code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def A ( _lowerCamelCase ): '''simple docstring''' assert column_title.isupper() _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : str = len(_lowerCamelCase ) - 1 _lowerCAmelCase : List[str] = 0 while index >= 0: _lowerCAmelCase : Tuple = (ord(column_title[index] ) - 64) * pow(26 , _lowerCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
300
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
1
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCAmelCase , _lowerCAmelCase : Dict = array[indexa], array[indexa] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if length > 1: _lowerCAmelCase : List[str] = int(length / 2 ) for i in range(_lowerCamelCase , low + middle ): comp_and_swap(_lowerCamelCase , _lowerCamelCase , i + middle , _lowerCamelCase ) bitonic_merge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) bitonic_merge(_lowerCamelCase , low + middle , _lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if length > 1: _lowerCAmelCase : Any = int(length / 2 ) bitonic_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 1 ) bitonic_sort(_lowerCamelCase , low + middle , _lowerCamelCase , 0 ) bitonic_merge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
300
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
1
class UpperCAmelCase_ : def __init__( self, __a, __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = data _lowerCAmelCase : List[Any] = previous _lowerCAmelCase : Tuple = next_node def __str__( self): '''simple docstring''' return f"{self.data}" def snake_case__ ( self): '''simple docstring''' return self.data def snake_case__ ( self): '''simple docstring''' return self.next def snake_case__ ( self): '''simple docstring''' return self.previous class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = head def __iter__( self): '''simple docstring''' return self def snake_case__ ( self): '''simple docstring''' if not self.current: raise StopIteration else: _lowerCAmelCase : str = self.current.get_data() _lowerCAmelCase : List[Any] = self.current.get_next() return value class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = None # First node in list _lowerCAmelCase : int = None # Last node in list def __str__( self): '''simple docstring''' _lowerCAmelCase : int = self.head _lowerCAmelCase : Any = [] while current is not None: nodes.append(current.get_data()) _lowerCAmelCase : List[str] = current.get_next() return " ".join(str(__a) for node in nodes) def __contains__( self, __a): '''simple docstring''' _lowerCAmelCase : str = self.head while current: if current.get_data() == value: return True _lowerCAmelCase : List[Any] = current.get_next() return False def __iter__( self): '''simple docstring''' return LinkedListIterator(self.head) def snake_case__ ( self): '''simple docstring''' if self.head: return self.head.get_data() return None def snake_case__ ( self): '''simple docstring''' if self.tail: return self.tail.get_data() return None def snake_case__ ( self, __a): '''simple docstring''' if self.head is None: _lowerCAmelCase : List[Any] = node _lowerCAmelCase : List[str] = node else: self.insert_before_node(self.head, __a) def snake_case__ ( self, __a): '''simple docstring''' if self.head is None: self.set_head(__a) else: self.insert_after_node(self.tail, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = Node(__a) if self.head is None: self.set_head(__a) else: self.set_tail(__a) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = node _lowerCAmelCase : str = node.previous if node.get_previous() is None: _lowerCAmelCase : Tuple = node_to_insert else: _lowerCAmelCase : str = node_to_insert _lowerCAmelCase : Optional[Any] = node_to_insert def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = node _lowerCAmelCase : int = node.next if node.get_next() is None: _lowerCAmelCase : Optional[int] = node_to_insert else: _lowerCAmelCase : List[str] = node_to_insert _lowerCAmelCase : Tuple = node_to_insert def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = 1 _lowerCAmelCase : List[str] = Node(__a) _lowerCAmelCase : Tuple = self.head while node: if current_position == position: self.insert_before_node(__a, __a) return current_position += 1 _lowerCAmelCase : Any = node.next self.insert_after_node(self.tail, __a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.head while node: if node.get_data() == item: return node _lowerCAmelCase : Any = node.get_next() raise Exception("Node not found") def snake_case__ ( self, __a): '''simple docstring''' if (node := self.get_node(__a)) is not None: if node == self.head: _lowerCAmelCase : Optional[int] = self.head.get_next() if node == self.tail: _lowerCAmelCase : Optional[int] = self.tail.get_previous() self.remove_node_pointers(__a) @staticmethod def snake_case__ ( __a): '''simple docstring''' if node.get_next(): _lowerCAmelCase : Union[str, Any] = node.previous if node.get_previous(): _lowerCAmelCase : Union[str, Any] = node.next _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : List[str] = None def snake_case__ ( self): '''simple docstring''' return self.head is None def A ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
300
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
1
from typing import TYPE_CHECKING from ...utils import _LazyModule _snake_case = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCAmelCase_ : lowerCamelCase__ = LEDConfig lowerCamelCase__ = {} lowerCamelCase__ = 'gelu' def __init__( self, __a, __a=13, __a=7, __a=True, __a=False, __a=99, __a=32, __a=2, __a=4, __a=37, __a=0.1, __a=0.1, __a=20, __a=2, __a=1, __a=0, __a=4, ): '''simple docstring''' _lowerCAmelCase : int = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : Tuple = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Union[str, Any] = eos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Any = bos_token_id _lowerCAmelCase : Optional[int] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _lowerCAmelCase : str = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _lowerCAmelCase : Optional[Any] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) _lowerCAmelCase : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) _lowerCAmelCase : Any = tf.concat([input_ids, eos_tensor], axis=1) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, attention_window=self.attention_window, **self.config_updates, ) _lowerCAmelCase : List[Any] = prepare_led_inputs_dict(__a, __a, __a) _lowerCAmelCase : List[Any] = tf.concat( [tf.zeros_like(__a)[:, :-1], tf.ones_like(__a)[:, -1:]], axis=-1, ) _lowerCAmelCase : Dict = global_attention_mask return config, inputs_dict def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = TFLEDModel(config=__a).get_decoder() _lowerCAmelCase : Optional[Any] = inputs_dict["input_ids"] _lowerCAmelCase : str = input_ids[:1, :] _lowerCAmelCase : Optional[Any] = inputs_dict["attention_mask"][:1, :] _lowerCAmelCase : List[str] = 1 # first forward pass _lowerCAmelCase : Dict = model(__a, attention_mask=__a, use_cache=__a) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase : int = ids_tensor((self.batch_size, 3), config.vocab_size) _lowerCAmelCase : Dict = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.inta) # append to next input_ids and _lowerCAmelCase : Optional[Any] = tf.concat([input_ids, next_tokens], axis=-1) _lowerCAmelCase : List[str] = tf.concat([attention_mask, next_attn_mask], axis=-1) _lowerCAmelCase : Union[str, Any] = model(__a, attention_mask=__a)[0] _lowerCAmelCase : int = model(__a, attention_mask=__a, past_key_values=__a)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice _lowerCAmelCase : int = int(ids_tensor((1,), output_from_past.shape[-1])) _lowerCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a, __a, rtol=1E-3) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): '''simple docstring''' if attention_mask is None: _lowerCAmelCase : Any = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFLEDModelTester(self) _lowerCAmelCase : Optional[int] = ConfigTester(self, config_class=__a) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"]) _lowerCAmelCase : str = 2 _lowerCAmelCase : List[str] = tf.where( tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices, 1, inputs_dict["global_attention_mask"], ) _lowerCAmelCase : int = True _lowerCAmelCase : Tuple = self.model_tester.seq_length _lowerCAmelCase : str = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a): _lowerCAmelCase : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) def check_encoder_attentions_output(__a): _lowerCAmelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _lowerCAmelCase : Any = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) self.assertListEqual( list(global_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices], ) for model_class in self.all_model_classes: _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : List[str] = model_class(__a) _lowerCAmelCase : int = model(self._prepare_for_class(__a, __a)) _lowerCAmelCase : Any = len(__a) self.assertEqual(config.output_hidden_states, __a) check_encoder_attentions_output(__a) if self.is_encoder_decoder: _lowerCAmelCase : Tuple = model_class(__a) _lowerCAmelCase : Optional[int] = model(self._prepare_for_class(__a, __a)) self.assertEqual(config.output_hidden_states, __a) check_decoder_attentions_output(__a) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase : List[str] = True _lowerCAmelCase : Dict = model_class(__a) _lowerCAmelCase : str = model(self._prepare_for_class(__a, __a)) self.assertEqual(config.output_hidden_states, __a) check_encoder_attentions_output(__a) # Check attention is always last and order is fine _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Tuple = True _lowerCAmelCase : Any = model_class(__a) _lowerCAmelCase : Tuple = model(self._prepare_for_class(__a, __a)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(__a)) self.assertEqual(model.config.output_hidden_states, __a) check_encoder_attentions_output(__a) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass def A ( _lowerCamelCase ): '''simple docstring''' return tf.constant(_lowerCamelCase , dtype=tf.intaa ) _snake_case = 1e-4 @slow @require_tf class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384").led # change to intended input here _lowerCAmelCase : Tuple = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _lowerCAmelCase : Optional[int] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _lowerCAmelCase : int = prepare_led_inputs_dict(model.config, __a, __a) _lowerCAmelCase : List[Any] = model(**__a)[0] _lowerCAmelCase : str = (1, 1024, 768) self.assertEqual(output.shape, __a) # change to expected output here _lowerCAmelCase : List[str] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]], ) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-3) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384") # change to intended input here _lowerCAmelCase : Any = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _lowerCAmelCase : Dict = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _lowerCAmelCase : Tuple = prepare_led_inputs_dict(model.config, __a, __a) _lowerCAmelCase : List[str] = model(**__a)[0] _lowerCAmelCase : List[str] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape, __a) # change to expected output here _lowerCAmelCase : Optional[int] = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]], ) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-3, rtol=1E-3)
300
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = original_name.split("." )[0] _lowerCAmelCase : List[str] = key.split("." ) _lowerCAmelCase : Any = int(key_list[key_list.index(_lowerCamelCase ) - 2] ) _lowerCAmelCase : Dict = int(key_list[key_list.index(_lowerCamelCase ) - 1] ) _lowerCAmelCase : Optional[Any] = orig_block_num - offset _lowerCAmelCase : int = key.replace(F"{orig_block_num}.{layer_num}.{original_name}" , F"block.{new_block_num}.{layer_num}.{new_name}" ) return key def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = OrderedDict() _lowerCAmelCase , _lowerCAmelCase : List[str] = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): _lowerCAmelCase : Dict = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 _lowerCAmelCase : List[str] = key[: key.find("proj" )] _lowerCAmelCase : Optional[Any] = key.replace(_lowerCamelCase , F"patch_embeddings.{total_embed_found}." ) _lowerCAmelCase : str = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: _lowerCAmelCase : int = "poolformer.encoder." + key if "mlp.fc1" in key: _lowerCAmelCase : Any = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: _lowerCAmelCase : Union[str, Any] = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "mlp.fc2" , "output.conv2" ) if "norm1" in key: _lowerCAmelCase : Optional[int] = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "norm1" , "before_norm" ) if "norm2" in key: _lowerCAmelCase : Dict = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "norm2" , "after_norm" ) if "layer_scale_1" in key: _lowerCAmelCase : List[str] = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: _lowerCAmelCase : Dict = replace_key_with_offset(_lowerCamelCase , _lowerCamelCase , "layer_scale_2" , "layer_scale_2" ) if "head" in key: _lowerCAmelCase : List[str] = key.replace("head" , "classifier" ) _lowerCAmelCase : Dict = value return new_state_dict def A ( ): '''simple docstring''' _lowerCAmelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : Tuple = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = PoolFormerConfig() # set attributes based on model_name _lowerCAmelCase : Tuple = "huggingface/label-files" _lowerCAmelCase : List[Any] = model_name[-3:] _lowerCAmelCase : List[Any] = 1_000 _lowerCAmelCase : str = "imagenet-1k-id2label.json" _lowerCAmelCase : Optional[Any] = (1, 1_000) # set config attributes _lowerCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : Optional[int] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Any = idalabel _lowerCAmelCase : int = {v: k for k, v in idalabel.items()} if size == "s12": _lowerCAmelCase : List[str] = [2, 2, 6, 2] _lowerCAmelCase : Dict = [64, 128, 320, 512] _lowerCAmelCase : int = 4.0 _lowerCAmelCase : Optional[int] = 0.9 elif size == "s24": _lowerCAmelCase : Dict = [4, 4, 12, 4] _lowerCAmelCase : List[Any] = [64, 128, 320, 512] _lowerCAmelCase : Optional[int] = 4.0 _lowerCAmelCase : Dict = 0.9 elif size == "s36": _lowerCAmelCase : Dict = [6, 6, 18, 6] _lowerCAmelCase : str = [64, 128, 320, 512] _lowerCAmelCase : int = 4.0 _lowerCAmelCase : Union[str, Any] = 1e-6 _lowerCAmelCase : Optional[int] = 0.9 elif size == "m36": _lowerCAmelCase : Union[str, Any] = [6, 6, 18, 6] _lowerCAmelCase : Optional[Any] = [96, 192, 384, 768] _lowerCAmelCase : Tuple = 4.0 _lowerCAmelCase : Optional[Any] = 1e-6 _lowerCAmelCase : str = 0.95 elif size == "m48": _lowerCAmelCase : List[str] = [8, 8, 24, 8] _lowerCAmelCase : Optional[Any] = [96, 192, 384, 768] _lowerCAmelCase : Tuple = 4.0 _lowerCAmelCase : Tuple = 1e-6 _lowerCAmelCase : List[Any] = 0.95 else: raise ValueError(F"Size {size} not supported" ) # load image processor _lowerCAmelCase : Optional[Any] = PoolFormerImageProcessor(crop_pct=_lowerCamelCase ) # Prepare image _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict _lowerCAmelCase : List[str] = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) # rename keys _lowerCAmelCase : Tuple = rename_keys(_lowerCamelCase ) # create HuggingFace model and load state dict _lowerCAmelCase : List[str] = PoolFormerForImageClassification(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # Define image processor _lowerCAmelCase : List[Any] = PoolFormerImageProcessor(crop_pct=_lowerCamelCase ) _lowerCAmelCase : int = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass _lowerCAmelCase : str = model(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = outputs.logits # define expected logit slices for different models if size == "s12": _lowerCAmelCase : str = torch.tensor([-0.30_45, -0.67_58, -0.48_69] ) elif size == "s24": _lowerCAmelCase : Dict = torch.tensor([0.44_02, -0.13_74, -0.80_45] ) elif size == "s36": _lowerCAmelCase : Dict = torch.tensor([-0.60_80, -0.51_33, -0.58_98] ) elif size == "m36": _lowerCAmelCase : Dict = torch.tensor([0.39_52, 0.22_63, -1.26_68] ) elif size == "m48": _lowerCAmelCase : Tuple = torch.tensor([0.11_67, -0.06_56, -0.34_23] ) else: raise ValueError(F"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _snake_case = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
300
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _snake_case = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for attribute in key.split("." ): _lowerCAmelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : List[str] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: _lowerCAmelCase : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Any = value elif weight_type == "weight_g": _lowerCAmelCase : List[str] = value elif weight_type == "weight_v": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "bias": _lowerCAmelCase : Optional[Any] = value else: _lowerCAmelCase : int = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [] _lowerCAmelCase : Any = fairseq_model.state_dict() _lowerCAmelCase : int = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _lowerCAmelCase : int = None for name, value in fairseq_dict.items(): _lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) _lowerCAmelCase : Union[str, Any] = True elif name.split("." )[0] == "proj": _lowerCAmelCase : Optional[Any] = fairseq_model.proj _lowerCAmelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowerCAmelCase : Optional[int] = True if "*" in mapped_key: _lowerCAmelCase : Any = name.split(_lowerCamelCase )[0].split("." )[-2] _lowerCAmelCase : int = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : Optional[int] = "weight_g" elif "weight_v" in name: _lowerCAmelCase : List[Any] = "weight_v" elif "bias" in name: _lowerCAmelCase : Union[str, Any] = "bias" elif "weight" in name: _lowerCAmelCase : Any = "weight" else: _lowerCAmelCase : str = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) return proj_weight def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = full_name.split("conv_layers." )[-1] _lowerCAmelCase : Optional[Any] = name.split("." ) _lowerCAmelCase : Optional[Any] = int(items[0] ) _lowerCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Optional[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _lowerCAmelCase : Tuple = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = emb.weight.shape _lowerCAmelCase : List[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) _lowerCAmelCase : List[Any] = emb.weight.data return lin_layer def A ( _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: _lowerCAmelCase : Optional[Any] = f.readlines() _lowerCAmelCase : Union[str, Any] = [line.split(" " )[0] for line in lines] _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : List[Any] = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_lowerCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : str = WavaVecaConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = SpeechaTextaConfig.from_pretrained( _lowerCamelCase , vocab_size=_lowerCamelCase , decoder_layers=_lowerCamelCase , do_stable_layer_norm=_lowerCamelCase ) _lowerCAmelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) _lowerCAmelCase : Any = model[0].eval() # set weights for wav2vec2 encoder _lowerCAmelCase : List[str] = WavaVecaModel(_lowerCamelCase ) _lowerCAmelCase : int = recursively_load_weights_wavaveca(model.encoder , _lowerCamelCase ) _lowerCAmelCase : int = SpeechaTextaForCausalLM(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Any = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCamelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) _lowerCAmelCase : Optional[int] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) _lowerCAmelCase : Dict = SpeechEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) _lowerCAmelCase : Tuple = False # add projection layer _lowerCAmelCase : int = nn.Parameter(projection_layer.weight ) _lowerCAmelCase : int = nn.Parameter(projection_layer.bias ) _lowerCAmelCase : int = create_vocab_dict(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , "vocab.json" ) , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = SpeechaTextaTokenizer(os.path.join(_lowerCamelCase , "vocab.json" ) ) tokenizer.save_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = hf_wavavec.config.to_dict() _lowerCAmelCase : Union[str, Any] = tokenizer.pad_token_id _lowerCAmelCase : List[str] = tokenizer.bos_token_id _lowerCAmelCase : Any = tokenizer.eos_token_id _lowerCAmelCase : int = "speech_to_text_2" _lowerCAmelCase : Any = "wav2vec2" _lowerCAmelCase : Tuple = SpeechEncoderDecoderConfig.from_dict(_lowerCamelCase ) hf_wavavec.save_pretrained(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
