : Dict = GLUETransformer.add_model_specific_args(_lowerCamelCase , os.getcwd() ) _lowerCAmelCase : List[str] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCAmelCase : str = os.path.join( "./results" , F"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) _lowerCAmelCase : List[Any] = GLUETransformer(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = generic_train(_lowerCamelCase , _lowerCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCAmelCase : List[str] = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_lowerCamelCase ) ) _lowerCAmelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_lowerCamelCase ) if __name__ == "__main__": main()
367
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = ["model.decoder.embed_positions.weights"] def A ( _lowerCamelCase ): '''simple docstring''' if "emb" in name: _lowerCAmelCase : List[Any] = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: _lowerCAmelCase : Optional[Any] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: _lowerCAmelCase : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: _lowerCAmelCase : Dict = name.replace("linear1" , "fc1" ) if "linear2" in name: _lowerCAmelCase : int = name.replace("linear2" , "fc2" ) if "norm1" in name: _lowerCAmelCase : Optional[Any] = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: _lowerCAmelCase : Union[str, Any] = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: _lowerCAmelCase : Tuple = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: _lowerCAmelCase : Any = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: _lowerCAmelCase : Dict = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _lowerCAmelCase : Union[str, Any] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = list(state_dict.keys() ) _lowerCAmelCase : str = {} for key in keys: _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = rename_keys(_lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj _lowerCAmelCase : int = val[:hidden_size, :] _lowerCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _lowerCAmelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _lowerCAmelCase : Optional[int] = val else: _lowerCAmelCase : Union[str, Any] = val return state_dict, enc_dec_proj_state_dict def A ( _lowerCamelCase ): '''simple docstring''' if checkpoint == "small": # default config values _lowerCAmelCase : Optional[int] = 1_024 _lowerCAmelCase : List[str] = 24 _lowerCAmelCase : int = 16 elif checkpoint == "medium": _lowerCAmelCase : str = 1_536 _lowerCAmelCase : str = 48 _lowerCAmelCase : Union[str, Any] = 24 elif checkpoint == "large": _lowerCAmelCase : Dict = 2_048 _lowerCAmelCase : Any = 48 _lowerCAmelCase : Optional[Any] = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) _lowerCAmelCase : int = MusicgenDecoderConfig( hidden_size=_lowerCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_lowerCamelCase , num_attention_heads=_lowerCamelCase , ) return config @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="cpu" ): '''simple docstring''' _lowerCAmelCase : Any = MusicGen.get_pretrained(_lowerCamelCase , device=_lowerCamelCase ) _lowerCAmelCase : int = decoder_config_from_checkpoint(_lowerCamelCase ) _lowerCAmelCase : List[Any] = fairseq_model.lm.state_dict() _lowerCAmelCase : Any = rename_state_dict( _lowerCamelCase , hidden_size=decoder_config.hidden_size ) _lowerCAmelCase : Optional[Any] = TaEncoderModel.from_pretrained("t5-base" ) _lowerCAmelCase : Tuple = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _lowerCAmelCase : Union[str, Any] = MusicgenForCausalLM(_lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _lowerCAmelCase : Optional[Any] = decoder.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(_lowerCamelCase ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model _lowerCAmelCase : Any = MusicgenForConditionalGeneration(text_encoder=_lowerCamelCase , audio_encoder=_lowerCamelCase , decoder=_lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_lowerCamelCase ) # check we can do a forward pass _lowerCAmelCase : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _lowerCAmelCase : List[str] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _lowerCAmelCase : Dict = model(input_ids=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _lowerCAmelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) _lowerCAmelCase : Tuple = MusicgenProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) # set the appropriate bos/pad token ids _lowerCAmelCase : Optional[Any] = 2_048 _lowerCAmelCase : Any = 2_048 # set other default generation config params _lowerCAmelCase : Optional[int] = int(30 * audio_encoder.config.frame_rate ) _lowerCAmelCase : Dict = True _lowerCAmelCase : List[Any] = 3.0 if pytorch_dump_folder is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(_lowerCamelCase ) processor.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _snake_case = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata _snake_case = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class UpperCAmelCase_ ( tr.AbstractTransform): def __init__( self, __a = " "): '''simple docstring''' _lowerCAmelCase : int = sentence_delimiter def snake_case__ ( self, __a): '''simple docstring''' return list(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for sent_idx, sentence in enumerate(__a): chars.extend(self.process_string(__a)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__a) - 1: chars.append(self.sentence_delimiter) return chars _snake_case = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _snake_case = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _snake_case = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _snake_case = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" _snake_case = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), }), codebase_urls=["https://github.com/jitsi/jiwer/"], reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ], ) def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __a, __a, truth_transform=__a, hypothesis_transform=__a, )["wer"] _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Optional[Any] = 0 for prediction, reference in zip(__a, __a): _lowerCAmelCase : Dict = jiwer.compute_measures( __a, __a, truth_transform=__a, hypothesis_transform=__a, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
369
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
0
"""simple docstring""" import math import qiskit def A ( _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = 1 ): '''simple docstring''' if ( isinstance(_lowerCamelCase , _lowerCamelCase ) or isinstance(_lowerCamelCase , _lowerCamelCase ) or isinstance(_lowerCamelCase , _lowerCamelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(_lowerCamelCase ) != input_a) or (math.floor(_lowerCamelCase ) != input_a) or (math.floor(_lowerCamelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers _lowerCAmelCase : List[Any] = qiskit.QuantumRegister(4 , "qr" ) _lowerCAmelCase : Dict = qiskit.ClassicalRegister(2 , "cr" ) # list the entries _lowerCAmelCase : Any = [input_a, input_a, carry_in] _lowerCAmelCase : List[str] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_lowerCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowerCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowerCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _lowerCamelCase ) # measure the last two qbits _lowerCAmelCase : Tuple = qiskit.Aer.get_backend("aer_simulator" ) _lowerCAmelCase : Dict = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1_000 ) return job.result().get_counts(_lowerCamelCase ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
import datasets _snake_case = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" _snake_case = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" _snake_case = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), }), codebase_urls=[], reference_urls=[], format="numpy", ) def snake_case__ ( self, __a, __a): '''simple docstring''' return {"accuracy": simple_accuracy(__a, __a)}
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=4, ): '''simple docstring''' _lowerCAmelCase : int = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : Optional[int] = use_attention_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : List[str] = num_choices def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Any = None if self.use_attention_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : Any = None if self.use_token_type_ids: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__a, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase : str = config_and_inputs _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = FlaxAlbertModelTester(self) @slow def snake_case__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : int = model_class_name.from_pretrained("albert-base-v2") _lowerCAmelCase : Union[str, Any] = model(np.ones((1, 1))) self.assertIsNotNone(__a) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2") _lowerCAmelCase : int = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) _lowerCAmelCase : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) _lowerCAmelCase : Tuple = model(__a, attention_mask=__a)[0] _lowerCAmelCase : Dict = (1, 11, 768) self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], __a, atol=1E-4))
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : Optional[Any] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : List[Any] = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( a): lowerCamelCase__ = 'openai/whisper-base' lowerCamelCase__ = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) lowerCamelCase__ = 'transcriber' lowerCamelCase__ = WhisperProcessor lowerCamelCase__ = WhisperForConditionalGeneration lowerCamelCase__ = ['audio'] lowerCamelCase__ = ['text'] def snake_case__ ( self, __a): '''simple docstring''' return self.pre_processor(__a, return_tensors="pt").input_features def snake_case__ ( self, __a): '''simple docstring''' return self.model.generate(inputs=__a) def snake_case__ ( self, __a): '''simple docstring''' return self.pre_processor.batch_decode(__a, skip_special_tokens=__a)[0]
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [0] * len(_lowerCamelCase ) _lowerCAmelCase : Dict = [] _lowerCAmelCase : Optional[int] = [1] * len(_lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCamelCase ) ): if indegree[i] == 0: queue.append(_lowerCamelCase ) while queue: _lowerCAmelCase : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _lowerCAmelCase : Union[str, Any] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_lowerCamelCase ) print(max(_lowerCamelCase ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
355
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
0
import cmath import math def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = math.radians(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = math.radians(_lowerCamelCase ) # Convert voltage and current to rectangular form _lowerCAmelCase : Tuple = cmath.rect(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = cmath.rect(_lowerCamelCase , _lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } _snake_case = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } _snake_case = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = RealmTokenizer def __init__( self, __a=None, __a=None, __a=True, __a="[UNK]", __a="[SEP]", __a="[PAD]", __a="[CLS]", __a="[MASK]", __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( __a, tokenizer_file=__a, do_lower_case=__a, unk_token=__a, sep_token=__a, pad_token=__a, cls_token=__a, mask_token=__a, tokenize_chinese_chars=__a, strip_accents=__a, **__a, ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", __a) != do_lower_case or normalizer_state.get("strip_accents", __a) != strip_accents or normalizer_state.get("handle_chinese_chars", __a) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(__a, normalizer_state.pop("type")) _lowerCAmelCase : int = do_lower_case _lowerCAmelCase : Dict = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Any = normalizer_class(**__a) _lowerCAmelCase : List[Any] = do_lower_case def snake_case__ ( self, __a, **__a): '''simple docstring''' _lowerCAmelCase : Dict = PaddingStrategy.MAX_LENGTH _lowerCAmelCase : Union[str, Any] = text _lowerCAmelCase : Any = kwargs.pop("text_pair", __a) _lowerCAmelCase : Tuple = kwargs.pop("return_tensors", __a) _lowerCAmelCase : List[str] = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(__a): if batch_text_pair is not None: _lowerCAmelCase : Optional[Any] = batch_text_pair[idx] else: _lowerCAmelCase : str = None _lowerCAmelCase : Union[str, Any] = super().__call__(__a, __a, return_tensors=__a, **__a) _lowerCAmelCase : Union[str, Any] = encoded_candidates.get("input_ids") _lowerCAmelCase : List[Any] = encoded_candidates.get("attention_mask") _lowerCAmelCase : Optional[int] = encoded_candidates.get("token_type_ids") if encoded_input_ids is not None: output_data["input_ids"].append(__a) if encoded_attention_mask is not None: output_data["attention_mask"].append(__a) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__a) _lowerCAmelCase : Optional[int] = {key: item for key, item in output_data.items() if len(__a) != 0} return BatchEncoding(__a, tensor_type=__a) def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Dict = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(__a, name=__a) return tuple(__a)