300
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
1
from collections.abc import Sequence def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = 0.0 for coeff in reversed(_lowerCamelCase ): _lowerCAmelCase : Any = result * x + coeff return result if __name__ == "__main__": _snake_case = (0.0, 0.0, 5.0, 9.3, 7.0) _snake_case = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
300
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
1
import re from filelock import FileLock try: import nltk _snake_case = True except (ImportError, ModuleNotFoundError): _snake_case = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def A ( _lowerCamelCase ): '''simple docstring''' re.sub("<n>" , "" , _lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase ) )
300
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
1
_snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [False] * len(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = [s] _lowerCAmelCase : Dict = True while queue: _lowerCAmelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCAmelCase : Any = True _lowerCAmelCase : Optional[int] = u return visited[t] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = [-1] * (len(_lowerCamelCase )) _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Tuple = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Dict = float("Inf" ) _lowerCAmelCase : Any = sink while s != source: # Find the minimum value in select path _lowerCAmelCase : Dict = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCAmelCase : Union[str, Any] = parent[s] max_flow += path_flow _lowerCAmelCase : List[str] = sink while v != source: _lowerCAmelCase : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCAmelCase : str = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
300
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A ( _lowerCamelCase ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A ( ): '''simple docstring''' with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" _lowerCAmelCase : Optional[int] = [1, 2, 3] with pytest.raises(_lowerCamelCase ): with parallel_backend("unsupported backend" ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=2 ) with pytest.raises(_lowerCamelCase ): with parallel_backend("unsupported backend" ): map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = [1, 2] _lowerCAmelCase : Tuple = {"a": 1, "b": 2} _lowerCAmelCase : Dict = {"a": [1, 2], "b": [3, 4]} _lowerCAmelCase : Optional[int] = {"a": {"1": 1}, "b": 2} _lowerCAmelCase : List[Any] = {"a": 1, "b": 2, "c": 3, "d": 4} _lowerCAmelCase : List[Any] = [2, 3] _lowerCAmelCase : Any = {"a": 2, "b": 3} _lowerCAmelCase : Any = {"a": [2, 3], "b": [4, 5]} _lowerCAmelCase : List[Any] = {"a": {"1": 2}, "b": 3} _lowerCAmelCase : List[str] = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa assert map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) == expected_map_nested_sa
300
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=32, __a=3, __a=4, __a=[10, 20, 30, 40], __a=[2, 2, 3, 2], __a=True, __a=True, __a=37, __a="gelu", __a=10, __a=0.02, __a=["stage2", "stage3", "stage4"], __a=[2, 3, 4], __a=None, ): '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Optional[int] = num_stages _lowerCAmelCase : Dict = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Tuple = is_training _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Any = num_labels _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = out_features _lowerCAmelCase : Optional[Any] = out_indices _lowerCAmelCase : Tuple = scope def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size], self.num_labels) _lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=__a, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = ConvNextModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : int = model(__a) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = ConvNextForImageClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[Any] = model(__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = ConvNextBackbone(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Any = model(__a) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) # verify backbone works with out_features=None _lowerCAmelCase : Dict = None _lowerCAmelCase : Any = ConvNextBackbone(config=__a) model.to(__a) model.eval() _lowerCAmelCase : str = model(__a) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = config_and_inputs _lowerCAmelCase : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCamelCase__ = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = ConvNextModelTester(self) _lowerCAmelCase : Tuple = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self): '''simple docstring''' return @unittest.skip(reason="ConvNext does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="ConvNext does not support input and output embeddings") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="ConvNext does not use feedforward chunking") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(__a) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] _lowerCAmelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a) def snake_case__ ( self): '''simple docstring''' def check_hidden_states_output(__a, __a, __a): _lowerCAmelCase : List[str] = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _lowerCAmelCase : Tuple = model(**self._prepare_for_class(__a, __a)) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(__a), expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = True check_hidden_states_output(__a, __a, __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : str = True check_hidden_states_output(__a, __a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = ConvNextModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224") if is_vision_available() else None @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224").to(__a) _lowerCAmelCase : Optional[Any] = self.default_image_processor _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : List[Any] = image_processor(images=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**__a) # verify the logits _lowerCAmelCase : List[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : Union[str, Any] = torch.tensor([-0.0_260, -0.4_739, 0.1_911]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3], __a, atol=1E-4)) @require_torch class UpperCAmelCase_ ( unittest.TestCase , a): lowerCamelCase__ = (ConvNextBackbone,) if is_torch_available() else () lowerCamelCase__ = ConvNextConfig lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = ConvNextModelTester(self)
300
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _snake_case = logging.getLogger(__name__) _snake_case = 50 # max width of layer names _snake_case = 70 # max width of quantizer names def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=_lowerCamelCase , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=_lowerCamelCase , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=_lowerCamelCase , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=_lowerCamelCase , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=_lowerCamelCase , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=_lowerCamelCase , type=_lowerCamelCase , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=_lowerCamelCase , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def A ( _lowerCamelCase ): '''simple docstring''' if args.calibrator == "max": _lowerCAmelCase : Any = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) _lowerCAmelCase : Tuple = "histogram" elif args.calibrator == "mse": _lowerCAmelCase : str = "histogram" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) _lowerCAmelCase : int = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCamelCase ) _lowerCAmelCase : List[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ): '''simple docstring''' logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCamelCase , ["embeddings"] , which="weight" , _disabled=_lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(_lowerCamelCase , [""] , _disabled=_lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCamelCase , args.quant_disable_keyword , _disabled=_lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=_lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCamelCase , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=_lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(_lowerCamelCase ) if args.fuse_qkv: fuse_qkv(_lowerCamelCase , _lowerCamelCase ) if args.clip_gelu: clip_gelu(_lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def fusea(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(_lowerCamelCase , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return _lowerCAmelCase : Optional[int] = qq._amax.detach().item() _lowerCAmelCase : int = qk._amax.detach().item() _lowerCAmelCase : Optional[Any] = qv._amax.detach().item() _lowerCAmelCase : Tuple = max(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) qq._amax.fill_(_lowerCamelCase ) qk._amax.fill_(_lowerCamelCase ) qv._amax.fill_(_lowerCamelCase ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): _lowerCAmelCase : Optional[int] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCamelCase ) _lowerCAmelCase : str = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def A ( _lowerCamelCase ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: _lowerCAmelCase : Dict = mod.weight.shape[0] _lowerCAmelCase : Any = mod._weight_quantizer._amax.detach() _lowerCAmelCase : List[Any] = torch.ones(_lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def A ( _lowerCamelCase ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _lowerCAmelCase : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _lowerCAmelCase : Union[str, Any] = set(range(len(mod.weight.size() ) ) ) - axis_set _lowerCAmelCase : List[Any] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCamelCase , keepdims=_lowerCamelCase ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) _lowerCAmelCase : Tuple = amax def A ( _lowerCamelCase , _lowerCamelCase=25 , _lowerCamelCase=180 , _lowerCamelCase=None ): '''simple docstring''' if ignore is None: _lowerCAmelCase : Tuple = [] elif not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = [ignore] _lowerCAmelCase : Optional[Any] = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCamelCase , "weight" ): continue _lowerCAmelCase : Any = max(_lowerCamelCase , len(_lowerCamelCase ) ) for name, mod in model.named_modules(): _lowerCAmelCase : Tuple = getattr(_lowerCamelCase , "_input_quantizer" , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase , "_weight_quantizer" , _lowerCamelCase ) if not hasattr(_lowerCamelCase , "weight" ): continue if type(_lowerCamelCase ) in ignore: continue if [True for s in ignore if type(_lowerCamelCase ) is str and s in name]: continue _lowerCAmelCase : Any = F"Act:{input_q.extra_repr()}" _lowerCAmelCase : List[Any] = F"Wgt:{weight_q.extra_repr()}" _lowerCAmelCase : Any = F"{name:{name_width}} {act_str} {wgt_str}" if len(_lowerCamelCase ) <= line_width: logger.info(_lowerCamelCase ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = 0 for name, mod in model.named_modules(): if isinstance(_lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if quantizer_mod is not None: assert hasattr(_lowerCamelCase , _lowerCamelCase ) setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: logger.warning(F"{name} has no {quantizer}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="both" , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , "_input_quantizer" , _lowerCamelCase , _lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(_lowerCamelCase , _lowerCamelCase , "_weight_quantizer" , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_lowerCamelCase , "_input_quantizer" ) or hasattr(_lowerCamelCase , "_weight_quantizer" ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): set_quantizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) elif name.endswith("_quantizer" ): for n in names: if re.search(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info(_lowerCamelCase )
300
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'data2vec-vision' def __init__( self, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.0, __a=0.0, __a=0.02, __a=1E-12, __a=224, __a=16, __a=3, __a=False, __a=False, __a=False, __a=False, __a=0.1, __a=0.1, __a=True, __a=[3, 5, 7, 11], __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Tuple = patch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : List[str] = use_mask_token _lowerCAmelCase : Union[str, Any] = use_absolute_position_embeddings _lowerCAmelCase : int = use_relative_position_bias _lowerCAmelCase : List[Any] = use_shared_relative_position_bias _lowerCAmelCase : Optional[Any] = layer_scale_init_value _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : str = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Any = out_indices _lowerCAmelCase : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Union[str, Any] = auxiliary_loss_weight _lowerCAmelCase : Dict = auxiliary_channels _lowerCAmelCase : List[Any] = auxiliary_num_convs _lowerCAmelCase : Optional[Any] = auxiliary_concat_input _lowerCAmelCase : Optional[int] = semantic_loss_ignore_index class UpperCAmelCase_ ( a): lowerCamelCase__ = version.parse('1.11') @property def snake_case__ ( self): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def snake_case__ ( self): '''simple docstring''' return 1E-4
300
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , np.ndarray ): return list(tensor.shape ) _lowerCAmelCase : Optional[Any] = tf.shape(_lowerCamelCase ) if tensor.shape == tf.TensorShape(_lowerCamelCase ): return dynamic _lowerCAmelCase : Optional[int] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_lowerCamelCase )] def A ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ): '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowerCamelCase , name=_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-5 , _lowerCamelCase=-1 ): '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized _lowerCAmelCase , _lowerCAmelCase : Tuple = tf.nn.moments(_lowerCamelCase , axes=[axis] , keepdims=_lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _lowerCAmelCase : Union[str, Any] = [1] * inputs.shape.rank _lowerCAmelCase : Optional[Any] = shape_list(_lowerCamelCase )[axis] _lowerCAmelCase : int = tf.reshape(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = tf.reshape(_lowerCamelCase , _lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. _lowerCAmelCase : Dict = tf.nn.batch_normalization( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , offset=_lowerCamelCase , scale=_lowerCamelCase , variance_epsilon=_lowerCamelCase , ) return outputs def A ( _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=-1 ): '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _lowerCAmelCase : Dict = tf.shape(_lowerCamelCase ) _lowerCAmelCase : Any = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _lowerCAmelCase : Tuple = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , tf.Tensor ): _lowerCAmelCase : Dict = tf.convert_to_tensor(_lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _lowerCAmelCase : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _lowerCAmelCase : Optional[int] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _lowerCAmelCase : List[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "input_ids" ): '''simple docstring''' tf.debugging.assert_less( _lowerCamelCase , tf.cast(_lowerCamelCase , dtype=tensor.dtype ) , message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(_lowerCamelCase )}) must be smaller than the embedding " F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _lowerCAmelCase : Union[str, Any] = [x for x in data if len(_lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}" ) _lowerCAmelCase : Union[str, Any] = np.asarray(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Optional[int] = np.array_split(_lowerCamelCase , _lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _lowerCAmelCase : str = np.array_split(_lowerCamelCase , _lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_lowerCamelCase ): _lowerCAmelCase : Any = chunk_data else: _lowerCAmelCase : Dict = data def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if name in group.attrs: _lowerCAmelCase : Dict = [n.decode("utf8" ) if hasattr(_lowerCamelCase , "decode" ) else n for n in group.attrs[name]] else: _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : List[Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(_lowerCamelCase , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def A ( _lowerCamelCase ): '''simple docstring''' def _expand_single_ad_tensor(_lowerCamelCase ): if isinstance(_lowerCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_lowerCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _lowerCamelCase )
300
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _snake_case = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _snake_case = "main" # Default branch name _snake_case = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) _snake_case = "aaaaaaa" # This commit does not exist, so we should 404. _snake_case = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes _snake_case = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def A ( ): '''simple docstring''' print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def A ( ): '''simple docstring''' print("Bonjour!" ) yield print("Au revoir!" ) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers") is not None class UpperCAmelCase_ ( unittest.TestCase): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def snake_case__ ( self, __a): '''simple docstring''' with ContextManagers([]): print("Transformers are awesome!") # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue(), "Transformers are awesome!\n") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def snake_case__ ( self, __a): '''simple docstring''' with ContextManagers([context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue(), "Welcome!\nTransformers are awesome!\nBye!\n") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def snake_case__ ( self, __a): '''simple docstring''' with ContextManagers([context_fr(), context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue(), "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n") @require_torch def snake_case__ ( self): '''simple docstring''' self.assertEqual(find_labels(__a), ["labels"]) self.assertEqual(find_labels(__a), ["labels", "next_sentence_label"]) self.assertEqual(find_labels(__a), ["start_positions", "end_positions"]) class UpperCAmelCase_ ( a): pass self.assertEqual(find_labels(__a), ["labels"]) @require_tf def snake_case__ ( self): '''simple docstring''' self.assertEqual(find_labels(__a), ["labels"]) self.assertEqual(find_labels(__a), ["labels", "next_sentence_label"]) self.assertEqual(find_labels(__a), ["start_positions", "end_positions"]) class UpperCAmelCase_ ( a): pass self.assertEqual(find_labels(__a), ["labels"]) @require_flax def snake_case__ ( self): '''simple docstring''' self.assertEqual(find_labels(__a), []) self.assertEqual(find_labels(__a), []) self.assertEqual(find_labels(__a), []) class UpperCAmelCase_ ( a): pass self.assertEqual(find_labels(__a), [])
300
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCAmelCase : Tuple = flatten_dict(_lowerCamelCase ) return flax_params def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : Optional[Any] = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } _lowerCAmelCase : str = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _lowerCAmelCase : Optional[int] = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _lowerCAmelCase : Any = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _lowerCAmelCase : List[str] = new_key.replace(_lowerCamelCase , _lowerCamelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _lowerCAmelCase : int = re.sub(r"layers_(\d+)" , r"layer.\1" , _lowerCamelCase ) _lowerCAmelCase : str = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _lowerCAmelCase : List[Any] = re.sub(r"layers_(\d+)" , r"layer.\1" , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = flax_dict[key] _lowerCAmelCase : List[str] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _lowerCAmelCase : Tuple = torch.from_numpy(converted_dict[key].T ) else: _lowerCAmelCase : Union[str, Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : str = get_flax_param(_lowerCamelCase ) if not use_large: _lowerCAmelCase : List[Any] = PixaStructVisionConfig() _lowerCAmelCase : Tuple = PixaStructTextConfig() else: _lowerCAmelCase : Any = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) _lowerCAmelCase : Dict = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) _lowerCAmelCase : str = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = PixaStructForConditionalGeneration(_lowerCamelCase ) _lowerCAmelCase : List[str] = rename_and_convert_flax_params(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) _lowerCAmelCase : Any = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) _lowerCAmelCase : int = PixaStructImageProcessor() _lowerCAmelCase : str = PixaStructProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) if use_large: _lowerCAmelCase : Any = 4_096 _lowerCAmelCase : Optional[int] = True # mkdir if needed os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) print("Model saved in {}".format(_lowerCamelCase ) ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _snake_case = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'unispeech' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="mean", __a=False, __a=False, __a=256, __a=80, __a=0, __a=1, __a=2, __a=0.5, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : int = feat_extract_norm _lowerCAmelCase : Tuple = feat_extract_activation _lowerCAmelCase : str = list(__a) _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : Tuple = conv_bias _lowerCAmelCase : Optional[int] = num_conv_pos_embeddings _lowerCAmelCase : int = num_conv_pos_embedding_groups _lowerCAmelCase : Union[str, Any] = len(self.conv_dim) _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = hidden_dropout _lowerCAmelCase : Dict = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : str = final_dropout _lowerCAmelCase : List[str] = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : int = num_ctc_classes _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Dict = do_stable_layer_norm _lowerCAmelCase : str = use_weighted_layer_sum _lowerCAmelCase : int = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : Dict = mask_time_prob _lowerCAmelCase : Dict = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : Any = mask_feature_prob _lowerCAmelCase : Optional[int] = mask_feature_length _lowerCAmelCase : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : Any = num_codevectors_per_group _lowerCAmelCase : List[Any] = num_codevector_groups _lowerCAmelCase : Dict = contrastive_logits_temperature _lowerCAmelCase : Union[str, Any] = feat_quantizer_dropout _lowerCAmelCase : Union[str, Any] = num_negatives _lowerCAmelCase : Any = codevector_dim _lowerCAmelCase : List[Any] = proj_codevector_dim _lowerCAmelCase : List[Any] = diversity_loss_weight # ctc loss _lowerCAmelCase : Union[str, Any] = ctc_loss_reduction _lowerCAmelCase : Union[str, Any] = ctc_zero_infinity # pretraining loss _lowerCAmelCase : str = replace_prob @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
1
from sklearn.metrics import matthews_corrcoef import datasets _snake_case = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" _snake_case = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" _snake_case = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), }), reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ], ) def snake_case__ ( self, __a, __a, __a=None): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__a, __a, sample_weight=__a)), }
300
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
1
def A ( _lowerCamelCase ): '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _lowerCAmelCase : Any = grid[0] for row_n in range(1 , len(_lowerCamelCase ) ): _lowerCAmelCase : Dict = grid[row_n] _lowerCAmelCase : Tuple = fill_row(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = grid[row_n] return grid[-1][-1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(_lowerCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
300
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'timm_backbone' def __init__( self, __a=None, __a=3, __a=True, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : int = backbone _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Any = features_only _lowerCAmelCase : List[Any] = use_pretrained_backbone _lowerCAmelCase : str = True _lowerCAmelCase : Optional[int] = out_indices if out_indices is not None else (-1,)
300
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _snake_case = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None lowerCamelCase__ = "utf-8" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 10 << 20 # 10MB lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = JsonConfig def snake_case__ ( self): '''simple docstring''' if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead") _lowerCAmelCase : int = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.") if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported") return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : Tuple = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : Union[str, Any] = data_files if isinstance(__a, __a): _lowerCAmelCase : str = [files] _lowerCAmelCase : int = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : str = [files] _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): _lowerCAmelCase : Optional[Any] = self.config.features.arrow_schema.field(__a).type _lowerCAmelCase : str = pa_table.append_column(__a, pa.array([None] * len(__a), type=__a)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : List[Any] = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__a)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__a, encoding=self.config.encoding, errors=self.config.encoding_errors) as f: _lowerCAmelCase : Any = json.load(__a) # We keep only the field we are interested in _lowerCAmelCase : Union[str, Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__a, (list, tuple)): _lowerCAmelCase : List[Any] = set().union(*[row.keys() for row in dataset]) _lowerCAmelCase : Any = {col: [row.get(__a) for row in dataset] for col in keys} else: _lowerCAmelCase : Dict = dataset _lowerCAmelCase : Dict = pa.Table.from_pydict(__a) yield file_idx, self._cast_table(__a) # If the file has one json object per line else: with open(__a, "rb") as f: _lowerCAmelCase : Tuple = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _lowerCAmelCase : List[Any] = max(self.config.chunksize // 32, 16 << 10) _lowerCAmelCase : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: _lowerCAmelCase : Any = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__a) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _lowerCAmelCase : int = batch.decode(self.config.encoding, errors=__a).encode("utf-8") try: while True: try: _lowerCAmelCase : Optional[Any] = paj.read_json( io.BytesIO(__a), read_options=paj.ReadOptions(block_size=__a)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__a, pa.ArrowInvalid) and "straddling" not in str(__a) or block_size > len(__a) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(__a)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.") block_size *= 2 except pa.ArrowInvalid as e: try: with open( __a, encoding=self.config.encoding, errors=self.config.encoding_errors) as f: _lowerCAmelCase : Dict = json.load(__a) except json.JSONDecodeError: logger.error(f"Failed to read file '{file}' with error {type(__a)}: {e}") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__a, __a): # list is the only sequence type supported in JSON try: _lowerCAmelCase : str = set().union(*[row.keys() for row in dataset]) _lowerCAmelCase : str = {col: [row.get(__a) for row in dataset] for col in keys} _lowerCAmelCase : List[str] = pa.Table.from_pydict(__a) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"Failed to read file '{file}' with error {type(__a)}: {e}") raise ValueError(f"Not able to read records in the JSON file at {file}.") from None yield file_idx, self._cast_table(__a) break else: logger.error(f"Failed to read file '{file}' with error {type(__a)}: {e}") raise ValueError( f"Not able to read records in the JSON file at {file}. " f"You should probably indicate the field of the JSON file containing your records. " f"This JSON file contain the following fields: {str(list(dataset.keys()))}. " f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. ") from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__a) batch_idx += 1
300
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
from ...configuration_utils import PretrainedConfig class UpperCAmelCase_ ( a): lowerCamelCase__ = 'bert-generation' def __init__( self, __a=5_0358, __a=1024, __a=24, __a=16, __a=4096, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=0.02, __a=1E-12, __a=0, __a=2, __a=1, __a="absolute", __a=True, **__a, ): '''simple docstring''' super().__init__(pad_token_id=__a, bos_token_id=__a, eos_token_id=__a, **__a) _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Optional[int] = position_embedding_type _lowerCAmelCase : Any = use_cache
300
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=12, __a=7, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a=0.1, __a=0.1, __a=512, __a=0.02, __a=0, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Any = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : Any = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : str = projection_dim _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : int = attention_dropout _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Optional[Any] = scope _lowerCAmelCase : Optional[int] = bos_token_id def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: _lowerCAmelCase : Union[str, Any] = input_mask.numpy() _lowerCAmelCase , _lowerCAmelCase : int = input_mask.shape _lowerCAmelCase : List[str] = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(__a): _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : int = self.get_config() return config, input_ids, tf.convert_to_tensor(__a) def snake_case__ ( self): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = TFBlipTextModel(config=__a) _lowerCAmelCase : List[Any] = model(__a, attention_mask=__a, training=__a) _lowerCAmelCase : str = model(__a, training=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = (TFBlipTextModel,) if is_tf_available() else () lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = BlipTextModelTester(self) _lowerCAmelCase : Optional[int] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def snake_case__ ( self): '''simple docstring''' pass @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = TFBlipTextModel.from_pretrained(__a) self.assertIsNotNone(__a) def snake_case__ ( self, __a=True): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__a)
300
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 0.0 lowerCamelCase__ = 1 lowerCamelCase__ = 1 lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = jnp.floataa def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = [] for i in range(self.num_layers): _lowerCAmelCase : Dict = self.in_channels if i == 0 else self.out_channels _lowerCAmelCase : List[Any] = FlaxResnetBlockaD( in_channels=__a, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__a) _lowerCAmelCase : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(__a) _lowerCAmelCase : List[Any] = resnets _lowerCAmelCase : List[str] = attentions if self.add_downsample: _lowerCAmelCase : Union[str, Any] = FlaxDownsampleaD(self.out_channels, dtype=self.dtype) def __call__( self, __a, __a, __a, __a=True): '''simple docstring''' _lowerCAmelCase : Optional[int] = () for resnet, attn in zip(self.resnets, self.attentions): _lowerCAmelCase : Any = resnet(__a, __a, deterministic=__a) _lowerCAmelCase : Optional[Any] = attn(__a, __a, deterministic=__a) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase : Optional[int] = self.downsamplers_a(__a) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 0.0 lowerCamelCase__ = 1 lowerCamelCase__ = True lowerCamelCase__ = jnp.floataa def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = [] for i in range(self.num_layers): _lowerCAmelCase : Any = self.in_channels if i == 0 else self.out_channels _lowerCAmelCase : int = FlaxResnetBlockaD( in_channels=__a, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__a) _lowerCAmelCase : int = resnets if self.add_downsample: _lowerCAmelCase : int = FlaxDownsampleaD(self.out_channels, dtype=self.dtype) def __call__( self, __a, __a, __a=True): '''simple docstring''' _lowerCAmelCase : Tuple = () for resnet in self.resnets: _lowerCAmelCase : str = resnet(__a, __a, deterministic=__a) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase : Any = self.downsamplers_a(__a) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 0.0 lowerCamelCase__ = 1 lowerCamelCase__ = 1 lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = jnp.floataa def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] _lowerCAmelCase : Union[str, Any] = [] for i in range(self.num_layers): _lowerCAmelCase : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase : List[Any] = self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__a) _lowerCAmelCase : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(__a) _lowerCAmelCase : List[str] = resnets _lowerCAmelCase : Any = attentions if self.add_upsample: _lowerCAmelCase : List[Any] = FlaxUpsampleaD(self.out_channels, dtype=self.dtype) def __call__( self, __a, __a, __a, __a, __a=True): '''simple docstring''' for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states _lowerCAmelCase : Any = res_hidden_states_tuple[-1] _lowerCAmelCase : List[Any] = res_hidden_states_tuple[:-1] _lowerCAmelCase : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) _lowerCAmelCase : List[Any] = resnet(__a, __a, deterministic=__a) _lowerCAmelCase : Optional[Any] = attn(__a, __a, deterministic=__a) if self.add_upsample: _lowerCAmelCase : List[str] = self.upsamplers_a(__a) return hidden_states class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 0.0 lowerCamelCase__ = 1 lowerCamelCase__ = True lowerCamelCase__ = jnp.floataa def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = [] for i in range(self.num_layers): _lowerCAmelCase : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase : str = self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__a) _lowerCAmelCase : Optional[int] = resnets if self.add_upsample: _lowerCAmelCase : Any = FlaxUpsampleaD(self.out_channels, dtype=self.dtype) def __call__( self, __a, __a, __a, __a=True): '''simple docstring''' for resnet in self.resnets: # pop res hidden states _lowerCAmelCase : Union[str, Any] = res_hidden_states_tuple[-1] _lowerCAmelCase : Any = res_hidden_states_tuple[:-1] _lowerCAmelCase : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) _lowerCAmelCase : Optional[Any] = resnet(__a, __a, deterministic=__a) if self.add_upsample: _lowerCAmelCase : Union[str, Any] = self.upsamplers_a(__a) return hidden_states class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ = 42 lowerCamelCase__ = 0.0 lowerCamelCase__ = 1 lowerCamelCase__ = 1 lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = jnp.floataa def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = [ FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) ] _lowerCAmelCase : Any = [] for _ in range(self.num_layers): _lowerCAmelCase : int = FlaxTransformeraDModel( in_channels=self.in_channels, n_heads=self.num_attention_heads, d_head=self.in_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(__a) _lowerCAmelCase : List[str] = FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__a) _lowerCAmelCase : Optional[Any] = resnets _lowerCAmelCase : Optional[int] = attentions def __call__( self, __a, __a, __a, __a=True): '''simple docstring''' _lowerCAmelCase : Tuple = self.resnets[0](__a, __a) for attn, resnet in zip(self.attentions, self.resnets[1:]): _lowerCAmelCase : Union[str, Any] = attn(__a, __a, deterministic=__a) _lowerCAmelCase : str = resnet(__a, __a, deterministic=__a) return hidden_states
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def A ( _lowerCamelCase , _lowerCamelCase = 16 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCAmelCase : List[str] = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : int = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Optional[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : str = 8 else: _lowerCAmelCase : Optional[Any] = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. _lowerCAmelCase : int = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": _lowerCAmelCase : Tuple = 2 # New Code # _lowerCAmelCase : Any = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCAmelCase : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Tuple = config["lr"] _lowerCAmelCase : List[str] = int(config["num_epochs"] ) _lowerCAmelCase : Any = int(config["seed"] ) _lowerCAmelCase : Union[str, Any] = int(config["batch_size"] ) _lowerCAmelCase : Union[str, Any] = evaluate.load("glue" , "mrpc" ) set_seed(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : Any = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler _lowerCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCamelCase ): _lowerCAmelCase : Tuple = model(**_lowerCamelCase ) _lowerCAmelCase : Dict = output.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : Dict = model(**_lowerCamelCase ) _lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) _lowerCAmelCase : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCamelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : int = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
300
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def snake_case__ ( self, __a=0): '''simple docstring''' _lowerCAmelCase : int = floats_tensor((1, 3, 128, 128), rng=random.Random(__a)) _lowerCAmelCase : Optional[Any] = np.random.RandomState(__a) _lowerCAmelCase : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : Tuple = pipe(**__a).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : Any = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**__a).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : List[Any] = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) # warmup pass to apply optimizations _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs()) _lowerCAmelCase : str = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**__a).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : List[str] = pipe(**__a).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Optional[int] = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : int = self.get_dummy_inputs() _lowerCAmelCase : Optional[Any] = pipe(**__a).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") _lowerCAmelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : int = pipe(**__a).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : List[str] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ort.SessionOptions() _lowerCAmelCase : Dict = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _lowerCAmelCase : Dict = init_image.resize((768, 512)) # using the PNDM scheduler by default _lowerCAmelCase : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A fantasy landscape, trending on artstation" _lowerCAmelCase : str = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=__a, output_type="np", ) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _lowerCAmelCase : int = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _lowerCAmelCase : Tuple = init_image.resize((768, 512)) _lowerCAmelCase : List[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx") _lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=__a, safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = "A fantasy landscape, trending on artstation" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Optional[int] = pipe( prompt=__a, image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=__a, output_type="np", ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _lowerCAmelCase : Any = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
300
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _snake_case = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _snake_case = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _snake_case = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`.") return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="http://www.cs.umd.edu/~snover/tercom/", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), }), codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"], reference_urls=[ "https://github.com/jhclark/tercom", ], ) def snake_case__ ( self, __a, __a, __a = False, __a = False, __a = False, __a = False, ): '''simple docstring''' _lowerCAmelCase : str = len(references[0]) if any(len(__a) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") _lowerCAmelCase : str = [[refs[i] for refs in references] for i in range(__a)] _lowerCAmelCase : Tuple = TER( normalized=__a, no_punct=__a, asian_support=__a, case_sensitive=__a, ) _lowerCAmelCase : Optional[int] = sb_ter.corpus_score(__a, __a) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