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _snake_case = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase_ : def __init__( self, __a, __a=16, __a=13, __a=7, __a=14, __a=10, __a=19, __a=5, __a=4, __a=True, __a=16, __a=2, __a=4, __a=4, __a="gelu", __a=0.1, __a=0.1, __a=[1, 2, 3, 4, 5], __a=25, __a=5, ): '''simple docstring''' _lowerCAmelCase : int = d_model _lowerCAmelCase : Tuple = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Optional[int] = prediction_length _lowerCAmelCase : Tuple = context_length _lowerCAmelCase : List[Any] = cardinality _lowerCAmelCase : Union[str, Any] = num_time_features _lowerCAmelCase : Any = lags_sequence _lowerCAmelCase : Optional[Any] = embedding_dimension _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : str = context_length _lowerCAmelCase : Tuple = prediction_length + label_length _lowerCAmelCase : List[Any] = label_length _lowerCAmelCase : Optional[Any] = moving_average _lowerCAmelCase : List[str] = autocorrelation_factor def snake_case__ ( self): '''simple docstring''' return AutoformerConfig( d_model=self.d_model, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, prediction_length=self.prediction_length, context_length=self.context_length, label_length=self.label_length, lags_sequence=self.lags_sequence, num_time_features=self.num_time_features, num_static_categorical_features=1, cardinality=[self.cardinality], embedding_dimension=[self.embedding_dimension], moving_average=self.moving_average, ) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = config.context_length + max(config.lags_sequence) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, 1], config.cardinality[0]) _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features]) _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, _past_length]) _lowerCAmelCase : str = floats_tensor([self.batch_size, _past_length]) > 0.5 # decoder inputs _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features]) _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, config.prediction_length]) _lowerCAmelCase : List[str] = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_config() _lowerCAmelCase : Dict = self.prepare_autoformer_inputs_dict(__a) return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = AutoformerModel(config=__a).to(__a).eval() _lowerCAmelCase : List[str] = model(**__a) _lowerCAmelCase : List[Any] = outputs.encoder_last_hidden_state _lowerCAmelCase : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Union[str, Any] = model.get_encoder() encoder.save_pretrained(__a) _lowerCAmelCase : Optional[int] = AutoformerEncoder.from_pretrained(__a).to(__a) _lowerCAmelCase : Dict = model.create_network_inputs(**__a) _lowerCAmelCase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...]) _lowerCAmelCase : Dict = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]), dim=-1, ) _lowerCAmelCase : Tuple = encoder(inputs_embeds=__a)[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3) _lowerCAmelCase : Optional[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...], dim=1) .unsqueeze(1) .repeat(1, config.prediction_length, 1) ) _lowerCAmelCase : List[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]], device=enc_input.device, ) _lowerCAmelCase : Optional[int] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros), dim=1), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) _lowerCAmelCase : Any = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean), dim=1), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : int = model.get_decoder() decoder.save_pretrained(__a) _lowerCAmelCase : Tuple = AutoformerDecoder.from_pretrained(__a).to(__a) _lowerCAmelCase : Any = decoder( trend=__a, inputs_embeds=__a, encoder_hidden_states=__a, )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3) @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCamelCase__ = (AutoformerForPrediction,) if is_torch_available() else () lowerCamelCase__ = {'feature-extraction': AutoformerModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = AutoformerModelTester(self) _lowerCAmelCase : List[str] = ConfigTester(self, config_class=__a, has_text_modality=__a) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(__a) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a) _lowerCAmelCase : Any = model_class.from_pretrained(__a, output_loading_info=__a) self.assertEqual(info["missing_keys"], []) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a) @unittest.skip(reason="Model has no tokens embeddings") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = inspect.signature(getattr(__a, "forward")) # The main input is the name of the argument after `self` _lowerCAmelCase : Union[str, Any] = list(model_signature.parameters.keys())[1] self.assertEqual(AutoformerModel.main_input_name, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(__a) _lowerCAmelCase : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : int = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask") expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ]) self.assertListEqual(arg_names[: len(__a)], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[int] = getattr(self.model_tester, "seq_length", __a) _lowerCAmelCase : Union[str, Any] = getattr(self.model_tester, "decoder_seq_length", __a) _lowerCAmelCase : Tuple = getattr(self.model_tester, "encoder_seq_length", __a) _lowerCAmelCase : Optional[Any] = getattr(self.model_tester, "d_model", __a) _lowerCAmelCase : List[Any] = getattr(self.model_tester, "num_attention_heads", __a) _lowerCAmelCase : int = d_model // num_attention_heads for model_class in self.all_model_classes: _lowerCAmelCase : str = True _lowerCAmelCase : Tuple = False _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Optional[Any] = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(__a, __a)) _lowerCAmelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : List[Any] = True _lowerCAmelCase : str = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _lowerCAmelCase : Any = model(**self._prepare_for_class(__a, __a)) _lowerCAmelCase : List[Any] = outputs.encoder_attentions self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) _lowerCAmelCase : Dict = len(__a) _lowerCAmelCase : Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a, __a) # decoder attentions _lowerCAmelCase : Optional[Any] = outputs.decoder_attentions self.assertIsInstance(__a, (list, tuple)) self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # cross attentions _lowerCAmelCase : List[Any] = outputs.cross_attentions self.assertIsInstance(__a, (list, tuple)) self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # Check attention is always last and order is fine _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Tuple = True _lowerCAmelCase : Optional[int] = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _lowerCAmelCase : int = model(**self._prepare_for_class(__a, __a)) self.assertEqual(out_len + 2, len(__a)) _lowerCAmelCase : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) @is_flaky() def snake_case__ ( self): '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def A ( _lowerCamelCase="train-batch.pt" ): '''simple docstring''' _lowerCAmelCase : List[str] = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=_lowerCamelCase , repo_type="dataset" ) _lowerCAmelCase : Dict = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) return batch @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly").to(__a) _lowerCAmelCase : List[Any] = prepare_batch() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], future_values=batch["future_values"], future_time_features=batch["future_time_features"], )[0] _lowerCAmelCase : Optional[int] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size)) self.assertEqual(output.shape, __a) _lowerCAmelCase : List[str] = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]], device=__a) self.assertTrue(torch.allclose(output[0, :3, :3], __a, atol=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly").to(__a) _lowerCAmelCase : Union[str, Any] = prepare_batch("val-batch.pt") with torch.no_grad(): _lowerCAmelCase : str = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], ).encoder_last_hidden_state _lowerCAmelCase : Dict = torch.Size((64, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape, __a) _lowerCAmelCase : Any = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]], device=__a) self.assertTrue(torch.allclose(output[0, :3, :3], __a, atol=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly").to(__a) _lowerCAmelCase : Optional[Any] = prepare_batch("val-batch.pt") with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model.generate( static_categorical_features=batch["static_categorical_features"], past_time_features=batch["past_time_features"], past_values=batch["past_values"], future_time_features=batch["future_time_features"], past_observed_mask=batch["past_observed_mask"], ) _lowerCAmelCase : Dict = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length)) self.assertEqual(outputs.sequences.shape, __a) _lowerCAmelCase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786], device=__a) _lowerCAmelCase : Optional[int] = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -3:], __a, rtol=1E-1))
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _snake_case = "\nHuman: <<task>>\n\nAssistant: " _snake_case = "huggingface-tools/default-prompts" _snake_case = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="run" ): '''simple docstring''' if prompt_or_repo_id is None: _lowerCAmelCase : str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCamelCase ) is not None: return prompt_or_repo_id _lowerCAmelCase : Dict = cached_file( _lowerCamelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: return f.read()
359
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
0
def A ( _lowerCamelCase = 50 ): '''simple docstring''' _lowerCAmelCase : List[str] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
360
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
0
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = 0.00 _lowerCAmelCase : List[str] = 0 for resistor in resistors: if resistor <= 0: _lowerCAmelCase : Tuple = F"Resistor at index {index} has a negative or zero value!" raise ValueError(_lowerCamelCase ) first_sum += 1 / float(_lowerCamelCase ) index += 1 return 1 / first_sum def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = 0.00 _lowerCAmelCase : str = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowerCAmelCase : Dict = F"Resistor at index {index} has a negative value!" raise ValueError(_lowerCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : str = None if token is not None: _lowerCAmelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} _lowerCAmelCase : Optional[Any] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _lowerCAmelCase : Dict = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() _lowerCAmelCase : List[Any] = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase : str = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCamelCase ): _lowerCAmelCase : int = requests.get(url + F"&page={i + 2}" , headers=_lowerCamelCase ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : List[str] = None if token is not None: _lowerCAmelCase : List[str] = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} _lowerCAmelCase : Any = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" _lowerCAmelCase : List[str] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() _lowerCAmelCase : Union[str, Any] = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase : Tuple = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCamelCase ): _lowerCAmelCase : int = requests.get(url + F"&page={i + 2}" , headers=_lowerCamelCase ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = None if token is not None: _lowerCAmelCase : Union[str, Any] = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} _lowerCAmelCase : str = requests.get(_lowerCamelCase , headers=_lowerCamelCase , allow_redirects=_lowerCamelCase ) _lowerCAmelCase : Tuple = result.headers["Location"] _lowerCAmelCase : int = requests.get(_lowerCamelCase , allow_redirects=_lowerCamelCase ) _lowerCAmelCase : Any = os.path.join(_lowerCamelCase , F"{artifact_name}.zip" ) with open(_lowerCamelCase , "wb" ) as fp: fp.write(response.content ) def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = None with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_lowerCamelCase ) as f: for line in f: _lowerCAmelCase : Optional[Any] = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase : List[str] = line[: line.index(": " )] _lowerCAmelCase : Union[str, Any] = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase : Tuple = line[len("FAILED " ) :] failed_tests.append(_lowerCamelCase ) elif filename == "job_name.txt": _lowerCAmelCase : Optional[int] = line if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCamelCase )} for `errors` " F"and {len(_lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) _lowerCAmelCase : Any = None if job_name and job_links: _lowerCAmelCase : Dict = job_links.get(_lowerCamelCase , _lowerCamelCase ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(_lowerCamelCase , _lowerCamelCase )] return result def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = [] _lowerCAmelCase : Any = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(_lowerCamelCase , job_links=_lowerCamelCase ) ) return errors def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Dict = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase : Any = counter.most_common() _lowerCAmelCase : int = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase : List[str] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase : str = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) ) return r def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase : str = test.split("/" )[2] else: _lowerCAmelCase : Union[str, Any] = None return test def A ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase : List[Any] = [x for x in logs if x[2] is not None] _lowerCAmelCase : Optional[int] = {x[2] for x in logs} _lowerCAmelCase : Optional[Any] = {} for test in tests: _lowerCAmelCase : Tuple = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase : Tuple = counter.most_common() _lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase : Any = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase : Optional[Any] = {"count": n_errors, "errors": error_counts} _lowerCAmelCase : str = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) ) return r def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = "| no. | error | status |" _lowerCAmelCase : Tuple = "|-:|:-|:-|" _lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: _lowerCAmelCase : Optional[int] = reduced_by_error[error]["count"] _lowerCAmelCase : Union[str, Any] = F"| {count} | {error[:100]} | |" lines.append(_lowerCamelCase ) return "\n".join(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = "| model | no. of errors | major error | count |" _lowerCAmelCase : Optional[Any] = "|-:|-:|-:|-:|" _lowerCAmelCase : int = [header, sep] for model in reduced_by_model: _lowerCAmelCase : str = reduced_by_model[model]["count"] _lowerCAmelCase : int = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase : Dict = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(_lowerCamelCase ) return "\n".join(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = len(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = [] for i in range(len(_lowerCamelCase ) - pat_len + 1 ): _lowerCAmelCase : Optional[int] = True for j in range(_lowerCamelCase ): if s[i + j] != pattern[j]: _lowerCAmelCase : Any = False break if match_found: position.append(_lowerCamelCase ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
363
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def snake_case__ ( self, __a=0): '''simple docstring''' _lowerCAmelCase : int = floats_tensor((1, 3, 128, 128), rng=random.Random(__a)) _lowerCAmelCase : Optional[Any] = np.random.RandomState(__a) _lowerCAmelCase : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : Tuple = pipe(**__a).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Any = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**__a).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : List[Any] = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) # warmup pass to apply optimizations _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs()) _lowerCAmelCase : str = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**__a).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : List[str] = pipe(**__a).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Optional[int] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : int = self.get_dummy_inputs() _lowerCAmelCase : Optional[Any] = pipe(**__a).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : int = pipe(**__a).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : List[str] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ort.SessionOptions() _lowerCAmelCase : Dict = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _lowerCAmelCase : Dict = init_image.resize((768, 512)) # using the PNDM scheduler by default _lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A fantasy landscape, trending on artstation" _lowerCAmelCase : str = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=__a, output_type="np", ) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _lowerCAmelCase : int = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _lowerCAmelCase : Tuple = init_image.resize((768, 512)) _lowerCAmelCase : List[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx") _lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=__a, safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = "A fantasy landscape, trending on artstation" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Optional[int] = pipe( prompt=__a, image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=__a, output_type="np", ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _lowerCAmelCase : Any = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