300
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'lxmert' lowerCamelCase__ = {} def __init__( self, __a=3_0522, __a=768, __a=12, __a=9500, __a=1600, __a=400, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=2, __a=0.02, __a=1E-12, __a=9, __a=5, __a=5, __a=2048, __a=4, __a=6.67, __a=True, __a=True, __a=True, __a=True, __a=True, __a=True, __a=True, **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = hidden_act _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = type_vocab_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Tuple = num_qa_labels _lowerCAmelCase : Union[str, Any] = num_object_labels _lowerCAmelCase : Optional[Any] = num_attr_labels _lowerCAmelCase : Any = l_layers _lowerCAmelCase : Any = x_layers _lowerCAmelCase : Optional[Any] = r_layers _lowerCAmelCase : Any = visual_feat_dim _lowerCAmelCase : List[str] = visual_pos_dim _lowerCAmelCase : Optional[Any] = visual_loss_normalizer _lowerCAmelCase : Optional[int] = task_matched _lowerCAmelCase : str = task_mask_lm _lowerCAmelCase : Optional[Any] = task_obj_predict _lowerCAmelCase : str = task_qa _lowerCAmelCase : Union[str, Any] = visual_obj_loss _lowerCAmelCase : Union[str, Any] = visual_attr_loss _lowerCAmelCase : Dict = visual_feat_loss _lowerCAmelCase : List[str] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**__a)
300
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _snake_case = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _snake_case = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _snake_case = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = len([g for position, g in enumerate(_lowerCamelCase ) if g == main_target[position]] ) return (item, float(_lowerCamelCase )) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = random.randint(0 , len(_lowerCamelCase ) - 1 ) _lowerCAmelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _lowerCAmelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = list(_lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _lowerCAmelCase : List[str] = random.choice(_lowerCamelCase ) return "".join(_lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : str = [] # Generate more children proportionally to the fitness score. _lowerCAmelCase : Any = int(parent_a[1] * 100 ) + 1 _lowerCAmelCase : Tuple = 10 if child_n >= 10 else child_n for _ in range(_lowerCamelCase ): _lowerCAmelCase : List[str] = population_score[random.randint(0 , _lowerCamelCase )][0] _lowerCAmelCase , _lowerCAmelCase : Optional[int] = crossover(parent_a[0] , _lowerCamelCase ) # Append new string to the population list. pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) return pop def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: _lowerCAmelCase : Optional[int] = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(_lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. _lowerCAmelCase : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _lowerCAmelCase : Optional[Any] = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(_lowerCamelCase ) # Generate random starting population. _lowerCAmelCase : Tuple = [] for _ in range(_lowerCamelCase ): population.append("".join([random.choice(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _lowerCAmelCase : List[str] = [evaluate(_lowerCamelCase , _lowerCamelCase ) for item in population] # Check if there is a matching evolution. _lowerCAmelCase : int = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _lowerCAmelCase : Optional[int] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowerCamelCase ) # Normalize population score to be between 0 and 1. _lowerCAmelCase : Union[str, Any] = [ (item, score / len(_lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(_lowerCamelCase ): population.extend(select(population_score[int(_lowerCamelCase )] , _lowerCamelCase , _lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": _snake_case = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _snake_case = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _snake_case, _snake_case, _snake_case = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
300
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def A ( _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[column] ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=float("inf" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCamelCase ): _lowerCAmelCase : int = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase : Any = current_dis return min_dis def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=float("inf" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , _lowerCamelCase ): for j in range(max(0 , i - 6 ) , _lowerCamelCase ): _lowerCAmelCase : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCAmelCase : Any = current_dis return min_dis def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(_lowerCamelCase , _lowerCamelCase ) # recursion _lowerCAmelCase : str = points_counts // 2 _lowerCAmelCase : Any = closest_pair_of_points_sqr( _lowerCamelCase , points_sorted_on_y[:mid] , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = closest_pair_of_points_sqr( _lowerCamelCase , points_sorted_on_y[mid:] , points_counts - mid ) _lowerCAmelCase : Tuple = min(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = dis_between_closest_in_strip( _lowerCamelCase , len(_lowerCamelCase ) , _lowerCamelCase ) return min(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = column_based_sort(_lowerCamelCase , column=0 ) _lowerCAmelCase : Optional[Any] = column_based_sort(_lowerCamelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) ** 0.5 if __name__ == "__main__": _snake_case = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
300
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False')) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env') @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ]) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(), encoding="utf-8", check=__a, ) assert hasattr(self, "env") def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = f"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _lowerCAmelCase : str = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=__a, instance_count=__a, instance_type=self.instance_type, debugger_hook_config=__a, hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path}, metric_definitions=self.env.metric_definitions, distribution=__a, py_version="py36", ) def snake_case__ ( self, __a): '''simple docstring''' TrainingJobAnalytics(__a).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.create_estimator(__a) # run training estimator.fit() # result dataframe _lowerCAmelCase : str = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _lowerCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _lowerCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase : str = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 99_9999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json", "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, __a)
300
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase_ ( a , a , a): lowerCamelCase__ = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self, __a, __a, __a = None, __a = 5_0257, __a = 1024, __a = 768, __a = 12, __a = 12, __a = None, __a = "gelu_new", __a = 0.1, __a = 0.1, __a = 0.1, __a = 1E-5, __a = 0.02, __a = True, __a = True, __a = False, __a = False, ): '''simple docstring''' super().__init__() _lowerCAmelCase : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal.") _lowerCAmelCase : Union[str, Any] = prefix_inner_dim _lowerCAmelCase : List[str] = prefix_hidden_dim _lowerCAmelCase : Optional[Any] = ( nn.Linear(self.prefix_inner_dim, self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCAmelCase : str = ( nn.Linear(self.prefix_hidden_dim, __a) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCAmelCase : List[str] = GPTaConfig( vocab_size=__a, n_positions=__a, n_embd=__a, n_layer=__a, n_head=__a, n_inner=__a, activation_function=__a, resid_pdrop=__a, embd_pdrop=__a, attn_pdrop=__a, layer_norm_epsilon=__a, initializer_range=__a, scale_attn_weights=__a, use_cache=__a, scale_attn_by_inverse_layer_idx=__a, reorder_and_upcast_attn=__a, ) _lowerCAmelCase : Optional[Any] = GPTaLMHeadModel(__a) def snake_case__ ( self, __a, __a, __a = None, __a = None, ): '''simple docstring''' _lowerCAmelCase : Tuple = self.transformer.transformer.wte(__a) _lowerCAmelCase : Tuple = self.encode_prefix(__a) _lowerCAmelCase : Any = self.decode_prefix(__a) _lowerCAmelCase : int = torch.cat((prefix_embeds, embedding_text), dim=1) if labels is not None: _lowerCAmelCase : Union[str, Any] = self.get_dummy_token(input_ids.shape[0], input_ids.device) _lowerCAmelCase : Union[str, Any] = torch.cat((dummy_token, input_ids), dim=1) _lowerCAmelCase : int = self.transformer(inputs_embeds=__a, labels=__a, attention_mask=__a) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.zeros(__a, self.prefix_length, dtype=torch.intaa, device=__a) def snake_case__ ( self, __a): '''simple docstring''' return self.encode_prefix(__a) @torch.no_grad() def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = torch.split(__a, 1, dim=0) _lowerCAmelCase : int = [] _lowerCAmelCase : List[Any] = [] for feature in features: _lowerCAmelCase : Any = self.decode_prefix(feature.to(__a)) # back to the clip feature # Only support beam search for now _lowerCAmelCase , _lowerCAmelCase : Dict = self.generate_beam( input_embeds=__a, device=__a, eos_token_id=__a) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) _lowerCAmelCase : int = torch.stack(__a) _lowerCAmelCase : List[str] = torch.stack(__a) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__ ( self, __a=None, __a=None, __a=None, __a = 5, __a = 67, __a = 1.0, __a = None, ): '''simple docstring''' _lowerCAmelCase : str = eos_token_id _lowerCAmelCase : List[Any] = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Optional[Any] = torch.ones(__a, device=__a, dtype=torch.int) _lowerCAmelCase : Dict = torch.zeros(__a, device=__a, dtype=torch.bool) if input_embeds is not None: _lowerCAmelCase : Dict = input_embeds else: _lowerCAmelCase : Any = self.transformer.transformer.wte(__a) for i in range(__a): _lowerCAmelCase : Tuple = self.transformer(inputs_embeds=__a) _lowerCAmelCase : Dict = outputs.logits _lowerCAmelCase : Optional[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _lowerCAmelCase : Any = logits.softmax(-1).log() if scores is None: _lowerCAmelCase , _lowerCAmelCase : Dict = logits.topk(__a, -1) _lowerCAmelCase : Tuple = generated.expand(__a, *generated.shape[1:]) _lowerCAmelCase , _lowerCAmelCase : Dict = next_tokens.permute(1, 0), scores.squeeze(0) if tokens is None: _lowerCAmelCase : Dict = next_tokens else: _lowerCAmelCase : Tuple = tokens.expand(__a, *tokens.shape[1:]) _lowerCAmelCase : str = torch.cat((tokens, next_tokens), dim=1) else: _lowerCAmelCase : Union[str, Any] = -float(np.inf) _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : List[Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _lowerCAmelCase : List[Any] = scores_sum / seq_lengths[:, None] _lowerCAmelCase , _lowerCAmelCase : Optional[int] = scores_sum_average.view(-1).topk(__a, -1) _lowerCAmelCase : List[Any] = next_tokens // scores_sum.shape[1] _lowerCAmelCase : List[Any] = seq_lengths[next_tokens_source] _lowerCAmelCase : Dict = next_tokens % scores_sum.shape[1] _lowerCAmelCase : Tuple = next_tokens.unsqueeze(1) _lowerCAmelCase : List[str] = tokens[next_tokens_source] _lowerCAmelCase : str = torch.cat((tokens, next_tokens), dim=1) _lowerCAmelCase : Optional[int] = generated[next_tokens_source] _lowerCAmelCase : str = scores_sum_average * seq_lengths _lowerCAmelCase : Tuple = is_stopped[next_tokens_source] _lowerCAmelCase : Union[str, Any] = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) _lowerCAmelCase : Union[str, Any] = torch.cat((generated, next_token_embed), dim=1) _lowerCAmelCase : Optional[Any] = is_stopped + next_tokens.eq(__a).squeeze() if is_stopped.all(): break _lowerCAmelCase : Dict = scores / seq_lengths _lowerCAmelCase : List[Any] = scores.argsort(descending=__a) # tokens tensors are already padded to max_seq_length _lowerCAmelCase : Optional[int] = [tokens[i] for i in order] _lowerCAmelCase : int = torch.stack(__a, dim=0) _lowerCAmelCase : int = torch.tensor([seq_lengths[i] for i in order], dtype=seq_lengths.dtype) return output_texts, seq_lengths
300
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
1
from __future__ import annotations _snake_case = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = graph # mapping node to its parent in resulting breadth first tree _lowerCAmelCase : dict[str, str | None] = {} _lowerCAmelCase : List[Any] = source_vertex def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = {self.source_vertex} _lowerCAmelCase : int = None _lowerCAmelCase : Tuple = [self.source_vertex] # first in first out queue while queue: _lowerCAmelCase : Any = queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__a) _lowerCAmelCase : Optional[Any] = vertex queue.append(__a) def snake_case__ ( self, __a): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex _lowerCAmelCase : Optional[int] = self.parent.get(__a) if target_vertex_parent is None: _lowerCAmelCase : int = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__a) return self.shortest_path(__a) + f"->{target_vertex}" if __name__ == "__main__": _snake_case = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
300
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
1
def A ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) <= 1: return [tuple(_lowerCamelCase )] _lowerCAmelCase : str = [] def generate(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = [0] * n res.append(tuple(_lowerCamelCase ) ) _lowerCAmelCase : List[str] = 0 while i < n: if c[i] < i: if i % 2 == 0: _lowerCAmelCase , _lowerCAmelCase : Dict = arr[i], arr[0] else: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = arr[i], arr[c[i]] res.append(tuple(_lowerCamelCase ) ) c[i] += 1 _lowerCAmelCase : Tuple = 0 else: _lowerCAmelCase : Tuple = 0 i += 1 generate(len(_lowerCamelCase ) , _lowerCamelCase ) return res if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(heaps(arr))
300
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self, __a): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]): _lowerCAmelCase : str = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = "sshleifer/tiny-gpt2" _lowerCAmelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], eager_mode=__a, multi_process=__a, ) _lowerCAmelCase : Union[str, Any] = TensorFlowBenchmark(__a) _lowerCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "sgugger/tiny-distilbert-classification" _lowerCAmelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, only_pretrain_model=__a, ) _lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(__a) _lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" _lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : Dict = TensorFlowBenchmark(__a) _lowerCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = "sshleifer/tiny-gpt2" _lowerCAmelCase : Any = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], eager_mode=__a, multi_process=__a, ) _lowerCAmelCase : int = TensorFlowBenchmark(__a, [config]) _lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = "sshleifer/tiny-gpt2" _lowerCAmelCase : int = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : Tuple = TensorFlowBenchmark(__a, [config]) _lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" _lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : int = TensorFlowBenchmark(__a) _lowerCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = "sshleifer/tiny-gpt2" _lowerCAmelCase : str = AutoConfig.from_pretrained(__a) _lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(__a, [config]) _lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "patrickvonplaten/t5-tiny-random" _lowerCAmelCase : List[str] = AutoConfig.from_pretrained(__a) _lowerCAmelCase : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], multi_process=__a, ) _lowerCAmelCase : Dict = TensorFlowBenchmark(__a, configs=[config]) _lowerCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = "sshleifer/tiny-gpt2" _lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID], training=__a, inference=__a, sequence_lengths=[8], batch_sizes=[1], use_xla=__a, multi_process=__a, ) _lowerCAmelCase : Optional[int] = TensorFlowBenchmark(__a) _lowerCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID], inference=__a, save_to_csv=__a, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(__a, "inf_time.csv"), inference_memory_csv_file=os.path.join(__a, "inf_mem.csv"), env_info_csv_file=os.path.join(__a, "env.csv"), multi_process=__a, ) _lowerCAmelCase : Optional[int] = TensorFlowBenchmark(__a) benchmark.run() self.assertTrue(Path(os.path.join(__a, "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__a, "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__a, "env.csv")).exists()) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__a): self.assertTrue(hasattr(__a, "sequential")) self.assertTrue(hasattr(__a, "cumulative")) self.assertTrue(hasattr(__a, "current")) self.assertTrue(hasattr(__a, "total")) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID], inference=__a, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(__a, "log.txt"), log_print=__a, trace_memory_line_by_line=__a, eager_mode=__a, multi_process=__a, ) _lowerCAmelCase : Tuple = TensorFlowBenchmark(__a) _lowerCAmelCase : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(__a, "log.txt")).exists())
300
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
1
from typing import Any import numpy as np def A ( _lowerCamelCase ): '''simple docstring''' return np.array_equal(_lowerCamelCase , matrix.conjugate().T ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = v.conjugate().T _lowerCAmelCase : str = v_star.dot(_lowerCamelCase ) assert isinstance(_lowerCamelCase , np.ndarray ) return (v_star_dot.dot(_lowerCamelCase )) / (v_star.dot(_lowerCamelCase )) def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _lowerCAmelCase : Optional[Any] = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCamelCase ), F"{a} is not hermitian." print(rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCamelCase ), F"{a} is not hermitian." assert rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=4, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : List[Any] = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : List[Any] = use_attention_mask _lowerCAmelCase : str = use_token_type_ids _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : Union[str, Any] = type_sequence_label_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Any = num_choices def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Tuple = None if self.use_attention_mask: _lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : int = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__a, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = config_and_inputs _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = True lowerCamelCase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = FlaxRobertaModelTester(self) @slow def snake_case__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class_name.from_pretrained("roberta-base", from_pt=__a) _lowerCAmelCase : Tuple = model(np.ones((1, 1))) self.assertIsNotNone(__a)
300
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _lowerCAmelCase : Optional[int] = str(bin(_lowerCamelCase ) )[2:] # remove the leading "0b" _lowerCAmelCase : List[str] = str(bin(_lowerCamelCase ) )[2:] _lowerCAmelCase : Dict = max(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCamelCase ) , b_binary.zfill(_lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
300
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=4, ): '''simple docstring''' _lowerCAmelCase : int = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : Optional[int] = use_attention_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : List[str] = num_choices def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Any = None if self.use_attention_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : Any = None if self.use_token_type_ids: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__a, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = config_and_inputs _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = FlaxAlbertModelTester(self) @slow def snake_case__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : int = model_class_name.from_pretrained("albert-base-v2") _lowerCAmelCase : Union[str, Any] = model(np.ones((1, 1))) self.assertIsNotNone(__a) @require_flax class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2") _lowerCAmelCase : int = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) _lowerCAmelCase : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) _lowerCAmelCase : Tuple = model(__a, attention_mask=__a)[0] _lowerCAmelCase : Dict = (1, 11, 768) self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], __a, atol=1E-4))