364
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
0
from math import factorial def A ( _lowerCamelCase = 100 ): '''simple docstring''' return sum(int(_lowerCamelCase ) for x in str(factorial(_lowerCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(a) class UpperCAmelCase_ ( a): def __init__( self, **__a): '''simple docstring''' super().__init__(**__a) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch.") requires_backends(self, "vision") self.check_model_type(__a) def __call__( self, __a, __a = None, **__a, ): '''simple docstring''' if "text_queries" in kwargs: _lowerCAmelCase : str = kwargs.pop("text_queries") if isinstance(__a, (str, Image.Image)): _lowerCAmelCase : int = {"image": image, "candidate_labels": candidate_labels} else: _lowerCAmelCase : Optional[Any] = image _lowerCAmelCase : Tuple = super().__call__(__a, **__a) return results def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} if "threshold" in kwargs: _lowerCAmelCase : Dict = kwargs["threshold"] if "top_k" in kwargs: _lowerCAmelCase : str = kwargs["top_k"] return {}, {}, postprocess_params def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = load_image(inputs["image"]) _lowerCAmelCase : Optional[Any] = inputs["candidate_labels"] if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = candidate_labels.split(",") _lowerCAmelCase : Optional[int] = torch.tensor([[image.height, image.width]], dtype=torch.intaa) for i, candidate_label in enumerate(__a): _lowerCAmelCase : Any = self.tokenizer(__a, return_tensors=self.framework) _lowerCAmelCase : Optional[Any] = self.image_processor(__a, return_tensors=self.framework) yield { "is_last": i == len(__a) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = model_inputs.pop("target_size") _lowerCAmelCase : str = model_inputs.pop("candidate_label") _lowerCAmelCase : str = model_inputs.pop("is_last") _lowerCAmelCase : Optional[int] = self.model(**__a) _lowerCAmelCase : Dict = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def snake_case__ ( self, __a, __a=0.1, __a=None): '''simple docstring''' _lowerCAmelCase : Dict = [] for model_output in model_outputs: _lowerCAmelCase : Any = model_output["candidate_label"] _lowerCAmelCase : Union[str, Any] = BaseModelOutput(__a) _lowerCAmelCase : str = self.image_processor.post_process_object_detection( outputs=__a, threshold=__a, target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): _lowerCAmelCase : int = outputs["scores"][index].item() _lowerCAmelCase : Optional[Any] = self._get_bounding_box(outputs["boxes"][index][0]) _lowerCAmelCase : Optional[int] = {"score": score, "label": label, "box": box} results.append(__a) _lowerCAmelCase : Optional[Any] = sorted(__a, key=lambda __a: x["score"], reverse=__a) if top_k: _lowerCAmelCase : Union[str, Any] = results[:top_k] return results def snake_case__ ( self, __a): '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") _lowerCAmelCase : Any = box.int().tolist() _lowerCAmelCase : int = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
# Lint as: python3 import itertools import os import re _snake_case = re.compile(R"([A-Z]+)([A-Z][a-z])") _snake_case = re.compile(R"([a-z\d])([A-Z])") _snake_case = re.compile(R"(?<!_)_(?!_)") _snake_case = re.compile(R"(_{2,})") _snake_case = R"^\w+(\.\w+)*$" _snake_case = R"<>:/\|?*" def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = _uppercase_uppercase_re.sub(r"\1_\2" , _lowerCamelCase ) _lowerCAmelCase : List[str] = _lowercase_uppercase_re.sub(r"\1_\2" , _lowerCamelCase ) return name.lower() def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = _single_underscore_re.split(_lowerCamelCase ) _lowerCAmelCase : Tuple = [_multiple_underscores_re.split(_lowerCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowerCamelCase ) if n != "" ) def A ( _lowerCamelCase ): '''simple docstring''' if os.path.basename(_lowerCamelCase ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if os.path.basename(_lowerCamelCase ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , _lowerCamelCase ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(_lowerCamelCase )}-{split}" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = filename_prefix_for_split(_lowerCamelCase , _lowerCamelCase ) if filetype_suffix: prefix += F".{filetype_suffix}" _lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) return F"{filepath}*" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = filename_prefix_for_split(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if shard_lengths: _lowerCAmelCase : List[Any] = len(_lowerCamelCase ) _lowerCAmelCase : List[Any] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(_lowerCamelCase )] if filetype_suffix: _lowerCAmelCase : Optional[Any] = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: _lowerCAmelCase : Any = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
367
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
0
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def A ( _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[column] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=float("inf" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCamelCase ): _lowerCAmelCase : int = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase : Any = current_dis return min_dis def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=float("inf" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , _lowerCamelCase ): for j in range(max(0 , i - 6 ) , _lowerCamelCase ): _lowerCAmelCase : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase : Any = current_dis return min_dis def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(_lowerCamelCase , _lowerCamelCase ) # recursion _lowerCAmelCase : str = points_counts // 2 _lowerCAmelCase : Any = closest_pair_of_points_sqr( _lowerCamelCase , points_sorted_on_y[:mid] , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = closest_pair_of_points_sqr( _lowerCamelCase , points_sorted_on_y[mid:] , points_counts - mid ) _lowerCAmelCase : Tuple = min(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = dis_between_closest_in_strip( _lowerCamelCase , len(_lowerCamelCase ) , _lowerCamelCase ) return min(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = column_based_sort(_lowerCamelCase , column=0 ) _lowerCAmelCase : Optional[Any] = column_based_sort(_lowerCamelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) ** 0.5 if __name__ == "__main__": _snake_case = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = StableDiffusionPanoramaPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=1, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) _lowerCAmelCase : str = DDIMScheduler() torch.manual_seed(0) _lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) _lowerCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) _lowerCAmelCase : List[str] = CLIPTextModel(__a) _lowerCAmelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") _lowerCAmelCase : Optional[int] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' _lowerCAmelCase : int = torch.manual_seed(__a) _lowerCAmelCase : Dict = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : str = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : Dict = sd_pipe(**__a).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Any = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2]) def snake_case__ ( self): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=3.25E-3) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Optional[Any] = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : Any = "french fries" _lowerCAmelCase : Union[str, Any] = sd_pipe(**__a, negative_prompt=__a) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Union[str, Any] = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : Any = sd_pipe(**__a, view_batch_size=2) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : Any = EulerAncestralDiscreteScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear") _lowerCAmelCase : Optional[int] = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Any = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : str = self.get_dummy_inputs(__a) _lowerCAmelCase : Union[str, Any] = sd_pipe(**__a).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Optional[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : int = PNDMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=__a) _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Dict = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : int = self.get_dummy_inputs(__a) _lowerCAmelCase : str = sd_pipe(**__a).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Optional[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self, __a=0): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(__a) _lowerCAmelCase : Union[str, Any] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "stabilityai/stable-diffusion-2-base" _lowerCAmelCase : List[Any] = DDIMScheduler.from_pretrained(__a, subfolder="scheduler") _lowerCAmelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__a, scheduler=__a, safety_checker=__a) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _lowerCAmelCase : Dict = self.get_inputs() _lowerCAmelCase : Union[str, Any] = pipe(**__a).images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCAmelCase : int = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ]) assert np.abs(expected_slice - image_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", safety_checker=__a) _lowerCAmelCase : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _lowerCAmelCase : Union[str, Any] = self.get_inputs() _lowerCAmelCase : Optional[int] = pipe(**__a).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCAmelCase : Tuple = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = 0 def callback_fn(__a, __a, __a) -> None: _lowerCAmelCase : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCAmelCase : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCAmelCase : Dict = latents[0, -3:, -3:, -1] _lowerCAmelCase : str = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 elif step == 2: _lowerCAmelCase : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCAmelCase : Any = latents[0, -3:, -3:, -1] _lowerCAmelCase : Dict = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 _lowerCAmelCase : str = False _lowerCAmelCase : List[Any] = "stabilityai/stable-diffusion-2-base" _lowerCAmelCase : Any = DDIMScheduler.from_pretrained(__a, subfolder="scheduler") _lowerCAmelCase : Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained(__a, scheduler=__a, safety_checker=__a) _lowerCAmelCase : Dict = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _lowerCAmelCase : List[str] = self.get_inputs() pipe(**__a, callback=__a, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case__ ( self): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase : str = "stabilityai/stable-diffusion-2-base" _lowerCAmelCase : Optional[Any] = DDIMScheduler.from_pretrained(__a, subfolder="scheduler") _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained(__a, scheduler=__a, safety_checker=__a) _lowerCAmelCase : Optional[int] = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _lowerCAmelCase : int = self.get_inputs() _lowerCAmelCase : int = pipe(**__a) _lowerCAmelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
369
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a) , 'Tatoeba directory does not exist.') class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=__a) @slow def snake_case__ ( self): '''simple docstring''' self.resolver.convert_models(["heb-eng"]) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.resolver.write_model_card("opus-mt-he-en", dry_run=__a) assert mmeta["long_pair"] == "heb-eng"
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = DebertaVaTokenizer lowerCamelCase__ = DebertaVaTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Dict = DebertaVaTokenizer(__a, unk_token="<unk>") tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = "this is a test" _lowerCAmelCase : Optional[int] = "this is a test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "<pad>" _lowerCAmelCase : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a), __a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<pad>") self.assertEqual(vocab_keys[1], "<unk>") self.assertEqual(vocab_keys[-1], "[PAD]") self.assertEqual(len(__a), 3_0001) def snake_case__ ( self): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = " \tHeLLo!how \n Are yoU? " _lowerCAmelCase : Any = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on _lowerCAmelCase : Optional[Any] = DebertaVaTokenizer(__a, do_lower_case=__a) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : List[str] = DebertaVaTokenizerFast(__a, do_lower_case=__a) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "I was born in 92000, and this is falsé." _lowerCAmelCase : List[Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _lowerCAmelCase : str = DebertaVaTokenizer(__a, split_by_punct=__a) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[Any] = DebertaVaTokenizerFast(__a, split_by_punct=__a) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "I was born in 92000, and this is falsé." _lowerCAmelCase : Any = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "I was born in 92000, and this is falsé." _lowerCAmelCase : Dict = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _lowerCAmelCase : Union[str, Any] = DebertaVaTokenizer(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = DebertaVaTokenizerFast(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "I was born in 92000, and this is falsé." _lowerCAmelCase : Tuple = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _lowerCAmelCase : Optional[int] = DebertaVaTokenizer(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = DebertaVaTokenizerFast(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = " \tHeLLo!how \n Are yoU? " _lowerCAmelCase : List[Any] = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on _lowerCAmelCase : List[Any] = DebertaVaTokenizer(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : List[Any] = DebertaVaTokenizerFast(__a, do_lower_case=__a, split_by_punct=__a) _lowerCAmelCase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = "I was born in 92000, and this is falsé." _lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__a, add_special_tokens=__a)) _lowerCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__a, add_special_tokens=__a)) self.assertListEqual(__a, __a) _lowerCAmelCase : str = tokenizer.encode(__a, add_special_tokens=__a) _lowerCAmelCase : Tuple = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Any = tokenizer.encode(__a) _lowerCAmelCase : Tuple = rust_tokenizer.encode(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = "This is a test" _lowerCAmelCase : Dict = [13, 1, 4398, 25, 21, 1289] _lowerCAmelCase : str = ["▁", "T", "his", "▁is", "▁a", "▁test"] _lowerCAmelCase : Dict = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] _lowerCAmelCase : Tuple = DebertaVaTokenizer(__a, keep_accents=__a) _lowerCAmelCase : Dict = DebertaVaTokenizerFast(__a, keep_accents=__a) _lowerCAmelCase : Optional[Any] = tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Any = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : int = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : List[Any] = rust_tokenizer.convert_ids_to_tokens(__a) self.assertListEqual(__a, __a) # fmt: off _lowerCAmelCase : Optional[Any] = "I was born in 92000, and this is falsé." _lowerCAmelCase : int = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _lowerCAmelCase : Optional[Any] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] _lowerCAmelCase : List[Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _lowerCAmelCase : Union[str, Any] = tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = rust_tokenizer.encode(__a, add_special_tokens=__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(__a) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = DebertaVaTokenizer(__a) _lowerCAmelCase : List[Any] = tokenizer.encode("sequence builders") _lowerCAmelCase : str = tokenizer.encode("multi-sequence build") _lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a) _lowerCAmelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__a, __a) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], __a) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], __a, ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = {"input_ids": [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a, model_name="microsoft/deberta-v2-xlarge", revision="ad6e42c1532ddf3a15c39246b63f5559d558b670", )
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
0
import re from filelock import FileLock try: import nltk _snake_case = True except (ImportError, ModuleNotFoundError): _snake_case = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def A ( _lowerCamelCase ): '''simple docstring''' re.sub("<n>" , "" , _lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase ) )
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
class UpperCAmelCase_ : def __init__( self, __a, __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = data _lowerCAmelCase : List[Any] = previous _lowerCAmelCase : Tuple = next_node def __str__( self): '''simple docstring''' return f"{self.data}" def snake_case__ ( self): '''simple docstring''' return self.data def snake_case__ ( self): '''simple docstring''' return self.next def snake_case__ ( self): '''simple docstring''' return self.previous class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = head def __iter__( self): '''simple docstring''' return self def snake_case__ ( self): '''simple docstring''' if not self.current: raise StopIteration else: _lowerCAmelCase : str = self.current.get_data() _lowerCAmelCase : List[Any] = self.current.get_next() return value class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = None # First node in list _lowerCAmelCase : int = None # Last node in list def __str__( self): '''simple docstring''' _lowerCAmelCase : int = self.head _lowerCAmelCase : Any = [] while current is not None: nodes.append(current.get_data()) _lowerCAmelCase : List[str] = current.get_next() return " ".join(str(__a) for node in nodes) def __contains__( self, __a): '''simple docstring''' _lowerCAmelCase : str = self.head while current: if current.get_data() == value: return True _lowerCAmelCase : List[Any] = current.get_next() return False def __iter__( self): '''simple docstring''' return LinkedListIterator(self.head) def snake_case__ ( self): '''simple docstring''' if self.head: return self.head.get_data() return None def snake_case__ ( self): '''simple docstring''' if self.tail: return self.tail.get_data() return None def snake_case__ ( self, __a): '''simple docstring''' if self.head is None: _lowerCAmelCase : List[Any] = node _lowerCAmelCase : List[str] = node else: self.insert_before_node(self.head, __a) def snake_case__ ( self, __a): '''simple docstring''' if self.head is None: self.set_head(__a) else: self.insert_after_node(self.tail, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = Node(__a) if self.head is None: self.set_head(__a) else: self.set_tail(__a) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = node _lowerCAmelCase : str = node.previous if node.get_previous() is None: _lowerCAmelCase : Tuple = node_to_insert else: _lowerCAmelCase : str = node_to_insert _lowerCAmelCase : Optional[Any] = node_to_insert def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = node _lowerCAmelCase : int = node.next if node.get_next() is None: _lowerCAmelCase : Optional[int] = node_to_insert else: _lowerCAmelCase : List[str] = node_to_insert _lowerCAmelCase : Tuple = node_to_insert def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : List[str] = Node(__a) _lowerCAmelCase : Tuple = self.head while node: if current_position == position: self.insert_before_node(__a, __a) return current_position += 1 _lowerCAmelCase : Any = node.next self.insert_after_node(self.tail, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.head while node: if node.get_data() == item: return node _lowerCAmelCase : Any = node.get_next() raise Exception("Node not found") def snake_case__ ( self, __a): '''simple docstring''' if (node := self.get_node(__a)) is not None: if node == self.head: _lowerCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: _lowerCAmelCase : Optional[int] = self.tail.get_previous() self.remove_node_pointers(__a) @staticmethod def snake_case__ ( __a): '''simple docstring''' if node.get_next(): _lowerCAmelCase : Union[str, Any] = node.previous if node.get_previous(): _lowerCAmelCase : Union[str, Any] = node.next _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : List[str] = None def snake_case__ ( self): '''simple docstring''' return self.head is None def A ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 'longest' lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _snake_case = logging.getLogger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = bnb_quantization_config.load_in_abit _lowerCAmelCase : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) _lowerCAmelCase : Tuple = [] # custom device map if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(device_map.keys() ) > 1: _lowerCAmelCase : int = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _lowerCAmelCase : Optional[Any] = get_keys_to_not_convert(_lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_lowerCamelCase ) _lowerCAmelCase : str = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _lowerCAmelCase : Dict = [] _lowerCAmelCase : Optional[int] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_lowerCamelCase ) # compatibility with peft _lowerCAmelCase : List[Any] = load_in_abit _lowerCAmelCase : Any = load_in_abit _lowerCAmelCase : Any = get_parameter_device(_lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) _lowerCAmelCase : Optional[int] = replace_with_bnb_layers(_lowerCamelCase , _lowerCamelCase , modules_to_not_convert=_lowerCamelCase ) # convert param to the right dtype _lowerCAmelCase : List[str] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _lowerCAmelCase : Tuple = name.replace(".weight" , "" ).replace(".bias" , "" ) _lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_lowerCamelCase ): param.to(_lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): _lowerCAmelCase : Any = replace_with_bnb_layers( _lowerCamelCase , _lowerCamelCase , modules_to_not_convert=_lowerCamelCase ) _lowerCAmelCase : List[str] = get_quantized_model_device_map( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , max_memory=_lowerCamelCase , no_split_module_classes=_lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _lowerCAmelCase : Tuple = True _lowerCAmelCase : Union[str, Any] = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=_lowerCamelCase , offload_state_dict=_lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_lowerCamelCase , device_map=_lowerCamelCase , offload_dir=_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): _lowerCAmelCase : int = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(_lowerCamelCase , _lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) _lowerCAmelCase : Union[str, Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _lowerCAmelCase : int = {} _lowerCAmelCase : List[str] = special_dtypes _lowerCAmelCase : Any = no_split_module_classes _lowerCAmelCase : Optional[int] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _lowerCAmelCase : Dict = get_balanced_memory( _lowerCamelCase , low_zero=(device_map == "balanced_low_0") , max_memory=_lowerCamelCase , **_lowerCamelCase , ) _lowerCAmelCase : int = max_memory _lowerCAmelCase : List[str] = infer_auto_device_map(_lowerCamelCase , **_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): # check if don't have any quantized module on the cpu _lowerCAmelCase : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _lowerCAmelCase : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if modules_to_not_convert is None: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Any = _replace_with_bnb_layers( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase : List[Any] = False for name, module in model.named_children(): if current_key_name is None: _lowerCAmelCase : Dict = [] current_key_name.append(_lowerCamelCase ) if isinstance(_lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _lowerCAmelCase : Tuple = ".".join(_lowerCamelCase ) _lowerCAmelCase : Dict = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _lowerCAmelCase : Dict = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _lowerCAmelCase : Any = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _lowerCAmelCase : List[str] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) _lowerCAmelCase : Any = module.weight.data if module.bias is not None: _lowerCAmelCase : Optional[int] = module.bias.data bnb_module.requires_grad_(_lowerCamelCase ) setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = True if len(list(module.children() ) ) > 0: _lowerCAmelCase : int = _replace_with_bnb_layers( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : str = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A ( _lowerCamelCase ): '''simple docstring''' with init_empty_weights(): _lowerCAmelCase : str = deepcopy(_lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _lowerCAmelCase : Union[str, Any] = find_tied_parameters(_lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Any = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowerCAmelCase : Any = sum(_lowerCamelCase , [] ) _lowerCAmelCase : Tuple = len(_lowerCamelCase ) > 0 # Check if it is a base model _lowerCAmelCase : Any = False if hasattr(_lowerCamelCase , "base_model_prefix" ): _lowerCAmelCase : List[str] = not hasattr(_lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowerCAmelCase : Any = list(model.named_children() ) _lowerCAmelCase : Dict = [list_modules[-1][0]] # add last module together with tied weights _lowerCAmelCase : Dict = set(_lowerCamelCase ) - set(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = list(set(_lowerCamelCase ) ) + list(_lowerCamelCase ) # remove ".weight" from the keys _lowerCAmelCase : Any = [".weight", ".bias"] _lowerCAmelCase : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowerCAmelCase : Any = name.replace(_lowerCamelCase , "" ) filtered_module_names.append(_lowerCamelCase ) return filtered_module_names def A ( _lowerCamelCase ): '''simple docstring''' for m in model.modules(): if isinstance(_lowerCamelCase , bnb.nn.Linearabit ): return True return False def A ( _lowerCamelCase ): '''simple docstring''' return next(parameter.parameters() ).device def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(_lowerCamelCase , _lowerCamelCase , 0 , dtype=_lowerCamelCase , value=_lowerCamelCase ) _lowerCAmelCase : Dict = param_name _lowerCAmelCase : Optional[Any] = model if "." in tensor_name: _lowerCAmelCase : List[Any] = tensor_name.split("." ) for split in splits[:-1]: _lowerCAmelCase : Any = getattr(_lowerCamelCase , _lowerCamelCase ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) _lowerCAmelCase : List[Any] = new_module _lowerCAmelCase : Union[str, Any] = splits[-1] # offload weights _lowerCAmelCase : List[Any] = False offload_weight(module._parameters[tensor_name] , _lowerCamelCase , _lowerCamelCase , index=_lowerCamelCase ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , _lowerCamelCase , index=_lowerCamelCase , ) else: offload_weight(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index=_lowerCamelCase ) offload_weight(_lowerCamelCase , param_name.replace("weight" , "SCB" ) , _lowerCamelCase , index=_lowerCamelCase ) set_module_tensor_to_device(_lowerCamelCase , _lowerCamelCase , "meta" , dtype=_lowerCamelCase , value=torch.empty(*param.size() ) )
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class UpperCAmelCase_ ( a): def __init__( self, __a=None, __a=None, *__a, **__a): '''simple docstring''' super().__init__(*__a, **__a) if config is None: assert isinstance(self.model, __a), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) _lowerCAmelCase : Tuple = self.model.config else: _lowerCAmelCase : List[Any] = config _lowerCAmelCase : Dict = data_args _lowerCAmelCase : List[str] = self.config.tgt_vocab_size if isinstance(self.config, __a) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" " padding..") if self.args.label_smoothing == 0: _lowerCAmelCase : int = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _lowerCAmelCase : str = label_smoothed_nll_loss def snake_case__ ( self, __a): '''simple docstring''' if self.optimizer is None: _lowerCAmelCase : Optional[Any] = ["bias", "LayerNorm.weight"] _lowerCAmelCase : int = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] _lowerCAmelCase : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _lowerCAmelCase : List[Any] = Adafactor _lowerCAmelCase : List[str] = {"scale_parameter": False, "relative_step": False} else: _lowerCAmelCase : str = AdamW _lowerCAmelCase : int = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } _lowerCAmelCase : Any = self.args.learning_rate if self.sharded_ddp: _lowerCAmelCase : Dict = OSS( params=__a, optim=__a, **__a, ) else: _lowerCAmelCase : Union[str, Any] = optimizer_cls(__a, **__a) if self.lr_scheduler is None: _lowerCAmelCase : Dict = self._get_lr_scheduler(__a) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.") def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _lowerCAmelCase : List[Any] = schedule_func(self.optimizer) elif self.args.lr_scheduler == "constant_w_warmup": _lowerCAmelCase : List[Any] = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps) else: _lowerCAmelCase : Any = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=__a) return scheduler def snake_case__ ( self): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset) ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _lowerCAmelCase : List[Any] = model(**__a, use_cache=__a)[0] _lowerCAmelCase : Tuple = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1)) else: # compute usual loss via models _lowerCAmelCase : Optional[Any] = model(**__a, labels=__a, use_cache=__a)[:2] else: # compute label smoothed loss _lowerCAmelCase : str = model(**__a, use_cache=__a)[0] _lowerCAmelCase : Any = torch.nn.functional.log_softmax(__a, dim=-1) _lowerCAmelCase : Union[str, Any] = self.loss_fn(__a, __a, self.args.label_smoothing, ignore_index=self.config.pad_token_id) return loss, logits def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : str = inputs.pop("labels") _lowerCAmelCase : Optional[Any] = self._compute_loss(__a, __a, __a) return loss def snake_case__ ( self, __a, __a, __a, __a = None, ): '''simple docstring''' _lowerCAmelCase : Any = self._prepare_inputs(__a) _lowerCAmelCase : str = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _lowerCAmelCase : Any = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **__a, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _lowerCAmelCase : Dict = self._pad_tensors_to_max_len(__a, gen_kwargs["max_length"]) _lowerCAmelCase : Union[str, Any] = inputs.pop("labels") with torch.no_grad(): # compute loss on predict data _lowerCAmelCase : Any = self._compute_loss(__a, __a, __a) _lowerCAmelCase : str = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _lowerCAmelCase : Tuple = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _lowerCAmelCase : Union[str, Any] = self._pad_tensors_to_max_len(__a, gen_kwargs["max_length"]) return (loss, logits, labels) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f" padded to `max_length`={max_length}") _lowerCAmelCase : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device) _lowerCAmelCase : int = tensor return padded_tensor