300
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = StableDiffusionPanoramaPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=1, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) _lowerCAmelCase : str = DDIMScheduler() torch.manual_seed(0) _lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) _lowerCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) _lowerCAmelCase : List[str] = CLIPTextModel(__a) _lowerCAmelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") _lowerCAmelCase : Optional[int] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' _lowerCAmelCase : int = torch.manual_seed(__a) _lowerCAmelCase : Dict = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : str = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : Dict = sd_pipe(**__a).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Any = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2]) def snake_case__ ( self): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=3.25E-3) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Optional[Any] = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : Any = "french fries" _lowerCAmelCase : Union[str, Any] = sd_pipe(**__a, negative_prompt=__a) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Union[str, Any] = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(__a) _lowerCAmelCase : Any = sd_pipe(**__a, view_batch_size=2) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : Any = EulerAncestralDiscreteScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear") _lowerCAmelCase : Optional[int] = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Any = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : str = self.get_dummy_inputs(__a) _lowerCAmelCase : Union[str, Any] = sd_pipe(**__a).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Optional[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : int = PNDMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=__a) _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline(**__a) _lowerCAmelCase : Dict = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : int = self.get_dummy_inputs(__a) _lowerCAmelCase : str = sd_pipe(**__a).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Optional[Any] = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self, __a=0): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(__a) _lowerCAmelCase : Union[str, Any] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "stabilityai/stable-diffusion-2-base" _lowerCAmelCase : List[Any] = DDIMScheduler.from_pretrained(__a, subfolder="scheduler") _lowerCAmelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(__a, scheduler=__a, safety_checker=__a) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _lowerCAmelCase : Dict = self.get_inputs() _lowerCAmelCase : Union[str, Any] = pipe(**__a).images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCAmelCase : int = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ]) assert np.abs(expected_slice - image_slice).max() < 1E-2 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base", safety_checker=__a) _lowerCAmelCase : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _lowerCAmelCase : Union[str, Any] = self.get_inputs() _lowerCAmelCase : Optional[int] = pipe(**__a).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCAmelCase : Tuple = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1E-3 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = 0 def callback_fn(__a, __a, __a) -> None: _lowerCAmelCase : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCAmelCase : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCAmelCase : Dict = latents[0, -3:, -3:, -1] _lowerCAmelCase : str = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 elif step == 2: _lowerCAmelCase : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCAmelCase : Any = latents[0, -3:, -3:, -1] _lowerCAmelCase : Dict = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5E-2 _lowerCAmelCase : str = False _lowerCAmelCase : List[Any] = "stabilityai/stable-diffusion-2-base" _lowerCAmelCase : Any = DDIMScheduler.from_pretrained(__a, subfolder="scheduler") _lowerCAmelCase : Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained(__a, scheduler=__a, safety_checker=__a) _lowerCAmelCase : Dict = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _lowerCAmelCase : List[str] = self.get_inputs() pipe(**__a, callback=__a, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case__ ( self): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase : str = "stabilityai/stable-diffusion-2-base" _lowerCAmelCase : Optional[Any] = DDIMScheduler.from_pretrained(__a, subfolder="scheduler") _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained(__a, scheduler=__a, safety_checker=__a) _lowerCAmelCase : Optional[int] = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _lowerCAmelCase : int = self.get_inputs() _lowerCAmelCase : int = pipe(**__a) _lowerCAmelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
300
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=18, __a=30, __a=400, __a=True, __a=None, __a=True, __a=None, __a=True, __a=[0.48_145_466, 0.4_578_275, 0.40_821_073], __a=[0.26_862_954, 0.26_130_258, 0.27_577_711], __a=True, ): '''simple docstring''' _lowerCAmelCase : List[str] = size if size is not None else {"height": 224, "width": 224} _lowerCAmelCase : List[str] = crop_size if crop_size is not None else {"height": 18, "width": 18} _lowerCAmelCase : str = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Dict = image_size _lowerCAmelCase : List[str] = min_resolution _lowerCAmelCase : Dict = max_resolution _lowerCAmelCase : List[Any] = do_resize _lowerCAmelCase : List[str] = size _lowerCAmelCase : Any = do_center_crop _lowerCAmelCase : List[Any] = crop_size _lowerCAmelCase : List[str] = do_normalize _lowerCAmelCase : Optional[int] = image_mean _lowerCAmelCase : Union[str, Any] = image_std _lowerCAmelCase : Optional[Any] = do_convert_rgb def snake_case__ ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def snake_case__ ( self, __a=False, __a=False, __a=False): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _lowerCAmelCase : int = [] for i in range(self.batch_size): image_inputs.append( np.random.randint( 255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta)) else: _lowerCAmelCase : Tuple = [] for i in range(self.batch_size): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2) image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _lowerCAmelCase : Tuple = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] if torchify: _lowerCAmelCase : Any = [torch.from_numpy(__a) for x in image_inputs] return image_inputs @require_torch @require_vision class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = ChineseCLIPImageProcessor if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ChineseCLIPImageProcessingTester(self, do_center_crop=__a) @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a, "do_resize")) self.assertTrue(hasattr(__a, "size")) self.assertTrue(hasattr(__a, "do_center_crop")) self.assertTrue(hasattr(__a, "center_crop")) self.assertTrue(hasattr(__a, "do_normalize")) self.assertTrue(hasattr(__a, "image_mean")) self.assertTrue(hasattr(__a, "image_std")) self.assertTrue(hasattr(__a, "do_convert_rgb")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 224, "width": 224}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) _lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a, Image.Image) # Test not batched input _lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched _lowerCAmelCase : Optional[int] = image_processing(__a, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=__a, numpify=__a) for image in image_inputs: self.assertIsInstance(__a, np.ndarray) # Test not batched input _lowerCAmelCase : Tuple = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched _lowerCAmelCase : Tuple = image_processing(__a, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__a, torchify=__a) for image in image_inputs: self.assertIsInstance(__a, torch.Tensor) # Test not batched input _lowerCAmelCase : List[str] = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched _lowerCAmelCase : Dict = image_processing(__a, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) @require_torch @require_vision class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = ChineseCLIPImageProcessor if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=__a) _lowerCAmelCase : Union[str, Any] = 3 @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a, "do_resize")) self.assertTrue(hasattr(__a, "size")) self.assertTrue(hasattr(__a, "do_center_crop")) self.assertTrue(hasattr(__a, "center_crop")) self.assertTrue(hasattr(__a, "do_normalize")) self.assertTrue(hasattr(__a, "image_mean")) self.assertTrue(hasattr(__a, "image_std")) self.assertTrue(hasattr(__a, "do_convert_rgb")) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a, Image.Image) # Test not batched input _lowerCAmelCase : int = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched _lowerCAmelCase : Optional[int] = image_processing(__a, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), )
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
# Algorithm for the pigeonhole sorting def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = min(_lowerCamelCase ) # min() finds the minimum value _lowerCAmelCase : Optional[Any] = max(_lowerCamelCase ) # max() finds the maximum value _lowerCAmelCase : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowerCAmelCase : int = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowerCAmelCase : Union[str, Any] = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 _lowerCAmelCase : Tuple = count + min_val i += 1 def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print("Sorted order is:" , " ".join(_lowerCamelCase ) ) if __name__ == "__main__": main()
300
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = True @register_to_config def __init__( self, __a = 3, __a = 3, __a = ("DownEncoderBlock2D",), __a = ("UpDecoderBlock2D",), __a = (64,), __a = 1, __a = "silu", __a = 4, __a = 32, __a = 32, __a = 0.18_215, ): '''simple docstring''' super().__init__() # pass init params to Encoder _lowerCAmelCase : Union[str, Any] = Encoder( in_channels=__a, out_channels=__a, down_block_types=__a, block_out_channels=__a, layers_per_block=__a, act_fn=__a, norm_num_groups=__a, double_z=__a, ) # pass init params to Decoder _lowerCAmelCase : List[Any] = Decoder( in_channels=__a, out_channels=__a, up_block_types=__a, block_out_channels=__a, layers_per_block=__a, norm_num_groups=__a, act_fn=__a, ) _lowerCAmelCase : List[str] = nn.Convad(2 * latent_channels, 2 * latent_channels, 1) _lowerCAmelCase : str = nn.Convad(__a, __a, 1) _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : int = False # only relevant if vae tiling is enabled _lowerCAmelCase : Optional[int] = self.config.sample_size _lowerCAmelCase : Optional[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size ) _lowerCAmelCase : Tuple = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) _lowerCAmelCase : Dict = 0.25 def snake_case__ ( self, __a, __a=False): '''simple docstring''' if isinstance(__a, (Encoder, Decoder)): _lowerCAmelCase : Any = value def snake_case__ ( self, __a = True): '''simple docstring''' _lowerCAmelCase : Dict = use_tiling def snake_case__ ( self): '''simple docstring''' self.enable_tiling(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = True def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = {} def fn_recursive_add_processors(__a, __a, __a): if hasattr(__a, "set_processor"): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", __a, __a) return processors for name, module in self.named_children(): fn_recursive_add_processors(__a, __a, __a) return processors def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = len(self.attn_processors.keys()) if isinstance(__a, __a) and len(__a) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(__a)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(__a, __a, __a): if hasattr(__a, "set_processor"): if not isinstance(__a, __a): module.set_processor(__a) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", __a, __a) for name, module in self.named_children(): fn_recursive_attn_processor(__a, __a, __a) def snake_case__ ( self): '''simple docstring''' self.set_attn_processor(AttnProcessor()) @apply_forward_hook def snake_case__ ( self, __a, __a = True): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__a, return_dict=__a) if self.use_slicing and x.shape[0] > 1: _lowerCAmelCase : List[str] = [self.encoder(__a) for x_slice in x.split(1)] _lowerCAmelCase : Optional[int] = torch.cat(__a) else: _lowerCAmelCase : List[str] = self.encoder(__a) _lowerCAmelCase : Union[str, Any] = self.quant_conv(__a) _lowerCAmelCase : Any = DiagonalGaussianDistribution(__a) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__a) def snake_case__ ( self, __a, __a = True): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__a, return_dict=__a) _lowerCAmelCase : Dict = self.post_quant_conv(__a) _lowerCAmelCase : int = self.decoder(__a) if not return_dict: return (dec,) return DecoderOutput(sample=__a) @apply_forward_hook def snake_case__ ( self, __a, __a = True): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: _lowerCAmelCase : int = [self._decode(__a).sample for z_slice in z.split(1)] _lowerCAmelCase : Tuple = torch.cat(__a) else: _lowerCAmelCase : int = self._decode(__a).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__a) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = min(a.shape[2], b.shape[2], __a) for y in range(__a): _lowerCAmelCase : Any = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = min(a.shape[3], b.shape[3], __a) for x in range(__a): _lowerCAmelCase : Any = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def snake_case__ ( self, __a, __a = True): '''simple docstring''' _lowerCAmelCase : Dict = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) _lowerCAmelCase : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor) _lowerCAmelCase : Tuple = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _lowerCAmelCase : str = [] for i in range(0, x.shape[2], __a): _lowerCAmelCase : List[str] = [] for j in range(0, x.shape[3], __a): _lowerCAmelCase : str = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _lowerCAmelCase : Union[str, Any] = self.encoder(__a) _lowerCAmelCase : List[str] = self.quant_conv(__a) row.append(__a) rows.append(__a) _lowerCAmelCase : Dict = [] for i, row in enumerate(__a): _lowerCAmelCase : Union[str, Any] = [] for j, tile in enumerate(__a): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCAmelCase : Optional[Any] = self.blend_v(rows[i - 1][j], __a, __a) if j > 0: _lowerCAmelCase : Union[str, Any] = self.blend_h(row[j - 1], __a, __a) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__a, dim=3)) _lowerCAmelCase : Union[str, Any] = torch.cat(__a, dim=2) _lowerCAmelCase : Any = DiagonalGaussianDistribution(__a) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__a) def snake_case__ ( self, __a, __a = True): '''simple docstring''' _lowerCAmelCase : List[Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) _lowerCAmelCase : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor) _lowerCAmelCase : Optional[Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _lowerCAmelCase : Tuple = [] for i in range(0, z.shape[2], __a): _lowerCAmelCase : Tuple = [] for j in range(0, z.shape[3], __a): _lowerCAmelCase : Optional[Any] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _lowerCAmelCase : List[str] = self.post_quant_conv(__a) _lowerCAmelCase : Union[str, Any] = self.decoder(__a) row.append(__a) rows.append(__a) _lowerCAmelCase : str = [] for i, row in enumerate(__a): _lowerCAmelCase : Any = [] for j, tile in enumerate(__a): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCAmelCase : Optional[int] = self.blend_v(rows[i - 1][j], __a, __a) if j > 0: _lowerCAmelCase : Dict = self.blend_h(row[j - 1], __a, __a) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__a, dim=3)) _lowerCAmelCase : Any = torch.cat(__a, dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=__a) def snake_case__ ( self, __a, __a = False, __a = True, __a = None, ): '''simple docstring''' _lowerCAmelCase : Tuple = sample _lowerCAmelCase : Any = self.encode(__a).latent_dist if sample_posterior: _lowerCAmelCase : int = posterior.sample(generator=__a) else: _lowerCAmelCase : List[str] = posterior.mode() _lowerCAmelCase : str = self.decode(__a).sample if not return_dict: return (dec,) return DecoderOutput(sample=__a)
300
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCAmelCase_ ( a): lowerCamelCase__ = 'Wav2Vec2FeatureExtractor' lowerCamelCase__ = 'AutoTokenizer' def __init__( self, __a, __a): '''simple docstring''' super().__init__(__a, __a) _lowerCAmelCase : Union[str, Any] = self.feature_extractor _lowerCAmelCase : List[str] = False @classmethod def snake_case__ ( cls, __a, **__a): '''simple docstring''' try: return super().from_pretrained(__a, **__a) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: ", __a, ) _lowerCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(__a, **__a) _lowerCAmelCase : List[str] = WavaVecaCTCTokenizer.from_pretrained(__a, **__a) return cls(feature_extractor=__a, tokenizer=__a) def __call__( self, *__a, **__a): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__a, **__a) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") _lowerCAmelCase : Union[str, Any] = kwargs.pop("raw_speech") else: _lowerCAmelCase : Tuple = kwargs.pop("audio", __a) _lowerCAmelCase : int = kwargs.pop("sampling_rate", __a) _lowerCAmelCase : str = kwargs.pop("text", __a) if len(__a) > 0: _lowerCAmelCase : str = args[0] _lowerCAmelCase : Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: _lowerCAmelCase : Dict = self.feature_extractor(__a, *__a, sampling_rate=__a, **__a) if text is not None: _lowerCAmelCase : List[str] = self.tokenizer(__a, **__a) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase : str = encodings["input_ids"] return inputs def snake_case__ ( self, *__a, **__a): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*__a, **__a) _lowerCAmelCase : Optional[Any] = kwargs.pop("input_features", __a) _lowerCAmelCase : Any = kwargs.pop("labels", __a) if len(__a) > 0: _lowerCAmelCase : str = args[0] _lowerCAmelCase : List[str] = args[1:] if input_features is not None: _lowerCAmelCase : List[Any] = self.feature_extractor.pad(__a, *__a, **__a) if labels is not None: _lowerCAmelCase : Any = self.tokenizer.pad(__a, **__a) if labels is None: return input_features elif input_features is None: return labels else: _lowerCAmelCase : str = labels["input_ids"] return input_features def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*__a, **__a) @contextmanager def snake_case__ ( self): '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[Any] = self.tokenizer yield _lowerCAmelCase : Union[str, Any] = self.feature_extractor _lowerCAmelCase : Any = False
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _snake_case = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _snake_case = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _snake_case = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string", id="token"), id="sequence"), id="references"), }), codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"], reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def snake_case__ ( self, __a, __a, __a=4, __a=False): '''simple docstring''' _lowerCAmelCase : List[Any] = compute_bleu( reference_corpus=__a, translation_corpus=__a, max_order=__a, smooth=__a) ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
300