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = torch.load(_lowerCamelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCAmelCase : Optional[int] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCAmelCase : Any = sd.pop(_lowerCamelCase ) _lowerCAmelCase : List[str] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCAmelCase : Dict = sd[key] # We split QKV in separate Q,K,V _lowerCAmelCase : str = key.replace(".qkv_proj." , ".q_proj." ) _lowerCAmelCase : Dict = key.replace(".qkv_proj." , ".k_proj." ) _lowerCAmelCase : Union[str, Any] = key.replace(".qkv_proj." , ".v_proj." ) _lowerCAmelCase : int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCAmelCase : int = torch.split(_lowerCamelCase , depth // 3 , dim=0 ) _lowerCAmelCase : Tuple = q _lowerCAmelCase : Dict = k _lowerCAmelCase : Optional[int] = v del sd[key] return sd @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Tuple = load_checkpoint(_lowerCamelCase ) if config is not None: _lowerCAmelCase : Any = OPTConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : List[Any] = OPTConfig() _lowerCAmelCase : str = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") _snake_case = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
355
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
0
import functools def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = len(_lowerCamelCase ) _lowerCAmelCase : Dict = len(_lowerCamelCase ) @functools.cache def min_distance(_lowerCamelCase , _lowerCamelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _lowerCAmelCase : Dict = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _lowerCamelCase ) , 1 + min_distance(_lowerCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : List[Any] = set(range(3 , _lowerCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _lowerCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowerCamelCase , _lowerCamelCase ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_lowerCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowerCamelCase , limit + 1 , _lowerCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : str = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : int = range_bbox def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # convert bbox to numpy since TF does not support item assignment _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : List[Any] = bbox[i, j, 3] _lowerCAmelCase : str = bbox[i, j, 1] _lowerCAmelCase : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : Dict = bbox[i, j, 2] _lowerCAmelCase : int = bbox[i, j, 0] _lowerCAmelCase : Optional[int] = t _lowerCAmelCase : Any = tf.convert_to_tensor(__a) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Dict = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : List[str] = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = TFLayoutLMModel(config=__a) _lowerCAmelCase : Any = model(__a, __a, attention_mask=__a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, __a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, __a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = TFLayoutLMForMaskedLM(config=__a) _lowerCAmelCase : int = model(__a, __a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = self.num_labels _lowerCAmelCase : Dict = TFLayoutLMForSequenceClassification(config=__a) _lowerCAmelCase : Optional[int] = model(__a, __a, attention_mask=__a, token_type_ids=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : List[str] = TFLayoutLMForTokenClassification(config=__a) _lowerCAmelCase : List[Any] = model(__a, __a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = TFLayoutLMForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = model(__a, __a, attention_mask=__a, token_type_ids=__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Dict = config_and_inputs _lowerCAmelCase : Optional[int] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = 10 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFLayoutLMModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFLayoutLMModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip("Onnx compliancy broke with TF 2.10") def snake_case__ ( self): '''simple docstring''' pass def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowerCAmelCase : Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowerCAmelCase : str = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowerCAmelCase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowerCAmelCase : List[Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") _lowerCAmelCase : Any = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : str = model(input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a) # test the sequence output on [0, :3, :3] _lowerCAmelCase : List[Any] = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], __a, atol=1E-3)) # test the pooled output on [1, :3] _lowerCAmelCase : Dict = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], __a, atol=1E-3)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2) _lowerCAmelCase : int = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : int = model( input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=tf.convert_to_tensor([1, 1]), ) # test whether we get a loss as a scalar _lowerCAmelCase : Dict = outputs.loss _lowerCAmelCase : str = (2,) self.assertEqual(loss.shape, __a) # test the shape of the logits _lowerCAmelCase : int = outputs.logits _lowerCAmelCase : int = (2, 2) self.assertEqual(logits.shape, __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13) _lowerCAmelCase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : Tuple = model( input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=__a) # test the shape of the logits _lowerCAmelCase : int = outputs.logits _lowerCAmelCase : Optional[int] = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape, __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased") _lowerCAmelCase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : str = model(input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a) # test the shape of the logits _lowerCAmelCase : List[Any] = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape, __a) self.assertEqual(outputs.end_logits.shape, __a)
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
359
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
0
from __future__ import annotations _snake_case = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _snake_case = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = len(_lowerCamelCase ) for i in range(_lowerCamelCase ): _lowerCAmelCase : float = -1 for j in range(i + 1 , _lowerCamelCase ): if arr[i] < arr[j]: _lowerCAmelCase : Optional[int] = arr[j] break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for i, outer in enumerate(_lowerCamelCase ): _lowerCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCAmelCase : str = inner break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = len(_lowerCamelCase ) _lowerCAmelCase : list[float] = [] _lowerCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(_lowerCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCAmelCase : List[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _snake_case = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
360
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
0
from collections import namedtuple import requests from lxml import html # type: ignore _snake_case = namedtuple("covid_data", "cases deaths recovered") def A ( _lowerCamelCase = "https://www.worldometers.info/coronavirus/" ): '''simple docstring''' _lowerCAmelCase : List[Any] = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(_lowerCamelCase ).content ).xpath(_lowerCamelCase ) ) _snake_case = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, "models/bert/")) _lowerCAmelCase : List[Any] = self.transformer_dir shutil.copy( os.path.join(__a, "src/transformers/models/bert/modeling_bert.py"), os.path.join(self.transformer_dir, "models/bert/modeling_bert.py"), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "src/transformers" shutil.rmtree(self.transformer_dir) def snake_case__ ( self, __a, __a, __a, __a=None): '''simple docstring''' _lowerCAmelCase : Tuple = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: _lowerCAmelCase : Tuple = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result _lowerCAmelCase : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119) _lowerCAmelCase : str = black.format_str(__a, mode=__a) _lowerCAmelCase : Optional[Any] = os.path.join(self.transformer_dir, "new_code.py") with open(__a, "w", newline="\n") as f: f.write(__a) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__a)) == 0) else: check_copies.is_copy_consistent(f.name, overwrite=__a) with open(__a, "r") as f: self.assertTrue(f.read(), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") self.assertEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", "BertLMPredictionHead", REFERENCE_CODE + "\n", ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", "BertLMPredictionHead", __a, ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", "TestModelLMPredictionHead", re.sub("Bert", "TestModel", __a), ) # Copy consistency with a really long name _lowerCAmelCase : Dict = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}", f"{long_class_name}LMPredictionHead", re.sub("Bert", __a, __a), ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", "TestModelLMPredictionHead", __a, overwrite_result=re.sub("Bert", "TestModel", __a), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = check_copies.LOCALIZED_READMES["README_zh-hans.md"] _lowerCAmelCase : str = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) _lowerCAmelCase : List[str] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _lowerCAmelCase : List[str] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) _lowerCAmelCase : Dict = check_copies.convert_to_localized_md( __a, __a, localized_readme["format_model_list"]) self.assertFalse(__a) self.assertEqual(__a, __a) _lowerCAmelCase : Union[str, Any] = check_copies.convert_to_localized_md( __a, __a, localized_readme["format_model_list"]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__a) _lowerCAmelCase : Union[str, Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) _lowerCAmelCase : List[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _lowerCAmelCase : Optional[int] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _lowerCAmelCase : Optional[Any] = check_copies.convert_to_localized_md( __a, __a, localized_readme["format_model_list"]) # Check if the model link is synchronized. self.assertEqual(__a, __a)
362
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = Vector([1, 2, 3]) self.assertEqual(x.component(0), 1) self.assertEqual(x.component(2), 3) _lowerCAmelCase : int = Vector() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(__a), "(0,0,0,0,0,1)") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = Vector([1, 2, 3, 4]) self.assertEqual(len(__a), 4) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = Vector([1, 2]) _lowerCAmelCase : List[Any] = Vector([1, 2, 3, 4, 5]) _lowerCAmelCase : int = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) _lowerCAmelCase : Optional[int] = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length(), 2.236, 3) self.assertAlmostEqual(y.euclidean_length(), 7.416, 3) self.assertEqual(z.euclidean_length(), 0) self.assertAlmostEqual(w.euclidean_length(), 7.616, 3) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Vector([1, 2, 3]) _lowerCAmelCase : List[str] = Vector([1, 1, 1]) self.assertEqual((x + y).component(0), 2) self.assertEqual((x + y).component(1), 3) self.assertEqual((x + y).component(2), 4) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = Vector([1, 2, 3]) _lowerCAmelCase : str = Vector([1, 1, 1]) self.assertEqual((x - y).component(0), 0) self.assertEqual((x - y).component(1), 1) self.assertEqual((x - y).component(2), 2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = Vector([1, 2, 3]) _lowerCAmelCase : str = Vector([2, -1, 4]) # for test of dot product _lowerCAmelCase : List[str] = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0), "(3.0,6.0,9.0)") self.assertEqual((a * b), 0) def snake_case__ ( self): '''simple docstring''' self.assertEqual(str(zero_vector(10)).count("0"), 10) def snake_case__ ( self): '''simple docstring''' self.assertEqual(str(unit_basis_vector(3, 1)), "(0,1,0)") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = Vector([1, 2, 3]) _lowerCAmelCase : int = Vector([1, 0, 1]) self.assertEqual(str(axpy(2, __a, __a)), "(3,4,7)") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Vector([1, 0, 0, 0, 0, 0]) _lowerCAmelCase : Optional[int] = x.copy() self.assertEqual(str(__a), str(__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = Vector([1, 0, 0]) x.change_component(0, 0) x.change_component(1, 1) self.assertEqual(str(__a), "(0,1,0)") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n", str(__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) _lowerCAmelCase : Any = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y], a.minor(__a, __a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) _lowerCAmelCase : Optional[int] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y], a.cofactor(__a, __a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) self.assertEqual(-5, a.determinant()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3, 3) _lowerCAmelCase : Dict = Vector([1, 2, 3]) self.assertEqual("(14,32,50)", str(a * x)) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n", str(a * 2)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) a.change_component(0, 2, 5) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n", str(__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) self.assertEqual(7, a.component(2, 1), 0.01) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) _lowerCAmelCase : Union[str, Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n", str(a + b)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3) _lowerCAmelCase : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n", str(a - b)) def snake_case__ ( self): '''simple docstring''' self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n", str(square_zero_matrix(5)), ) if __name__ == "__main__": unittest.main()
363
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def A ( _lowerCamelCase ): '''simple docstring''' warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , _lowerCamelCase , ) if isinstance(_lowerCamelCase , torch.Tensor ): return image elif isinstance(_lowerCamelCase , PIL.Image.Image ): _lowerCAmelCase : List[str] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase : Union[str, Any] = image[0].size _lowerCAmelCase : str = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowerCAmelCase : Dict = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] _lowerCAmelCase : Optional[Any] = np.concatenate(_lowerCamelCase , axis=0 ) _lowerCAmelCase : str = np.array(_lowerCamelCase ).astype(np.floataa ) / 255.0 _lowerCAmelCase : Any = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase : Any = 2.0 * image - 1.0 _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase : Optional[int] = torch.cat(_lowerCamelCase , dim=0 ) return image def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , torch.Tensor ): return mask elif isinstance(_lowerCamelCase , PIL.Image.Image ): _lowerCAmelCase : List[Any] = [mask] if isinstance(mask[0] , PIL.Image.Image ): _lowerCAmelCase : Dict = mask[0].size _lowerCAmelCase : Any = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowerCAmelCase : int = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] _lowerCAmelCase : List[Any] = np.concatenate(_lowerCamelCase , axis=0 ) _lowerCAmelCase : str = mask.astype(np.floataa ) / 255.0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 1 _lowerCAmelCase : Any = torch.from_numpy(_lowerCamelCase ) elif isinstance(mask[0] , torch.Tensor ): _lowerCAmelCase : Optional[int] = torch.cat(_lowerCamelCase , dim=0 ) return mask class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self, __a, __a): '''simple docstring''' super().__init__() self.register_modules(unet=__a, scheduler=__a) @torch.no_grad() def __call__( self, __a, __a, __a = 250, __a = 0.0, __a = 10, __a = 10, __a = None, __a = "pil", __a = True, ): '''simple docstring''' _lowerCAmelCase : List[Any] = image _lowerCAmelCase : Any = _preprocess_image(__a) _lowerCAmelCase : Optional[int] = original_image.to(device=self.device, dtype=self.unet.dtype) _lowerCAmelCase : Tuple = _preprocess_mask(__a) _lowerCAmelCase : str = mask_image.to(device=self.device, dtype=self.unet.dtype) _lowerCAmelCase : Optional[int] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__a, __a) and len(__a) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__a)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators.") _lowerCAmelCase : Dict = original_image.shape _lowerCAmelCase : Union[str, Any] = randn_tensor(__a, generator=__a, device=self.device, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(__a, __a, __a, self.device) _lowerCAmelCase : Any = eta _lowerCAmelCase : str = self.scheduler.timesteps[0] + 1 _lowerCAmelCase : Optional[Any] = generator[0] if isinstance(__a, __a) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): if t < t_last: # predict the noise residual _lowerCAmelCase : Optional[Any] = self.unet(__a, __a).sample # compute previous image: x_t -> x_t-1 _lowerCAmelCase : Dict = self.scheduler.step(__a, __a, __a, __a, __a, __a).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowerCAmelCase : List[str] = self.scheduler.undo_step(__a, __a, __a) _lowerCAmelCase : Tuple = t _lowerCAmelCase : int = (image / 2 + 0.5).clamp(0, 1) _lowerCAmelCase : Optional[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowerCAmelCase : str = self.numpy_to_pil(__a) if not return_dict: return (image,) return ImagePipelineOutput(images=__a)
364
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase_ ( a): def __init__( self, __a=0.01, __a=1000): '''simple docstring''' _lowerCAmelCase : Optional[Any] = p_stop _lowerCAmelCase : Any = max_length def __iter__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : int = False while not stop and count < self.max_length: yield count count += 1 _lowerCAmelCase : Tuple = random.random() < self.p_stop class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a, __a, __a=False, __a=True): '''simple docstring''' _lowerCAmelCase : List[str] = [ BatchSamplerShard(__a, 2, __a, split_batches=__a, even_batches=__a) for i in range(2) ] _lowerCAmelCase : List[Any] = [list(__a) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__a) for shard in batch_sampler_shards], [len(__a) for e in expected]) self.assertListEqual(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = BatchSampler(range(24), batch_size=3, drop_last=__a) _lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : Tuple = BatchSampler(range(24), batch_size=3, drop_last=__a) # Expected shouldn't change self.check_batch_sampler_shards(__a, __a) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCAmelCase : int = BatchSampler(range(21), batch_size=3, drop_last=__a) _lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : Dict = BatchSampler(range(21), batch_size=3, drop_last=__a) _lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCAmelCase : List[str] = BatchSampler(range(22), batch_size=3, drop_last=__a) _lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(22), batch_size=3, drop_last=__a) _lowerCAmelCase : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCAmelCase : Optional[int] = BatchSampler(range(20), batch_size=3, drop_last=__a) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(20), batch_size=3, drop_last=__a) _lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a) # Check the shards when the dataset is very small. _lowerCAmelCase : Any = BatchSampler(range(2), batch_size=3, drop_last=__a) _lowerCAmelCase : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__a, __a) _lowerCAmelCase : Tuple = BatchSampler(range(2), batch_size=3, drop_last=__a) _lowerCAmelCase : List[Any] = [[], []] self.check_batch_sampler_shards(__a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = BatchSampler(range(24), batch_size=4, drop_last=__a) _lowerCAmelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) _lowerCAmelCase : int = BatchSampler(range(24), batch_size=4, drop_last=__a) # Expected shouldn't change self.check_batch_sampler_shards(__a, __a, split_batches=__a) # Check the shards when the dataset is not a round multiple of batch size. _lowerCAmelCase : Dict = BatchSampler(range(22), batch_size=4, drop_last=__a) _lowerCAmelCase : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) _lowerCAmelCase : List[Any] = BatchSampler(range(22), batch_size=4, drop_last=__a) _lowerCAmelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCAmelCase : Optional[Any] = BatchSampler(range(21), batch_size=4, drop_last=__a) _lowerCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(21), batch_size=4, drop_last=__a) _lowerCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a) # Check the shards when the dataset is very small. _lowerCAmelCase : Tuple = BatchSampler(range(2), batch_size=4, drop_last=__a) _lowerCAmelCase : List[str] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__a, __a, split_batches=__a) _lowerCAmelCase : Any = BatchSampler(range(2), batch_size=4, drop_last=__a) _lowerCAmelCase : Union[str, Any] = [[], []] self.check_batch_sampler_shards(__a, __a, split_batches=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BatchSampler(range(24), batch_size=3, drop_last=__a) _lowerCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : Union[str, Any] = BatchSampler(range(24), batch_size=3, drop_last=__a) # Expected shouldn't change self.check_batch_sampler_shards(__a, __a, even_batches=__a) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCAmelCase : Optional[int] = BatchSampler(range(21), batch_size=3, drop_last=__a) _lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : Any = BatchSampler(range(21), batch_size=3, drop_last=__a) _lowerCAmelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCAmelCase : Optional[Any] = BatchSampler(range(22), batch_size=3, drop_last=__a) _lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : Optional[Any] = BatchSampler(range(22), batch_size=3, drop_last=__a) _lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCAmelCase : List[str] = BatchSampler(range(20), batch_size=3, drop_last=__a) _lowerCAmelCase : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : Any = BatchSampler(range(20), batch_size=3, drop_last=__a) _lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__a, __a, even_batches=__a) # Check the shards when the dataset is very small. _lowerCAmelCase : List[str] = BatchSampler(range(2), batch_size=3, drop_last=__a) _lowerCAmelCase : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(__a, __a, even_batches=__a) _lowerCAmelCase : Dict = BatchSampler(range(2), batch_size=3, drop_last=__a) _lowerCAmelCase : str = [[], []] self.check_batch_sampler_shards(__a, __a, even_batches=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = BatchSampler(range(24), batch_size=4, drop_last=__a) _lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) _lowerCAmelCase : List[str] = BatchSampler(range(24), batch_size=4, drop_last=__a) # Expected shouldn't change self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) # Check the shards when the dataset is not a round multiple of batch size. _lowerCAmelCase : Union[str, Any] = BatchSampler(range(22), batch_size=4, drop_last=__a) _lowerCAmelCase : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) _lowerCAmelCase : Any = BatchSampler(range(22), batch_size=4, drop_last=__a) _lowerCAmelCase : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCAmelCase : Optional[int] = BatchSampler(range(21), batch_size=4, drop_last=__a) _lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) _lowerCAmelCase : Dict = BatchSampler(range(21), batch_size=4, drop_last=__a) _lowerCAmelCase : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) # Check the shards when the dataset is very small. _lowerCAmelCase : Optional[Any] = BatchSampler(range(2), batch_size=4, drop_last=__a) _lowerCAmelCase : Union[str, Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) _lowerCAmelCase : Tuple = BatchSampler(range(2), batch_size=4, drop_last=__a) _lowerCAmelCase : Dict = [[], []] self.check_batch_sampler_shards(__a, __a, split_batches=__a, even_batches=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _lowerCAmelCase : Any = [BatchSamplerShard(__a, 2, __a, even_batches=__a) for i in range(2)] self.assertEqual(len(batch_sampler_shards[0]), 3) self.assertEqual(len(batch_sampler_shards[1]), 2) self.assertListEqual(list(batch_sampler_shards[0]), [[0, 1, 2], [5, 6, 7, 8], [12, 13]]) self.assertListEqual(list(batch_sampler_shards[1]), [[3, 4], [9, 10, 11]]) def snake_case__ ( self, __a, __a, __a, __a=False, __a=2, __a=False): '''simple docstring''' random.seed(__a) _lowerCAmelCase : Tuple = list(__a) _lowerCAmelCase : Tuple = [ IterableDatasetShard( __a, batch_size=__a, drop_last=__a, num_processes=__a, process_index=__a, split_batches=__a, ) for i in range(__a) ] _lowerCAmelCase : Optional[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__a) iterable_dataset_lists.append(list(__a)) _lowerCAmelCase : Tuple = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCAmelCase : Optional[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__a), len(__a)) self.assertTrue(len(__a) % shard_batch_size == 0) _lowerCAmelCase : Union[str, Any] = [] for idx in range(0, len(__a), __a): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__a) < len(__a): reference += reference self.assertListEqual(__a, reference[: len(__a)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = 42 _lowerCAmelCase : Any = RandomIterableDataset() self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) # Edge case with a very small dataset _lowerCAmelCase : Optional[int] = RandomIterableDataset(max_length=2) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) self.check_iterable_dataset_shards(__a, __a, batch_size=4, drop_last=__a, split_batches=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BatchSampler(range(16), batch_size=4, drop_last=__a) _lowerCAmelCase : str = SkipBatchSampler(__a, 2) self.assertListEqual(list(__a), [[8, 9, 10, 11], [12, 13, 14, 15]]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = SkipDataLoader(list(range(16)), batch_size=4, skip_batches=2) self.assertListEqual([t.tolist() for t in dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = DataLoader(list(range(16)), batch_size=4) _lowerCAmelCase : Tuple = skip_first_batches(__a, num_batches=2) self.assertListEqual([t.tolist() for t in new_dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = DataLoaderShard(list(range(16)), batch_size=4) for idx, _ in enumerate(__a): self.assertEqual(dataloader.end_of_dataloader, idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(__a): self.assertEqual(dataloader.end_of_dataloader, idx == 3) def snake_case__ ( self): '''simple docstring''' Accelerator() _lowerCAmelCase : Dict = DataLoaderDispatcher(range(16), batch_size=4) for idx, _ in enumerate(__a): self.assertEqual(dataloader.end_of_dataloader, idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(__a): self.assertEqual(dataloader.end_of_dataloader, idx == 3)
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _snake_case = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for attribute in key.split("." ): _lowerCAmelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : List[str] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCAmelCase : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Any = value elif weight_type == "weight_g": _lowerCAmelCase : List[str] = value elif weight_type == "weight_v": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "bias": _lowerCAmelCase : Optional[Any] = value else: _lowerCAmelCase : int = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [] _lowerCAmelCase : Any = fairseq_model.state_dict() _lowerCAmelCase : int = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _lowerCAmelCase : int = None for name, value in fairseq_dict.items(): _lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCAmelCase : Union[str, Any] = True elif name.split("." )[0] == "proj": _lowerCAmelCase : Optional[Any] = fairseq_model.proj _lowerCAmelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCAmelCase : Optional[int] = True if "*" in mapped_key: _lowerCAmelCase : Any = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCAmelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : Optional[int] = "weight_g" elif "weight_v" in name: _lowerCAmelCase : List[Any] = "weight_v" elif "bias" in name: _lowerCAmelCase : Union[str, Any] = "bias" elif "weight" in name: _lowerCAmelCase : Any = "weight" else: _lowerCAmelCase : str = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = full_name.split("conv_layers." )[-1] _lowerCAmelCase : Optional[Any] = name.split("." ) _lowerCAmelCase : Optional[Any] = int(items[0] ) _lowerCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Optional[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _lowerCAmelCase : Tuple = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = emb.weight.shape _lowerCAmelCase : List[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) _lowerCAmelCase : List[Any] = emb.weight.data return lin_layer def A ( _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: _lowerCAmelCase : Optional[Any] = f.readlines() _lowerCAmelCase : Union[str, Any] = [line.split(" " )[0] for line in lines] _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : List[Any] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowerCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : str = WavaVecaConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = SpeechaTextaConfig.from_pretrained( _lowerCamelCase , vocab_size=_lowerCamelCase , decoder_layers=_lowerCamelCase , do_stable_layer_norm=_lowerCamelCase ) _lowerCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCAmelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) _lowerCAmelCase : Any = model[0].eval() # set weights for wav2vec2 encoder _lowerCAmelCase : List[str] = WavaVecaModel(_lowerCamelCase ) _lowerCAmelCase : int = recursively_load_weights_wavaveca(model.encoder , _lowerCamelCase ) _lowerCAmelCase : int = SpeechaTextaForCausalLM(_lowerCamelCase ) _lowerCAmelCase : Any = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCamelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) _lowerCAmelCase : Optional[int] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) _lowerCAmelCase : Dict = SpeechEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) _lowerCAmelCase : Tuple = False # add projection layer _lowerCAmelCase : int = nn.Parameter(projection_layer.weight ) _lowerCAmelCase : int = nn.Parameter(projection_layer.bias ) _lowerCAmelCase : int = create_vocab_dict(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , "vocab.json" ) , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = SpeechaTextaTokenizer(os.path.join(_lowerCamelCase , "vocab.json" ) ) tokenizer.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = hf_wavavec.config.to_dict() _lowerCAmelCase : Union[str, Any] = tokenizer.pad_token_id _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : Any = tokenizer.eos_token_id _lowerCAmelCase : int = "speech_to_text_2" _lowerCAmelCase : Any = "wav2vec2" _lowerCAmelCase : Tuple = SpeechEncoderDecoderConfig.from_dict(_lowerCamelCase ) hf_wavavec.save_pretrained(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