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Optional[Any] = seq_length _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : str = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : int = range_bbox def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # convert bbox to numpy since TF does not support item assignment _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : List[Any] = bbox[i, j, 3] _lowerCAmelCase : str = bbox[i, j, 1] _lowerCAmelCase : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : Dict = bbox[i, j, 2] _lowerCAmelCase : int = bbox[i, j, 0] _lowerCAmelCase : Optional[int] = t _lowerCAmelCase : Any = tf.convert_to_tensor(__a) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Dict = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : List[str] = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = TFLayoutLMModel(config=__a) _lowerCAmelCase : Any = model(__a, __a, attention_mask=__a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, __a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, __a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Any = TFLayoutLMForMaskedLM(config=__a) _lowerCAmelCase : int = model(__a, __a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = self.num_labels _lowerCAmelCase : Dict = TFLayoutLMForSequenceClassification(config=__a) _lowerCAmelCase : Optional[int] = model(__a, __a, attention_mask=__a, token_type_ids=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : List[str] = TFLayoutLMForTokenClassification(config=__a) _lowerCAmelCase : List[Any] = model(__a, __a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = TFLayoutLMForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = model(__a, __a, attention_mask=__a, token_type_ids=__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = config_and_inputs _lowerCAmelCase : Optional[int] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = 10 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFLayoutLMModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFLayoutLMModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip("Onnx compliancy broke with TF 2.10") def snake_case__ ( self): '''simple docstring''' pass def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowerCAmelCase : Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowerCAmelCase : str = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowerCAmelCase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowerCAmelCase : List[Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : str = model(input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a) # test the sequence output on [0, :3, :3] _lowerCAmelCase : List[Any] = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], __a, atol=1E-3)) # test the pooled output on [1, :3] _lowerCAmelCase : Dict = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], __a, atol=1E-3)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : int = model( input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=tf.convert_to_tensor([1, 1]), ) # test whether we get a loss as a scalar _lowerCAmelCase : Dict = outputs.loss _lowerCAmelCase : str = (2,) self.assertEqual(loss.shape, __a) # test the shape of the logits _lowerCAmelCase : int = outputs.logits _lowerCAmelCase : int = (2, 2) self.assertEqual(logits.shape, __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : Tuple = model( input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=__a) # test the shape of the logits _lowerCAmelCase : int = outputs.logits _lowerCAmelCase : Optional[int] = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape, __a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased") _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowerCAmelCase : str = model(input_ids=__a, bbox=__a, attention_mask=__a, token_type_ids=__a) # test the shape of the logits _lowerCAmelCase : List[Any] = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape, __a) self.assertEqual(outputs.end_logits.shape, __a)
300
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _snake_case = "\nHuman: <<task>>\n\nAssistant: " _snake_case = "huggingface-tools/default-prompts" _snake_case = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="run" ): '''simple docstring''' if prompt_or_repo_id is None: _lowerCAmelCase : str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCamelCase ) is not None: return prompt_or_repo_id _lowerCAmelCase : Dict = cached_file( _lowerCamelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
300
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class UpperCAmelCase_ ( a): def __init__( self, __a=None, __a=None, *__a, **__a): '''simple docstring''' super().__init__(*__a, **__a) if config is None: assert isinstance(self.model, __a), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) _lowerCAmelCase : Tuple = self.model.config else: _lowerCAmelCase : List[Any] = config _lowerCAmelCase : Dict = data_args _lowerCAmelCase : List[str] = self.config.tgt_vocab_size if isinstance(self.config, __a) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" " padding..") if self.args.label_smoothing == 0: _lowerCAmelCase : int = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _lowerCAmelCase : str = label_smoothed_nll_loss def snake_case__ ( self, __a): '''simple docstring''' if self.optimizer is None: _lowerCAmelCase : Optional[Any] = ["bias", "LayerNorm.weight"] _lowerCAmelCase : int = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] _lowerCAmelCase : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _lowerCAmelCase : List[Any] = Adafactor _lowerCAmelCase : List[str] = {"scale_parameter": False, "relative_step": False} else: _lowerCAmelCase : str = AdamW _lowerCAmelCase : int = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } _lowerCAmelCase : Any = self.args.learning_rate if self.sharded_ddp: _lowerCAmelCase : Dict = OSS( params=__a, optim=__a, **__a, ) else: _lowerCAmelCase : Union[str, Any] = optimizer_cls(__a, **__a) if self.lr_scheduler is None: _lowerCAmelCase : Dict = self._get_lr_scheduler(__a) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.") def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _lowerCAmelCase : List[Any] = schedule_func(self.optimizer) elif self.args.lr_scheduler == "constant_w_warmup": _lowerCAmelCase : List[Any] = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps) else: _lowerCAmelCase : Any = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=__a) return scheduler def snake_case__ ( self): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset) ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _lowerCAmelCase : List[Any] = model(**__a, use_cache=__a)[0] _lowerCAmelCase : Tuple = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1)) else: # compute usual loss via models _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model(**__a, labels=__a, use_cache=__a)[:2] else: # compute label smoothed loss _lowerCAmelCase : str = model(**__a, use_cache=__a)[0] _lowerCAmelCase : Any = torch.nn.functional.log_softmax(__a, dim=-1) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.loss_fn(__a, __a, self.args.label_smoothing, ignore_index=self.config.pad_token_id) return loss, logits def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : str = inputs.pop("labels") _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self._compute_loss(__a, __a, __a) return loss def snake_case__ ( self, __a, __a, __a, __a = None, ): '''simple docstring''' _lowerCAmelCase : Any = self._prepare_inputs(__a) _lowerCAmelCase : str = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _lowerCAmelCase : Any = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **__a, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _lowerCAmelCase : Dict = self._pad_tensors_to_max_len(__a, gen_kwargs["max_length"]) _lowerCAmelCase : Union[str, Any] = inputs.pop("labels") with torch.no_grad(): # compute loss on predict data _lowerCAmelCase , _lowerCAmelCase : Any = self._compute_loss(__a, __a, __a) _lowerCAmelCase : str = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _lowerCAmelCase : Tuple = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _lowerCAmelCase : Union[str, Any] = self._pad_tensors_to_max_len(__a, gen_kwargs["max_length"]) return (loss, logits, labels) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f" padded to `max_length`={max_length}") _lowerCAmelCase : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device) _lowerCAmelCase : int = tensor return padded_tensor
300
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
1
import math import qiskit def A ( _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = 1 ): '''simple docstring''' if ( isinstance(_lowerCamelCase , _lowerCamelCase ) or isinstance(_lowerCamelCase , _lowerCamelCase ) or isinstance(_lowerCamelCase , _lowerCamelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(_lowerCamelCase ) != input_a) or (math.floor(_lowerCamelCase ) != input_a) or (math.floor(_lowerCamelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers _lowerCAmelCase : List[Any] = qiskit.QuantumRegister(4 , "qr" ) _lowerCAmelCase : Dict = qiskit.ClassicalRegister(2 , "cr" ) # list the entries _lowerCAmelCase : Any = [input_a, input_a, carry_in] _lowerCAmelCase : List[str] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_lowerCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowerCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowerCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _lowerCamelCase ) # measure the last two qbits _lowerCAmelCase : Tuple = qiskit.Aer.get_backend("aer_simulator" ) _lowerCAmelCase : Dict = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1_000 ) return job.result().get_counts(_lowerCamelCase ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
300
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def A ( _lowerCamelCase ): '''simple docstring''' def is_in_circle(_lowerCamelCase , _lowerCamelCase ) -> bool: _lowerCAmelCase : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _lowerCAmelCase : Any = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. _lowerCAmelCase : Tuple = proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 , _lowerCamelCase = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(_lowerCamelCase , _lowerCamelCase ) ) for _ in range(_lowerCamelCase ) ) * (max_value - min_value) def A ( _lowerCamelCase , _lowerCamelCase = 0.0 , _lowerCamelCase = 1.0 ): '''simple docstring''' def identity_function(_lowerCamelCase ) -> float: return x _lowerCAmelCase : Union[str, Any] = area_under_curve_estimator( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("******************" ) def A ( _lowerCamelCase ): '''simple docstring''' def function_to_integrate(_lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) _lowerCAmelCase : List[Any] = area_under_curve_estimator( _lowerCamelCase , _lowerCamelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
300
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'sew-d' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a=2, __a=512, __a=256, __a=True, __a=True, __a=("p2c", "c2p"), __a="layer_norm", __a="gelu_python", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.1, __a=0.02, __a=1E-7, __a=1E-5, __a="group", __a="gelu", __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), __a=False, __a=128, __a=16, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a="mean", __a=False, __a=False, __a=256, __a=0, __a=1, __a=2, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : str = feat_extract_norm _lowerCAmelCase : List[str] = feat_extract_activation _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : Tuple = conv_bias _lowerCAmelCase : Tuple = num_conv_pos_embeddings _lowerCAmelCase : Union[str, Any] = num_conv_pos_embedding_groups _lowerCAmelCase : Optional[int] = len(self.conv_dim) _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : Optional[Any] = squeeze_factor _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : int = position_buckets _lowerCAmelCase : str = share_att_key _lowerCAmelCase : Optional[int] = relative_attention _lowerCAmelCase : List[Any] = norm_rel_ebd _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = hidden_dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : Optional[int] = feat_proj_dropout _lowerCAmelCase : List[str] = final_dropout _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = feature_layer_norm_eps _lowerCAmelCase : str = initializer_range _lowerCAmelCase : int = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : Dict = mask_time_prob _lowerCAmelCase : Tuple = mask_time_length _lowerCAmelCase : Any = mask_time_min_masks _lowerCAmelCase : Union[str, Any] = mask_feature_prob _lowerCAmelCase : Tuple = mask_feature_length _lowerCAmelCase : Tuple = mask_feature_min_masks # ctc loss _lowerCAmelCase : Union[str, Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # sequence classification _lowerCAmelCase : List[str] = use_weighted_layer_sum _lowerCAmelCase : Dict = classifier_proj_size @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
1
import cmath import math def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = math.radians(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = math.radians(_lowerCamelCase ) # Convert voltage and current to rectangular form _lowerCAmelCase : Tuple = cmath.rect(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = cmath.rect(_lowerCamelCase , _lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} _snake_case = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } _snake_case = { "abeja/gpt-neox-japanese-2.7b": 2048, } def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: _lowerCAmelCase : Any = json.loads(f.read() ) _lowerCAmelCase : List[str] = collections.OrderedDict() _lowerCAmelCase : Tuple = collections.OrderedDict() _lowerCAmelCase : List[str] = collections.OrderedDict() with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: _lowerCAmelCase : List[Any] = f.readlines() _lowerCAmelCase : Optional[int] = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[Any] = b _lowerCAmelCase : str = idx for wd in b: _lowerCAmelCase : Dict = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self, __a, __a, __a="<|endoftext|>", __a="<|endoftext|>", __a="<|startoftext|>", __a="<|endoftext|>", __a=False, **__a, ): '''simple docstring''' super().__init__( unk_token=__a, pad_token=__a, bos_token=__a, eos_token=__a, do_clean_text=__a, **__a, ) if not os.path.isfile(__a): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(__a): raise ValueError( f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") _lowerCAmelCase : Dict = do_clean_text _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = load_vocab_and_emoji(__a, __a) _lowerCAmelCase : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji) @property def snake_case__ ( self): '''simple docstring''' return len(self.raw_vocab) def snake_case__ ( self): '''simple docstring''' return dict(self.raw_vocab, **self.added_tokens_encoder) def snake_case__ ( self, __a): '''simple docstring''' return self.subword_tokenizer.tokenize(__a, clean=self.do_clean_text) def snake_case__ ( self, __a): '''simple docstring''' return self.vocab.get(__a, self.vocab.get(self.unk_token)) def snake_case__ ( self, __a): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = "".join(__a).strip() return out_string def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a, add_special_tokens=__a) + [self.eos_token_id]) if len(__a) > self.model_max_length: _lowerCAmelCase : Optional[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 0 if os.path.isdir(__a): _lowerCAmelCase : Any = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : List[Any] = os.path.join( __a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: _lowerCAmelCase : Optional[Any] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) _lowerCAmelCase : Any = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__a, "w", encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!") _lowerCAmelCase : Optional[Any] = token_index writer.write(",".join(__a) + "\n") index += 1 with open(__a, "w", encoding="utf-8") as writer: json.dump(self.emoji, __a) return vocab_file, emoji_file class UpperCAmelCase_ ( a): def __init__( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = vocab # same as swe _lowerCAmelCase : int = ids_to_tokens # same as bpe _lowerCAmelCase : Union[str, Any] = emoji _lowerCAmelCase : int = np.max([len(__a) for w in self.vocab.keys()]) _lowerCAmelCase : Dict = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") _lowerCAmelCase : Optional[Any] = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") _lowerCAmelCase : List[Any] = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") _lowerCAmelCase : List[str] = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") _lowerCAmelCase : List[Any] = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") _lowerCAmelCase : List[Any] = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") _lowerCAmelCase : List[str] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" _lowerCAmelCase : List[Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" _lowerCAmelCase : Tuple = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self): '''simple docstring''' return len(self.ids_to_tokens) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.content_repattera.sub("<URL>", __a) _lowerCAmelCase : int = self.content_repattera.sub("<EMAIL>", __a) _lowerCAmelCase : Tuple = self.content_repattera.sub("<TEL>", __a) _lowerCAmelCase : Optional[int] = self.content_repattera.sub("<DATE>", __a) _lowerCAmelCase : Dict = self.content_repattera.sub("<DATE>", __a) _lowerCAmelCase : str = self.content_repattera.sub("<PRICE>", __a) _lowerCAmelCase : str = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: _lowerCAmelCase : Tuple = content.replace("<BLOCK><BLOCK>", "<BLOCK>") return content def snake_case__ ( self, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Optional[Any] = text.replace(" ", "<SP>") _lowerCAmelCase : Tuple = text.replace(" ", "<SP>") _lowerCAmelCase : Tuple = text.replace("\r\n", "<BR>") _lowerCAmelCase : Optional[int] = text.replace("\n", "<BR>") _lowerCAmelCase : Optional[int] = text.replace("\r", "<BR>") _lowerCAmelCase : List[Any] = text.replace("\t", "<TAB>") _lowerCAmelCase : Tuple = text.replace("—", "ー") _lowerCAmelCase : Dict = text.replace("−", "ー") for k, v in self.emoji["emoji"].items(): if k in text: _lowerCAmelCase : Union[str, Any] = text.replace(__a, __a) if clean: _lowerCAmelCase : Optional[Any] = self.clean_text(__a) def check_simbol(__a): _lowerCAmelCase : List[str] = x.encode() if len(__a) == 1 and len(__a) == 2: _lowerCAmelCase : Any = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC2_A1 and c <= 0XC2_BF) or (c >= 0XC7_80 and c <= 0XC7_83) or (c >= 0XCA_B9 and c <= 0XCB_BF) or (c >= 0XCC_80 and c <= 0XCD_A2) ): return True return False def checkuae(__a): _lowerCAmelCase : Union[str, Any] = x.encode() if len(__a) == 1 and len(__a) == 3: _lowerCAmelCase : int = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE2_80_80 and c <= 0XE2_B0_7F: return True return False _lowerCAmelCase : int = 0 _lowerCAmelCase : List[str] = [] while pos < len(__a): _lowerCAmelCase : Dict = min(len(__a), pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 _lowerCAmelCase : Union[str, Any] = [] # (token_id, token, pos) for e in range(__a, __a, -1): _lowerCAmelCase : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a) > 2: _lowerCAmelCase : List[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(__a) > 0: # the smallest token_id is adopted _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = sorted(__a, key=lambda __a: x[0])[0] result.append(__a) _lowerCAmelCase : Tuple = e else: _lowerCAmelCase : Tuple = pos + 1 _lowerCAmelCase : Optional[int] = text[pos:end] if check_simbol(__a): result.append("<KIGOU>") elif checkuae(__a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) _lowerCAmelCase : Any = end return result def snake_case__ ( self, __a, __a="\n"): '''simple docstring''' _lowerCAmelCase : Any = [] _lowerCAmelCase : int = [] _lowerCAmelCase : str = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(__a) > 0: words.append(bytearray(__a).decode("utf-8", errors="replace")) _lowerCAmelCase : Tuple = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(__a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(__a) if len(__a) > 0: words.append(bytearray(__a).decode("utf-8", errors="replace")) _lowerCAmelCase : Optional[int] = "".join(__a) return text
300
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _lowerCAmelCase : Dict = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Dict = in_proj_weight[ : encoder_config.hidden_size, : ] _lowerCAmelCase : Any = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _lowerCAmelCase : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = dct.pop(_lowerCamelCase ) _lowerCAmelCase : List[Any] = val def A ( _lowerCamelCase ): '''simple docstring''' if "handwritten" in checkpoint_url: _lowerCAmelCase : List[str] = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCAmelCase : Union[str, Any] = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" _lowerCAmelCase : str = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCamelCase ) _lowerCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _lowerCAmelCase : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder _lowerCAmelCase : Dict = 1_024 _lowerCAmelCase : Optional[int] = 4_096 _lowerCAmelCase : Union[str, Any] = 24 _lowerCAmelCase : int = 16 _lowerCAmelCase : int = 1_024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Any = "relu" _lowerCAmelCase : int = 1_024 _lowerCAmelCase : Any = True _lowerCAmelCase : Dict = False _lowerCAmelCase : List[Any] = False # load HuggingFace model _lowerCAmelCase : List[Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ) _lowerCAmelCase : str = TrOCRForCausalLM(_lowerCamelCase ) _lowerCAmelCase : Any = VisionEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) model.eval() # load state_dict of original model, rename some keys _lowerCAmelCase : Dict = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" , check_hash=_lowerCamelCase )["model"] _lowerCAmelCase : Any = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _lowerCAmelCase : Tuple = state_dict.pop(_lowerCamelCase ) if key.startswith("decoder" ) and "output_projection" not in key: _lowerCAmelCase : str = val else: _lowerCAmelCase : Optional[int] = val # load state dict model.load_state_dict(_lowerCamelCase ) # Check outputs on an image _lowerCAmelCase : List[str] = ViTImageProcessor(size=encoder_config.image_size ) _lowerCAmelCase : List[str] = RobertaTokenizer.from_pretrained("roberta-large" ) _lowerCAmelCase : int = TrOCRProcessor(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : str = processor(images=prepare_img(_lowerCamelCase ) , return_tensors="pt" ).pixel_values # verify logits _lowerCAmelCase : Any = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _lowerCAmelCase : Optional[int] = model(pixel_values=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ) _lowerCAmelCase : List[Any] = outputs.logits _lowerCAmelCase : Tuple = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: _lowerCAmelCase : Optional[Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: _lowerCAmelCase : int = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: _lowerCAmelCase : List[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: _lowerCAmelCase : str = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _snake_case = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=2, __a=3, __a=4, __a=2, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=36, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=6, __a=6, __a=3, __a=4, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : Tuple = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : int = type_vocab_size _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Union[str, Any] = coordinate_size _lowerCAmelCase : Union[str, Any] = shape_size _lowerCAmelCase : int = num_labels _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : Union[str, Any] = scope _lowerCAmelCase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase : Any = text_seq_length _lowerCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase : int = self.text_seq_length + self.image_seq_length def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) _lowerCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) _lowerCAmelCase : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : List[Any] = bbox[i, j, 3] _lowerCAmelCase : Union[str, Any] = bbox[i, j, 1] _lowerCAmelCase : List[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : Optional[Any] = bbox[i, j, 2] _lowerCAmelCase : List[str] = bbox[i, j, 0] _lowerCAmelCase : List[str] = tmp_coordinate _lowerCAmelCase : List[Any] = tf.constant(__a) _lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.text_seq_length]) _lowerCAmelCase : Tuple = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) _lowerCAmelCase : Tuple = None _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) _lowerCAmelCase : Dict = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = TFLayoutLMvaModel(config=__a) # text + image _lowerCAmelCase : Dict = model(__a, pixel_values=__a, training=__a) _lowerCAmelCase : Union[str, Any] = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, training=__a, ) _lowerCAmelCase : Optional[Any] = model(__a, bbox=__a, pixel_values=__a, training=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # text only _lowerCAmelCase : Dict = model(__a, training=__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size)) # image only _lowerCAmelCase : Tuple = model({"pixel_values": pixel_values}, training=__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = self.num_labels _lowerCAmelCase : Dict = TFLayoutLMvaForSequenceClassification(config=__a) _lowerCAmelCase : Optional[int] = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, labels=__a, training=__a, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = self.num_labels _lowerCAmelCase : List[Any] = TFLayoutLMvaForTokenClassification(config=__a) _lowerCAmelCase : Optional[int] = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, labels=__a, training=__a, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : int = TFLayoutLMvaForQuestionAnswering(config=__a) _lowerCAmelCase : Optional[int] = model( __a, bbox=__a, pixel_values=__a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, training=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : str = config_and_inputs _lowerCAmelCase : str = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' return True def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : int = copy.deepcopy(__a) if model_class in get_values(__a): _lowerCAmelCase : Any = { k: tf.tile(tf.expand_dims(__a, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(__a, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a): _lowerCAmelCase : int = tf.ones(self.model_tester.batch_size, dtype=tf.intaa) elif model_class in get_values(__a): _lowerCAmelCase : Union[str, Any] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) _lowerCAmelCase : Optional[int] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) elif model_class in get_values(__a): _lowerCAmelCase : List[str] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) elif model_class in get_values(__a): _lowerCAmelCase : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.intaa) return inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = TFLayoutLMvaModelTester(self) _lowerCAmelCase : Optional[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(__a) if getattr(__a, "hf_compute_loss", __a): # The number of elements in the loss should be the same as the number of elements in the label _lowerCAmelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=__a)[0] ] _lowerCAmelCase : Optional[int] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _lowerCAmelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : Optional[int] = prepared_for_class.pop("input_ids") _lowerCAmelCase : int = model(__a, **__a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss when we mask some positions _lowerCAmelCase : List[str] = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : Optional[int] = prepared_for_class.pop("input_ids") if "labels" in prepared_for_class: _lowerCAmelCase : str = prepared_for_class["labels"].numpy() if len(labels.shape) > 1 and labels.shape[1] != 1: _lowerCAmelCase : Any = -100 _lowerCAmelCase : Optional[int] = tf.convert_to_tensor(__a) _lowerCAmelCase : Tuple = model(__a, **__a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) self.assertTrue(not np.any(np.isnan(loss.numpy()))) # Test that model correctly compute the loss with a dict _lowerCAmelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) _lowerCAmelCase : Dict = model(__a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss with a tuple _lowerCAmelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy(), __a, return_labels=__a) # Get keys that were added with the _prepare_for_class function _lowerCAmelCase : Optional[Any] = prepared_for_class.keys() - inputs_dict.keys() _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call).parameters _lowerCAmelCase : Union[str, Any] = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple _lowerCAmelCase : Optional[Any] = {0: "input_ids"} for label_key in label_keys: _lowerCAmelCase : Dict = signature_names.index(__a) _lowerCAmelCase : Tuple = label_key _lowerCAmelCase : Tuple = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple _lowerCAmelCase : Optional[int] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: _lowerCAmelCase : Any = prepared_for_class[value] _lowerCAmelCase : Union[str, Any] = tuple(__a) # Send to model _lowerCAmelCase : List[str] = model(tuple_input[:-1])[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Any = type self.model_tester.create_and_check_model(__a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __a, __a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __a, __a, __a, __a, __a, __a, __a) def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __a, __a, __a, __a, __a, __a, __a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFLayoutLMvaModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__a) if is_vision_available() else None @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base") _lowerCAmelCase : List[str] = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : List[Any] = image_processor(images=__a, return_tensors="tf").pixel_values _lowerCAmelCase : int = tf.constant([[1, 2]]) _lowerCAmelCase : List[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]), axis=0) # forward pass _lowerCAmelCase : Dict = model(input_ids=__a, bbox=__a, pixel_values=__a, training=__a) # verify the logits _lowerCAmelCase : Tuple = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape, __a) _lowerCAmelCase : List[str] = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]]) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], __a, atol=1E-4))
300
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = {"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
1
from __future__ import annotations _snake_case = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _snake_case = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = len(_lowerCamelCase ) for i in range(_lowerCamelCase ): _lowerCAmelCase : float = -1 for j in range(i + 1 , _lowerCamelCase ): if arr[i] < arr[j]: _lowerCAmelCase : Optional[int] = arr[j] break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for i, outer in enumerate(_lowerCamelCase ): _lowerCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCAmelCase : str = inner break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = len(_lowerCamelCase ) _lowerCAmelCase : list[float] = [] _lowerCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(_lowerCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCAmelCase : List[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _snake_case = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if dataset.ndim != value_array.ndim: _lowerCAmelCase : List[Any] = ( "Wrong input data's dimensions... " F"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(_lowerCamelCase ) try: if dataset.shape[1] != value_array.shape[1]: _lowerCAmelCase : Any = ( "Wrong input data's shape... " F"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(_lowerCamelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: _lowerCAmelCase : Dict = ( "Input data have different datatype... " F"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(_lowerCamelCase ) _lowerCAmelCase : List[str] = [] for value in value_array: _lowerCAmelCase : int = euclidean(_lowerCamelCase , dataset[0] ) _lowerCAmelCase : Optional[int] = dataset[0].tolist() for dataset_value in dataset[1:]: _lowerCAmelCase : Optional[Any] = euclidean(_lowerCamelCase , _lowerCamelCase ) if dist > temp_dist: _lowerCAmelCase : str = temp_dist _lowerCAmelCase : Optional[Any] = dataset_value.tolist() answer.append([vector, dist] ) return answer def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return np.dot(_lowerCamelCase , _lowerCamelCase ) / (norm(_lowerCamelCase ) * norm(_lowerCamelCase )) if __name__ == "__main__": import doctest doctest.testmod()
300
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } _snake_case = { "bert-base-uncased": 512, "bert-large-uncased": 512, "bert-base-cased": 512, "bert-large-cased": 512, "bert-base-multilingual-uncased": 512, "bert-base-multilingual-cased": 512, "bert-base-chinese": 512, "bert-base-german-cased": 512, "bert-large-uncased-whole-word-masking": 512, "bert-large-cased-whole-word-masking": 512, "bert-large-uncased-whole-word-masking-finetuned-squad": 512, "bert-large-cased-whole-word-masking-finetuned-squad": 512, "bert-base-cased-finetuned-mrpc": 512, "bert-base-german-dbmdz-cased": 512, "bert-base-german-dbmdz-uncased": 512, "TurkuNLP/bert-base-finnish-cased-v1": 512, "TurkuNLP/bert-base-finnish-uncased-v1": 512, "wietsedv/bert-base-dutch-cased": 512, } _snake_case = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = BertTokenizer def __init__( self, __a=None, __a=None, __a=True, __a="[UNK]", __a="[SEP]", __a="[PAD]", __a="[CLS]", __a="[MASK]", __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( __a, tokenizer_file=__a, do_lower_case=__a, unk_token=__a, sep_token=__a, pad_token=__a, cls_token=__a, mask_token=__a, tokenize_chinese_chars=__a, strip_accents=__a, **__a, ) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", __a) != do_lower_case or normalizer_state.get("strip_accents", __a) != strip_accents or normalizer_state.get("handle_chinese_chars", __a) != tokenize_chinese_chars ): _lowerCAmelCase : int = getattr(__a, normalizer_state.pop("type")) _lowerCAmelCase : Optional[Any] = do_lower_case _lowerCAmelCase : Dict = strip_accents _lowerCAmelCase : Any = tokenize_chinese_chars _lowerCAmelCase : List[Any] = normalizer_class(**__a) _lowerCAmelCase : Any = do_lower_case def snake_case__ ( self, __a, __a=None): '''simple docstring''' _lowerCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Dict = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(__a, name=__a) return tuple(__a)
300
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def A ( _lowerCamelCase , _lowerCamelCase="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) as f: _lowerCAmelCase : int = json.load(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Union[str, Any] = [] for key, info in class_info.items(): _lowerCAmelCase : Union[str, Any] = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCamelCase ) ) _lowerCAmelCase : Dict = thing_ids _lowerCAmelCase : str = class_names return metadata class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=30, __a=400, __a=None, __a=True, __a=True, __a=[0.5, 0.5, 0.5], __a=[0.5, 0.5, 0.5], __a=10, __a=False, __a=255, __a="shi-labs/oneformer_demo", __a="ade20k_panoptic.json", __a=10, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : List[str] = min_resolution _lowerCAmelCase : Optional[Any] = max_resolution _lowerCAmelCase : List[Any] = do_resize _lowerCAmelCase : int = {"shortest_edge": 32, "longest_edge": 1333} if size is None else size _lowerCAmelCase : List[str] = do_normalize _lowerCAmelCase : Optional[Any] = image_mean _lowerCAmelCase : List[Any] = image_std _lowerCAmelCase : Optional[int] = class_info_file _lowerCAmelCase : Any = prepare_metadata(__a, __a) _lowerCAmelCase : Optional[int] = num_text _lowerCAmelCase : int = repo_path # for the post_process_functions _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : Tuple = 10 _lowerCAmelCase : Tuple = 10 _lowerCAmelCase : str = 3 _lowerCAmelCase : int = 4 _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : Tuple = do_reduce_labels _lowerCAmelCase : Optional[int] = ignore_index def snake_case__ ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def snake_case__ ( self, __a, __a=False): '''simple docstring''' if not batched: _lowerCAmelCase : Optional[int] = image_inputs[0] if isinstance(__a, Image.Image): _lowerCAmelCase , _lowerCAmelCase : Tuple = image.size else: _lowerCAmelCase , _lowerCAmelCase : Any = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase : str = int(self.size["shortest_edge"] * h / w) _lowerCAmelCase : int = self.size["shortest_edge"] elif w > h: _lowerCAmelCase : str = self.size["shortest_edge"] _lowerCAmelCase : int = int(self.size["shortest_edge"] * w / h) else: _lowerCAmelCase : Tuple = self.size["shortest_edge"] _lowerCAmelCase : Tuple = self.size["shortest_edge"] else: _lowerCAmelCase : Optional[Any] = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _lowerCAmelCase : List[str] = max(__a, key=lambda __a: item[0])[0] _lowerCAmelCase : List[Any] = max(__a, key=lambda __a: item[1])[1] return expected_height, expected_width def snake_case__ ( self): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1)), masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)), ) @require_torch @require_vision class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowerCamelCase__ = image_processing_class def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = OneFormerImageProcessorTester(self) @property def snake_case__ ( self): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a, "image_mean")) self.assertTrue(hasattr(__a, "image_std")) self.assertTrue(hasattr(__a, "do_normalize")) self.assertTrue(hasattr(__a, "do_resize")) self.assertTrue(hasattr(__a, "size")) self.assertTrue(hasattr(__a, "ignore_index")) self.assertTrue(hasattr(__a, "class_info_file")) self.assertTrue(hasattr(__a, "num_text")) self.assertTrue(hasattr(__a, "repo_path")) self.assertTrue(hasattr(__a, "metadata")) self.assertTrue(hasattr(__a, "do_reduce_labels")) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processing_tester, equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a, Image.Image) # Test not batched input _lowerCAmelCase : str = image_processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processing_tester.get_expected_values(__a) self.assertEqual( encoded_images.shape, (1, self.image_processing_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase , _lowerCAmelCase : List[str] = self.image_processing_tester.get_expected_values(__a, batched=__a) _lowerCAmelCase : Tuple = image_processor( __a, ["semantic"] * len(__a), return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processing_tester, equal_resolution=__a, numpify=__a) for image in image_inputs: self.assertIsInstance(__a, np.ndarray) # Test not batched input _lowerCAmelCase : List[str] = image_processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.image_processing_tester.get_expected_values(__a) self.assertEqual( encoded_images.shape, (1, self.image_processing_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase , _lowerCAmelCase : Any = self.image_processing_tester.get_expected_values(__a, batched=__a) _lowerCAmelCase : int = image_processor( __a, ["semantic"] * len(__a), return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : str = prepare_image_inputs(self.image_processing_tester, equal_resolution=__a, torchify=__a) for image in image_inputs: self.assertIsInstance(__a, torch.Tensor) # Test not batched input _lowerCAmelCase : int = image_processor(image_inputs[0], ["semantic"], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Dict = self.image_processing_tester.get_expected_values(__a) self.assertEqual( encoded_images.shape, (1, self.image_processing_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.image_processing_tester.get_expected_values(__a, batched=__a) _lowerCAmelCase : Tuple = image_processor( __a, ["semantic"] * len(__a), return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self, __a=False, __a=False, __a="np"): '''simple docstring''' _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict) # prepare image and target _lowerCAmelCase : List[str] = self.image_processing_tester.num_labels _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : int = prepare_image_inputs(self.image_processing_tester, equal_resolution=__a) if with_segmentation_maps: _lowerCAmelCase : Optional[int] = num_labels if is_instance_map: _lowerCAmelCase : Tuple = list(range(__a)) * 2 _lowerCAmelCase : Tuple = dict(enumerate(__a)) _lowerCAmelCase : Union[str, Any] = [ np.random.randint(0, high * 2, (img.size[1], img.size[0])).astype(np.uinta) for img in image_inputs ] if segmentation_type == "pil": _lowerCAmelCase : str = [Image.fromarray(__a) for annotation in annotations] _lowerCAmelCase : List[Any] = image_processor( __a, ["semantic"] * len(__a), __a, return_tensors="pt", instance_id_to_semantic_id=__a, pad_and_return_pixel_mask=__a, ) return inputs def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' def common(__a=False, __a=None): _lowerCAmelCase : Optional[int] = self.comm_get_image_processor_inputs( with_segmentation_maps=__a, is_instance_map=__a, segmentation_type=__a) _lowerCAmelCase : Optional[int] = inputs["mask_labels"] _lowerCAmelCase : Optional[int] = inputs["class_labels"] _lowerCAmelCase : Union[str, Any] = inputs["pixel_values"] _lowerCAmelCase : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(__a, __a, __a): self.assertEqual(mask_label.shape[0], class_label.shape[0]) # this ensure padding has happened self.assertEqual(mask_label.shape[1:], pixel_values.shape[2:]) self.assertEqual(len(__a), self.image_processing_tester.num_text) common() common(is_instance_map=__a) common(is_instance_map=__a, segmentation_type="pil") common(is_instance_map=__a, segmentation_type="pil") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = np.zeros((20, 50)) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Dict = binary_mask_to_rle(__a) self.assertEqual(len(__a), 4) self.assertEqual(rle[0], 21) self.assertEqual(rle[1], 45) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes, max_seq_length=77, task_seq_length=77, class_info_file="ade20k_panoptic.json", num_text=self.image_processing_tester.num_text, repo_path="shi-labs/oneformer_demo", ) _lowerCAmelCase : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCAmelCase : Optional[Any] = fature_extractor.post_process_semantic_segmentation(__a) self.assertEqual(len(__a), self.image_processing_tester.batch_size) self.assertEqual( segmentation[0].shape, ( self.image_processing_tester.height, self.image_processing_tester.width, ), ) _lowerCAmelCase : Tuple = [(1, 4) for i in range(self.image_processing_tester.batch_size)] _lowerCAmelCase : Optional[int] = fature_extractor.post_process_semantic_segmentation(__a, target_sizes=__a) self.assertEqual(segmentation[0].shape, target_sizes[0]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes, max_seq_length=77, task_seq_length=77, class_info_file="ade20k_panoptic.json", num_text=self.image_processing_tester.num_text, repo_path="shi-labs/oneformer_demo", ) _lowerCAmelCase : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCAmelCase : List[str] = image_processor.post_process_instance_segmentation(__a, threshold=0) self.assertTrue(len(__a) == self.image_processing_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), __a) self.assertEqual( el["segmentation"].shape, (self.image_processing_tester.height, self.image_processing_tester.width)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes, max_seq_length=77, task_seq_length=77, class_info_file="ade20k_panoptic.json", num_text=self.image_processing_tester.num_text, repo_path="shi-labs/oneformer_demo", ) _lowerCAmelCase : Dict = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCAmelCase : Union[str, Any] = image_processor.post_process_panoptic_segmentation(__a, threshold=0) self.assertTrue(len(__a) == self.image_processing_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), __a) self.assertEqual( el["segmentation"].shape, (self.image_processing_tester.height, self.image_processing_tester.width))