367
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
0
from __future__ import annotations _snake_case = tuple[int, int, int] _snake_case = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _snake_case = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- _snake_case = "EGZWVONAHDCLFQMSIPJBYUKXTR" _snake_case = "FOBHMDKEXQNRAULPGSJVTYICZW" _snake_case = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- _snake_case = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- _snake_case = "RMDJXFUWGISLHVTCQNKYPBEZOA" _snake_case = "SGLCPQWZHKXAREONTFBVIYJUDM" _snake_case = "HVSICLTYKQUBXDWAJZOMFGPREN" _snake_case = "RZWQHFMVDBKICJLNTUXAGYPSOE" _snake_case = "LFKIJODBEGAMQPXVUHYSTCZRWN" _snake_case = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (unique_rotsel := len(set(_lowerCamelCase ) )) < 3: _lowerCAmelCase : Any = F"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(_lowerCamelCase ) # Checks if rotor positions are valid _lowerCAmelCase : Dict = rotpos if not 0 < rotorposa <= len(_lowerCamelCase ): _lowerCAmelCase : List[str] = F"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(_lowerCamelCase ) if not 0 < rotorposa <= len(_lowerCamelCase ): _lowerCAmelCase : str = F"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_lowerCamelCase ) if not 0 < rotorposa <= len(_lowerCamelCase ): _lowerCAmelCase : List[Any] = F"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_lowerCamelCase ) # Validates string and returns dict _lowerCAmelCase : Any = _plugboard(_lowerCamelCase ) return rotpos, rotsel, pbdict def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : int = F"Plugboard setting isn't type string ({type(_lowerCamelCase )})" raise TypeError(_lowerCamelCase ) elif len(_lowerCamelCase ) % 2 != 0: _lowerCAmelCase : Union[str, Any] = F"Odd number of symbols ({len(_lowerCamelCase )})" raise Exception(_lowerCamelCase ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique _lowerCAmelCase : List[Any] = set() for i in pbstring: if i not in abc: _lowerCAmelCase : str = F"'{i}' not in list of symbols" raise Exception(_lowerCamelCase ) elif i in tmppbl: _lowerCAmelCase : Tuple = F"Duplicate symbol ({i})" raise Exception(_lowerCamelCase ) else: tmppbl.add(_lowerCamelCase ) del tmppbl # Created the dictionary _lowerCAmelCase : List[str] = {} for j in range(0 , len(_lowerCamelCase ) - 1 , 2 ): _lowerCAmelCase : Optional[Any] = pbstring[j + 1] _lowerCAmelCase : Any = pbstring[j] return pb def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = (rotora, rotora, rotora) , _lowerCamelCase = "" , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = text.upper() _lowerCAmelCase : Optional[int] = _validator( _lowerCamelCase , _lowerCamelCase , plugb.upper() ) _lowerCAmelCase : Tuple = rotor_position _lowerCAmelCase : List[str] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _lowerCAmelCase : str = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _lowerCAmelCase : Optional[Any] = plugboard[symbol] # rotor ra -------------------------- _lowerCAmelCase : Optional[Any] = abc.index(_lowerCamelCase ) + rotorposa _lowerCAmelCase : Tuple = rotora[index % len(_lowerCamelCase )] # rotor rb -------------------------- _lowerCAmelCase : int = abc.index(_lowerCamelCase ) + rotorposa _lowerCAmelCase : str = rotora[index % len(_lowerCamelCase )] # rotor rc -------------------------- _lowerCAmelCase : List[Any] = abc.index(_lowerCamelCase ) + rotorposa _lowerCAmelCase : Tuple = rotora[index % len(_lowerCamelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _lowerCAmelCase : Dict = reflector[symbol] # 2nd rotors _lowerCAmelCase : Union[str, Any] = abc[rotora.index(_lowerCamelCase ) - rotorposa] _lowerCAmelCase : str = abc[rotora.index(_lowerCamelCase ) - rotorposa] _lowerCAmelCase : str = abc[rotora.index(_lowerCamelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: _lowerCAmelCase : Union[str, Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowerCamelCase ): _lowerCAmelCase : List[Any] = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase ): _lowerCAmelCase : int = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": _snake_case = "This is my Python script that emulates the Enigma machine from WWII." _snake_case = (1, 1, 1) _snake_case = "pictures" _snake_case = (rotora, rotora, rotora) _snake_case = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } _snake_case = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } _snake_case = { "ctrl": 256, } _snake_case = { "Pregnancy": 16_8629, "Christianity": 7675, "Explain": 10_6423, "Fitness": 6_3440, "Saving": 6_3163, "Ask": 2_7171, "Ass": 9_5985, "Joke": 16_3509, "Questions": 4_5622, "Thoughts": 4_9605, "Retail": 5_2342, "Feminism": 16_4338, "Writing": 1_1992, "Atheism": 19_2263, "Netflix": 4_8616, "Computing": 3_9639, "Opinion": 4_3213, "Alone": 4_4967, "Funny": 5_8917, "Gaming": 4_0358, "Human": 4088, "India": 1331, "Joker": 7_7138, "Diet": 3_6206, "Legal": 1_1859, "Norman": 4939, "Tip": 7_2689, "Weight": 5_2343, "Movies": 4_6273, "Running": 2_3425, "Science": 2090, "Horror": 3_7793, "Confession": 6_0572, "Finance": 1_2250, "Politics": 1_6360, "Scary": 19_1985, "Support": 1_2654, "Technologies": 3_2516, "Teenage": 6_6160, "Event": 3_2769, "Learned": 6_7460, "Notion": 18_2770, "Wikipedia": 3_7583, "Books": 6665, "Extract": 7_6050, "Confessions": 10_2701, "Conspiracy": 7_5932, "Links": 6_3674, "Narcissus": 15_0425, "Relationship": 5_4766, "Relationships": 13_4796, "Reviews": 4_1671, "News": 4256, "Translation": 2_6820, "multilingual": 12_8406, } def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = set() _lowerCAmelCase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Union[str, Any] = char _lowerCAmelCase : List[Any] = set(_lowerCamelCase ) return pairs class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTROL_CODES def __init__( self, __a, __a, __a="<unk>", **__a): '''simple docstring''' super().__init__(unk_token=__a, **__a) with open(__a, encoding="utf-8") as vocab_handle: _lowerCAmelCase : Tuple = json.load(__a) _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(__a, encoding="utf-8") as merges_handle: _lowerCAmelCase : Union[str, Any] = merges_handle.read().split("\n")[1:-1] _lowerCAmelCase : Dict = [tuple(merge.split()) for merge in merges] _lowerCAmelCase : Dict = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : str = {} @property def snake_case__ ( self): '''simple docstring''' return len(self.encoder) def snake_case__ ( self): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder) def snake_case__ ( self, __a): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : str = tuple(__a) _lowerCAmelCase : str = tuple(list(word[:-1]) + [word[-1] + "</w>"]) _lowerCAmelCase : Tuple = get_pairs(__a) if not pairs: return token while True: _lowerCAmelCase : str = min(__a, key=lambda __a: self.bpe_ranks.get(__a, float("inf"))) if bigram not in self.bpe_ranks: break _lowerCAmelCase : List[Any] = bigram _lowerCAmelCase : str = [] _lowerCAmelCase : Optional[int] = 0 while i < len(__a): try: _lowerCAmelCase : int = word.index(__a, __a) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _lowerCAmelCase : Any = j if word[i] == first and i < len(__a) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowerCAmelCase : Dict = tuple(__a) _lowerCAmelCase : Tuple = new_word if len(__a) == 1: break else: _lowerCAmelCase : Tuple = get_pairs(__a) _lowerCAmelCase : List[str] = "@@ ".join(__a) _lowerCAmelCase : Dict = word[:-4] _lowerCAmelCase : Dict = word return word def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Any = re.findall(R"\S+\n?", __a) for token in words: split_tokens.extend(list(self.bpe(__a).split(" "))) return split_tokens def snake_case__ ( self, __a): '''simple docstring''' return self.encoder.get(__a, self.encoder.get(self.unk_token)) def snake_case__ ( self, __a): '''simple docstring''' return self.decoder.get(__a, self.unk_token) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = " ".join(__a).replace("@@ ", "").strip() return out_string def snake_case__ ( self, __a, __a = None): '''simple docstring''' if not os.path.isdir(__a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return _lowerCAmelCase : Dict = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : int = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__a, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=__a, ensure_ascii=__a) + "\n") _lowerCAmelCase : Dict = 0 with open(__a, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda __a: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _lowerCAmelCase : Optional[Any] = token_index writer.write(" ".join(__a) + "\n") index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
369
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a) class UpperCAmelCase_ ( a): lowerCamelCase__ = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) lowerCamelCase__ = Features({'audio': Audio()}) lowerCamelCase__ = Features({'labels': ClassLabel}) lowerCamelCase__ = 'audio' lowerCamelCase__ = 'labels' def snake_case__ ( self, __a): '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column], __a): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") _lowerCAmelCase : List[Any] = copy.deepcopy(self) _lowerCAmelCase : int = self.label_schema.copy() _lowerCAmelCase : List[str] = features[self.label_column] _lowerCAmelCase : Tuple = label_schema return task_template @property def snake_case__ ( self): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class UpperCAmelCase_ ( a): def __init__( self, __a, __a=None, __a=None, __a=0): '''simple docstring''' _lowerCAmelCase : Optional[int] = 1.0 if scale is None else scale _lowerCAmelCase : Union[str, Any] = 0.0 if loc is None else loc super().__init__(__a, [AffineTransform(loc=self.loc, scale=self.scale, event_dim=__a)]) @property def snake_case__ ( self): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def snake_case__ ( self): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def snake_case__ ( self): '''simple docstring''' return self.variance.sqrt() class UpperCAmelCase_ ( nn.Module): def __init__( self, __a, __a, __a, **__a): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Optional[int] = args_dim _lowerCAmelCase : int = nn.ModuleList([nn.Linear(__a, __a) for dim in args_dim.values()]) _lowerCAmelCase : str = domain_map def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = [proj(__a) for proj in self.proj] return self.domain_map(*__a) class UpperCAmelCase_ ( nn.Module): def __init__( self, __a): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = function def snake_case__ ( self, __a, *__a): '''simple docstring''' return self.function(__a, *__a) class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self, __a = 1): '''simple docstring''' _lowerCAmelCase : int = dim _lowerCAmelCase : Union[str, Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def snake_case__ ( self, __a): '''simple docstring''' if self.dim == 1: return self.distribution_class(*__a) else: return Independent(self.distribution_class(*__a), 1) def snake_case__ ( self, __a, __a = None, __a = None, ): '''simple docstring''' _lowerCAmelCase : int = self._base_distribution(__a) if loc is None and scale is None: return distr else: return AffineTransformed(__a, loc=__a, scale=__a, event_dim=self.event_dim) @property def snake_case__ ( self): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def snake_case__ ( self): '''simple docstring''' return len(self.event_shape) @property def snake_case__ ( self): '''simple docstring''' return 0.0 def snake_case__ ( self, __a): '''simple docstring''' return ParameterProjection( in_features=__a, args_dim=self.args_dim, domain_map=LambdaLayer(self.domain_map), ) def snake_case__ ( self, *__a): '''simple docstring''' raise NotImplementedError() @staticmethod def snake_case__ ( __a): '''simple docstring''' return (x + torch.sqrt(torch.square(__a) + 4.0)) / 2.0 class UpperCAmelCase_ ( a): lowerCamelCase__ = {'df': 1, 'loc': 1, 'scale': 1} lowerCamelCase__ = StudentT @classmethod def snake_case__ ( cls, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = cls.squareplus(__a).clamp_min(torch.finfo(scale.dtype).eps) _lowerCAmelCase : str = 2.0 + cls.squareplus(__a) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class UpperCAmelCase_ ( a): lowerCamelCase__ = {'loc': 1, 'scale': 1} lowerCamelCase__ = Normal @classmethod def snake_case__ ( cls, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = cls.squareplus(__a).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class UpperCAmelCase_ ( a): lowerCamelCase__ = {'total_count': 1, 'logits': 1} lowerCamelCase__ = NegativeBinomial @classmethod def snake_case__ ( cls, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = cls.squareplus(__a) return total_count.squeeze(-1), logits.squeeze(-1) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=__a, logits=__a) else: return Independent(self.distribution_class(total_count=__a, logits=__a), 1) def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = nn.functional.normalize(_lowerCamelCase ) _lowerCAmelCase : List[str] = nn.functional.normalize(_lowerCamelCase ) return torch.mm(_lowerCamelCase , normalized_text_embeds.t() ) class UpperCAmelCase_ ( a): lowerCamelCase__ = CLIPConfig lowerCamelCase__ = ['CLIPEncoderLayer'] def __init__( self, __a): '''simple docstring''' super().__init__(__a) _lowerCAmelCase : Any = CLIPVisionModel(config.vision_config) _lowerCAmelCase : Optional[Any] = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=__a) _lowerCAmelCase : Any = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=__a) _lowerCAmelCase : str = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=__a) _lowerCAmelCase : Any = nn.Parameter(torch.ones(17), requires_grad=__a) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.ones(3), requires_grad=__a) @torch.no_grad() def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.vision_model(__a)[1] # pooled_output _lowerCAmelCase : Optional[int] = self.visual_projection(__a) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : Dict = cosine_distance(__a, self.special_care_embeds).cpu().float().numpy() _lowerCAmelCase : List[str] = cosine_distance(__a, self.concept_embeds).cpu().float().numpy() _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Tuple = image_embeds.shape[0] for i in range(__a): _lowerCAmelCase : List[str] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase : Any = 0.0 for concept_idx in range(len(special_cos_dist[0])): _lowerCAmelCase : str = special_cos_dist[i][concept_idx] _lowerCAmelCase : int = self.special_care_embeds_weights[concept_idx].item() _lowerCAmelCase : List[Any] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) _lowerCAmelCase : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0])): _lowerCAmelCase : Optional[Any] = cos_dist[i][concept_idx] _lowerCAmelCase : int = self.concept_embeds_weights[concept_idx].item() _lowerCAmelCase : Union[str, Any] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__a) result.append(__a) _lowerCAmelCase : Optional[int] = [len(res["bad_concepts"]) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = self.vision_model(__a)[1] # pooled_output _lowerCAmelCase : List[Any] = self.visual_projection(__a) _lowerCAmelCase : int = cosine_distance(__a, self.special_care_embeds) _lowerCAmelCase : Dict = cosine_distance(__a, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowerCAmelCase : Optional[Any] = 0.0 _lowerCAmelCase : str = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowerCAmelCase : List[str] = torch.any(special_scores > 0, dim=1) _lowerCAmelCase : str = special_care * 0.01 _lowerCAmelCase : int = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) _lowerCAmelCase : str = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowerCAmelCase : str = torch.any(concept_scores > 0, dim=1) return images, has_nsfw_concepts
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'instructblip_vision_model' def __init__( self, __a=1408, __a=6144, __a=39, __a=16, __a=224, __a=14, __a="gelu", __a=1E-6, __a=0.0, __a=1E-10, __a=True, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : int = patch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : int = qkv_bias @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' cls._set_token_in_kwargs(__a) _lowerCAmelCase : str = cls.get_config_dict(__a, **__a) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": _lowerCAmelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(__a, **__a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'instructblip_qformer' def __init__( self, __a=3_0522, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=0.02, __a=1E-12, __a=0, __a="absolute", __a=2, __a=1408, **__a, ): '''simple docstring''' super().__init__(pad_token_id=__a, **__a) _lowerCAmelCase : int = vocab_size _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Any = position_embedding_type _lowerCAmelCase : int = cross_attention_frequency _lowerCAmelCase : Optional[int] = encoder_hidden_size @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' cls._set_token_in_kwargs(__a) _lowerCAmelCase : Optional[int] = cls.get_config_dict(__a, **__a) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": _lowerCAmelCase : List[str] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(__a, **__a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'instructblip' lowerCamelCase__ = True def __init__( self, __a=None, __a=None, __a=None, __a=32, **__a): '''simple docstring''' super().__init__(**__a) if vision_config is None: _lowerCAmelCase : Union[str, Any] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values.") if qformer_config is None: _lowerCAmelCase : str = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.") if text_config is None: _lowerCAmelCase : List[Any] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") _lowerCAmelCase : Tuple = InstructBlipVisionConfig(**__a) _lowerCAmelCase : Optional[Any] = InstructBlipQFormerConfig(**__a) _lowerCAmelCase : Any = text_config["model_type"] if "model_type" in text_config else "opt" _lowerCAmelCase : str = CONFIG_MAPPING[text_model_type](**__a) _lowerCAmelCase : Optional[Any] = self.text_config.tie_word_embeddings _lowerCAmelCase : Optional[int] = self.text_config.is_encoder_decoder _lowerCAmelCase : Any = num_query_tokens _lowerCAmelCase : List[Any] = self.vision_config.hidden_size _lowerCAmelCase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase : str = 1.0 _lowerCAmelCase : Optional[int] = 0.02 @classmethod def snake_case__ ( cls, __a, __a, __a, **__a, ): '''simple docstring''' return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **__a, ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = copy.deepcopy(self.__dict__) _lowerCAmelCase : str = self.vision_config.to_dict() _lowerCAmelCase : str = self.qformer_config.to_dict() _lowerCAmelCase : Union[str, Any] = self.text_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
351
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
0
import random def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = a[left_index] _lowerCAmelCase : Dict = left_index + 1 for j in range(left_index + 1 , _lowerCamelCase ): if a[j] < pivot: _lowerCAmelCase : Union[str, Any] = a[i], a[j] i += 1 _lowerCAmelCase : List[Any] = a[i - 1], a[left_index] return i - 1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if left < right: _lowerCAmelCase : Optional[int] = random.randint(_lowerCamelCase , right - 1 ) _lowerCAmelCase : Any = ( a[left], a[pivot], ) # switches the pivot with the left most bound _lowerCAmelCase : Tuple = partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) quick_sort_random( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _lowerCamelCase , pivot_index + 1 , _lowerCamelCase ) # recursive quicksort to the right of the pivot point def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = input("Enter numbers separated by a comma:\n" ).strip() _lowerCAmelCase : str = [int(_lowerCamelCase ) for item in user_input.split("," )] quick_sort_random(_lowerCamelCase , 0 , len(_lowerCamelCase ) ) print(_lowerCamelCase ) if __name__ == "__main__": main()
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
from math import isclose, sqrt def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = point_y / 4 / point_x _lowerCAmelCase : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _lowerCAmelCase : List[str] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _lowerCAmelCase : Optional[int] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _lowerCAmelCase : Any = outgoing_gradient**2 + 4 _lowerCAmelCase : Optional[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _lowerCAmelCase : Tuple = (point_y - outgoing_gradient * point_x) ** 2 - 100 _lowerCAmelCase : Any = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _lowerCAmelCase : int = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _lowerCAmelCase : str = x_minus if isclose(_lowerCamelCase , _lowerCamelCase ) else x_plus _lowerCAmelCase : Any = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def A ( _lowerCamelCase = 1.4 , _lowerCamelCase = -9.6 ): '''simple docstring''' _lowerCAmelCase : int = 0 _lowerCAmelCase : float = first_x_coord _lowerCAmelCase : float = first_y_coord _lowerCAmelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _lowerCAmelCase : int = next_point(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
"""simple docstring""" import os import sys import unittest _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _snake_case = os.path.join("tests", "models", "bert", "test_modeling_bert.py") _snake_case = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_test_to_tester_mapping(__a) _lowerCAmelCase : Tuple = get_test_to_tester_mapping(__a) _lowerCAmelCase : Union[str, Any] = {"BertModelTest": "BertModelTester"} _lowerCAmelCase : Union[str, Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__a), __a) self.assertEqual(get_test_info.to_json(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = get_model_to_test_mapping(__a) _lowerCAmelCase : int = get_model_to_test_mapping(__a) _lowerCAmelCase : str = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _lowerCAmelCase : str = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__a), __a) self.assertEqual(get_test_info.to_json(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = get_model_to_tester_mapping(__a) _lowerCAmelCase : Tuple = get_model_to_tester_mapping(__a) _lowerCAmelCase : Tuple = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _lowerCAmelCase : Any = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__a), __a) self.assertEqual(get_test_info.to_json(__a), __a)
354
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _snake_case = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _snake_case = "main" # Default branch name _snake_case = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) _snake_case = "aaaaaaa" # This commit does not exist, so we should 404. _snake_case = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes _snake_case = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def A ( ): '''simple docstring''' print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def A ( ): '''simple docstring''' print("Bonjour!" ) yield print("Au revoir!" ) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers") is not None class UpperCAmelCase_ ( unittest.TestCase): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def snake_case__ ( self, __a): '''simple docstring''' with ContextManagers([]): print("Transformers are awesome!") # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue(), "Transformers are awesome!\n") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def snake_case__ ( self, __a): '''simple docstring''' with ContextManagers([context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue(), "Welcome!\nTransformers are awesome!\nBye!\n") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def snake_case__ ( self, __a): '''simple docstring''' with ContextManagers([context_fr(), context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue(), "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n") @require_torch def snake_case__ ( self): '''simple docstring''' self.assertEqual(find_labels(__a), ["labels"]) self.assertEqual(find_labels(__a), ["labels", "next_sentence_label"]) self.assertEqual(find_labels(__a), ["start_positions", "end_positions"]) class UpperCAmelCase_ ( a): pass self.assertEqual(find_labels(__a), ["labels"]) @require_tf def snake_case__ ( self): '''simple docstring''' self.assertEqual(find_labels(__a), ["labels"]) self.assertEqual(find_labels(__a), ["labels", "next_sentence_label"]) self.assertEqual(find_labels(__a), ["start_positions", "end_positions"]) class UpperCAmelCase_ ( a): pass self.assertEqual(find_labels(__a), ["labels"]) @require_flax def snake_case__ ( self): '''simple docstring''' self.assertEqual(find_labels(__a), []) self.assertEqual(find_labels(__a), []) self.assertEqual(find_labels(__a), []) class UpperCAmelCase_ ( a): pass self.assertEqual(find_labels(__a), [])
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
357
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
359
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _snake_case = logging.getLogger(__name__) _snake_case = 50 # max width of layer names _snake_case = 70 # max width of quantizer names def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=_lowerCamelCase , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=_lowerCamelCase , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=_lowerCamelCase , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=_lowerCamelCase , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=_lowerCamelCase , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=_lowerCamelCase , type=_lowerCamelCase , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=_lowerCamelCase , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def A ( _lowerCamelCase ): '''simple docstring''' if args.calibrator == "max": _lowerCAmelCase : Any = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) _lowerCAmelCase : Tuple = "histogram" elif args.calibrator == "mse": _lowerCAmelCase : str = "histogram" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) _lowerCAmelCase : int = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCamelCase ) _lowerCAmelCase : List[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ): '''simple docstring''' logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCamelCase , ["embeddings"] , which="weight" , _disabled=_lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(_lowerCamelCase , [""] , _disabled=_lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCamelCase , args.quant_disable_keyword , _disabled=_lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=_lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=_lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(_lowerCamelCase ) if args.fuse_qkv: fuse_qkv(_lowerCamelCase , _lowerCamelCase ) if args.clip_gelu: clip_gelu(_lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def fusea(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(_lowerCamelCase , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return _lowerCAmelCase : Optional[int] = qq._amax.detach().item() _lowerCAmelCase : int = qk._amax.detach().item() _lowerCAmelCase : Optional[Any] = qv._amax.detach().item() _lowerCAmelCase : Tuple = max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) qq._amax.fill_(_lowerCamelCase ) qk._amax.fill_(_lowerCamelCase ) qv._amax.fill_(_lowerCamelCase ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): _lowerCAmelCase : Optional[int] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCamelCase ) _lowerCAmelCase : str = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def A ( _lowerCamelCase ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: _lowerCAmelCase : Dict = mod.weight.shape[0] _lowerCAmelCase : Any = mod._weight_quantizer._amax.detach() _lowerCAmelCase : List[Any] = torch.ones(_lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def A ( _lowerCamelCase ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _lowerCAmelCase : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _lowerCAmelCase : Union[str, Any] = set(range(len(mod.weight.size() ) ) ) - axis_set _lowerCAmelCase : List[Any] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCamelCase , keepdims=_lowerCamelCase ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) _lowerCAmelCase : Tuple = amax def A ( _lowerCamelCase , _lowerCamelCase=25 , _lowerCamelCase=180 , _lowerCamelCase=None ): '''simple docstring''' if ignore is None: _lowerCAmelCase : Tuple = [] elif not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = [ignore] _lowerCAmelCase : Optional[Any] = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCamelCase , "weight" ): continue _lowerCAmelCase : Any = max(_lowerCamelCase , len(_lowerCamelCase ) ) for name, mod in model.named_modules(): _lowerCAmelCase : Tuple = getattr(_lowerCamelCase , "_input_quantizer" , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase , "_weight_quantizer" , _lowerCamelCase ) if not hasattr(_lowerCamelCase , "weight" ): continue if type(_lowerCamelCase ) in ignore: continue if [True for s in ignore if type(_lowerCamelCase ) is str and s in name]: continue _lowerCAmelCase : Any = F"Act:{input_q.extra_repr()}" _lowerCAmelCase : List[Any] = F"Wgt:{weight_q.extra_repr()}" _lowerCAmelCase : Any = F"{name:{name_width}} {act_str} {wgt_str}" if len(_lowerCamelCase ) <= line_width: logger.info(_lowerCamelCase ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = 0 for name, mod in model.named_modules(): if isinstance(_lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if quantizer_mod is not None: assert hasattr(_lowerCamelCase , _lowerCamelCase ) setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: logger.warning(F"{name} has no {quantizer}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="both" , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , "_input_quantizer" , _lowerCamelCase , _lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , "_weight_quantizer" , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , "_input_quantizer" ) or hasattr(_lowerCamelCase , "_weight_quantizer" ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): set_quantizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) elif name.endswith("_quantizer" ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase )
360
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
361
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
0