300
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCAmelCase_ : def __init__( self, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : List[Any] = 13 _lowerCAmelCase : List[str] = 7 _lowerCAmelCase : Any = True _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : str = 99 _lowerCAmelCase : Union[str, Any] = 32 _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : Tuple = 4 _lowerCAmelCase : Dict = 37 _lowerCAmelCase : List[str] = "gelu" _lowerCAmelCase : int = 0.1 _lowerCAmelCase : Tuple = 0.1 _lowerCAmelCase : Optional[Any] = 512 _lowerCAmelCase : Dict = 16 _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : Tuple = 0.02 _lowerCAmelCase : Optional[Any] = 3 _lowerCAmelCase : List[Any] = 4 _lowerCAmelCase : str = None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: _lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : int = None _lowerCAmelCase : str = None _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, pad_token_id=1, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): '''simple docstring''' ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : str = self.prepare_config_and_inputs() _lowerCAmelCase : List[str] = True _lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = TFEsmModel(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} _lowerCAmelCase : Optional[Any] = model(__a) _lowerCAmelCase : Any = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[int] = TFEsmModel(config=__a) _lowerCAmelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } _lowerCAmelCase : Optional[int] = model(__a) _lowerCAmelCase : List[str] = [input_ids, input_mask] _lowerCAmelCase : Any = model(__a, encoder_hidden_states=__a) # Also check the case where encoder outputs are not passed _lowerCAmelCase : List[str] = model(__a, attention_mask=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFEsmForMaskedLM(config=__a) _lowerCAmelCase : Any = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Any = TFEsmForTokenClassification(config=__a) _lowerCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} _lowerCAmelCase : Tuple = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFEsmModelTester(self) _lowerCAmelCase : Tuple = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFEsmModel.from_pretrained(__a) self.assertIsNotNone(__a) @unittest.skip("Protein models do not support embedding resizing.") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip("Protein models do not support embedding resizing.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(__a) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _lowerCAmelCase : Union[str, Any] = model.get_bias() assert isinstance(__a, __a) for k, v in name.items(): assert isinstance(__a, tf.Variable) else: _lowerCAmelCase : str = model.get_output_embeddings() assert x is None _lowerCAmelCase : Tuple = model.get_bias() assert name is None @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D") _lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Optional[Any] = model(__a)[0] _lowerCAmelCase : int = [1, 6, 33] self.assertEqual(list(output.numpy().shape), __a) # compare the actual values for a slice. _lowerCAmelCase : Optional[Any] = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-2)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D") _lowerCAmelCase : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) _lowerCAmelCase : Tuple = model(__a)[0] # compare the actual values for a slice. _lowerCAmelCase : Optional[Any] = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4))
300
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata _snake_case = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class UpperCAmelCase_ ( tr.AbstractTransform): def __init__( self, __a = " "): '''simple docstring''' _lowerCAmelCase : int = sentence_delimiter def snake_case__ ( self, __a): '''simple docstring''' return list(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for sent_idx, sentence in enumerate(__a): chars.extend(self.process_string(__a)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__a) - 1: chars.append(self.sentence_delimiter) return chars _snake_case = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _snake_case = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _snake_case = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _snake_case = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" _snake_case = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), }), codebase_urls=["https://github.com/jitsi/jiwer/"], reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ], ) def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __a, __a, truth_transform=__a, hypothesis_transform=__a, )["wer"] _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Optional[Any] = 0 for prediction, reference in zip(__a, __a): _lowerCAmelCase : Dict = jiwer.compute_measures( __a, __a, truth_transform=__a, hypothesis_transform=__a, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
300
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = KandinskyVaaControlnetPipeline lowerCamelCase__ = ['image_embeds', 'negative_image_embeds', 'hint'] lowerCamelCase__ = ['image_embeds', 'negative_image_embeds', 'hint'] lowerCamelCase__ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ = False @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return 32 @property def snake_case__ ( self): '''simple docstring''' return self.time_input_dim @property def snake_case__ ( self): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case__ ( self): '''simple docstring''' return 100 @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : int = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _lowerCAmelCase : Tuple = UNetaDConditionModel(**__a) return model @property def snake_case__ ( self): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case__ ( self): '''simple docstring''' torch.manual_seed(0) _lowerCAmelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs) return model def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1000, beta_schedule="linear", beta_start=0.00_085, beta_end=0.012, clip_sample=__a, set_alpha_to_one=__a, steps_offset=1, prediction_type="epsilon", thresholding=__a, ) _lowerCAmelCase : Optional[int] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case__ ( self, __a, __a=0): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(__a)).to(__a) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( __a) # create hint _lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(__a)).to(__a) if str(__a).startswith("mps"): _lowerCAmelCase : Optional[int] = torch.manual_seed(__a) else: _lowerCAmelCase : Dict = torch.Generator(device=__a).manual_seed(__a) _lowerCAmelCase : Any = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "cpu" _lowerCAmelCase : List[Any] = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = self.pipeline_class(**__a) _lowerCAmelCase : List[str] = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(__a)) _lowerCAmelCase : Any = output.images _lowerCAmelCase : Any = pipe( **self.get_dummy_inputs(__a), return_dict=__a, )[0] _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Union[str, Any] = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy") _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png") _lowerCAmelCase : Union[str, Any] = torch.from_numpy(np.array(__a)).float() / 255.0 _lowerCAmelCase : List[Any] = hint.permute(2, 0, 1).unsqueeze(0) _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.floataa) pipe_prior.to(__a) _lowerCAmelCase : str = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.floataa) _lowerCAmelCase : Any = pipeline.to(__a) pipeline.set_progress_bar_config(disable=__a) _lowerCAmelCase : Optional[int] = "A robot, 4k photo" _lowerCAmelCase : List[str] = torch.Generator(device="cuda").manual_seed(0) _lowerCAmelCase , _lowerCAmelCase : List[Any] = pipe_prior( __a, generator=__a, num_inference_steps=5, negative_prompt="", ).to_tuple() _lowerCAmelCase : str = torch.Generator(device="cuda").manual_seed(0) _lowerCAmelCase : List[Any] = pipeline( image_embeds=__a, negative_image_embeds=__a, hint=__a, generator=__a, num_inference_steps=100, output_type="np", ) _lowerCAmelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__a, __a)
300
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
1
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = 0.00 _lowerCAmelCase : List[str] = 0 for resistor in resistors: if resistor <= 0: _lowerCAmelCase : Tuple = F"Resistor at index {index} has a negative or zero value!" raise ValueError(_lowerCamelCase ) first_sum += 1 / float(_lowerCamelCase ) index += 1 return 1 / first_sum def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = 0.00 _lowerCAmelCase : str = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowerCAmelCase : Dict = F"Resistor at index {index} has a negative value!" raise ValueError(_lowerCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
300
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : int = "" else: _lowerCAmelCase : Union[str, Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) _lowerCAmelCase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCAmelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def A ( ): '''simple docstring''' _lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTConfig() _lowerCAmelCase : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = int(vit_name[-12:-10] ) _lowerCAmelCase : str = int(vit_name[-9:-6] ) else: _lowerCAmelCase : List[str] = 1_000 _lowerCAmelCase : int = "huggingface/label-files" _lowerCAmelCase : Dict = "imagenet-1k-id2label.json" _lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCAmelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Dict = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = int(vit_name[-6:-4] ) _lowerCAmelCase : List[str] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCAmelCase : str = 192 _lowerCAmelCase : Union[str, Any] = 768 _lowerCAmelCase : str = 12 _lowerCAmelCase : Any = 3 elif vit_name[9:].startswith("small" ): _lowerCAmelCase : Any = 384 _lowerCAmelCase : Any = 1_536 _lowerCAmelCase : List[str] = 12 _lowerCAmelCase : Tuple = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCAmelCase : Optional[Any] = 768 _lowerCAmelCase : str = 2_304 _lowerCAmelCase : Optional[int] = 8 _lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCAmelCase : Optional[Any] = 1_024 _lowerCAmelCase : List[str] = 4_096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : int = 16 elif vit_name[4:].startswith("huge" ): _lowerCAmelCase : Union[str, Any] = 1_280 _lowerCAmelCase : Optional[int] = 5_120 _lowerCAmelCase : Optional[Any] = 32 _lowerCAmelCase : str = 16 # load original model from timm _lowerCAmelCase : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCAmelCase : Optional[int] = ViTModel(_lowerCamelCase ).eval() else: _lowerCAmelCase : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCAmelCase : Tuple = DeiTImageProcessor(size=config.image_size ) else: _lowerCAmelCase : Dict = ViTImageProcessor(size=config.image_size ) _lowerCAmelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCAmelCase : Union[str, Any] = encoding["pixel_values"] _lowerCAmelCase : List[str] = model(_lowerCamelCase ) if base_model: _lowerCAmelCase : List[str] = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: _lowerCAmelCase : Any = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
300
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase_ ( a): def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : str = data def __iter__( self): '''simple docstring''' for element in self.data: yield element def A ( _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : Any = Accelerator(even_batches=_lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' if iterable: _lowerCAmelCase : List[str] = DummyIterableDataset(torch.as_tensor(range(_lowerCamelCase ) ) ) else: _lowerCAmelCase : Union[str, Any] = TensorDataset(torch.as_tensor(range(_lowerCamelCase ) ) ) _lowerCAmelCase : List[str] = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : Tuple = accelerator.prepare(_lowerCamelCase ) return dl def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : str = create_dataloader(accelerator=_lowerCamelCase , dataset_size=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : str = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = create_accelerator(even_batches=_lowerCamelCase ) verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def A ( ): '''simple docstring''' _lowerCAmelCase : str = create_accelerator(even_batches=_lowerCamelCase ) _lowerCAmelCase : int = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : Any = accelerator.prepare(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) _lowerCAmelCase : Tuple = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_lowerCamelCase ): _lowerCAmelCase : str = ddp_model(batch[0].float() ) _lowerCAmelCase : List[Any] = output.sum() loss.backward() batch_idxs.append(_lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def A ( _lowerCamelCase ): '''simple docstring''' with warnings.catch_warnings(record=_lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def A ( ): '''simple docstring''' _lowerCAmelCase : str = True _lowerCAmelCase : int = False _lowerCAmelCase : Any = create_accelerator(even_batches=_lowerCamelCase ) _lowerCAmelCase : List[Any] = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : Union[str, Any] = accelerator.prepare(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) _lowerCAmelCase : Optional[Any] = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase ): _lowerCAmelCase : Any = train_dl.batch_sampler.even_batches _lowerCAmelCase : Union[str, Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = True _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Optional[int] = create_accelerator(even_batches=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : str = accelerator.prepare(_lowerCamelCase ) create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCamelCase ) _lowerCAmelCase : str = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase ): _lowerCAmelCase : int = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def A ( ): '''simple docstring''' _lowerCAmelCase : int = create_accelerator() _lowerCAmelCase : str = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : Union[str, Any] = accelerator.prepare(_lowerCamelCase ) create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCamelCase ) with warnings.catch_warnings(record=_lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase ): pass assert issubclass(w[-1].category , _lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) _lowerCAmelCase : List[str] = accelerator.state.distributed_type _lowerCAmelCase : Optional[int] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_state if __name__ == "__main__": main()
300
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
300
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
1
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=30, __a=2, __a=3, __a=True, __a=True, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=10, __a=0.02, __a=None, ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : str = patch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : Any = is_training _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Any = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Optional[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : List[str] = num_patches + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTMSNModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[int] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.type_sequence_label_size _lowerCAmelCase : Optional[int] = ViTMSNForImageClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : List[str] = model(__a, labels=__a) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}") print("Labels: {labels}") self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Tuple = ViTMSNForImageClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCAmelCase : Optional[int] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ViTMSNModelTester(self) _lowerCAmelCase : Optional[int] = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(__a) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a, nn.Linear)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(__a) _lowerCAmelCase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = ViTMSNModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small") if is_vision_available() else None @slow def snake_case__ ( self): '''simple docstring''' torch.manual_seed(2) _lowerCAmelCase : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small").to(__a) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : Dict = image_processor(images=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(**__a) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : str = torch.tensor([-0.0_803, -0.4_454, -0.2_375]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3], __a, atol=1E-4))
300
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
1
def A ( _lowerCamelCase = 1_000_000 ): '''simple docstring''' _lowerCAmelCase : List[Any] = set(range(3 , _lowerCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _lowerCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowerCamelCase , _lowerCamelCase ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_lowerCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowerCamelCase , limit + 1 , _lowerCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
300
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
1
import os import sys import unittest _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _snake_case = os.path.join("tests", "models", "bert", "test_modeling_bert.py") _snake_case = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_test_to_tester_mapping(__a) _lowerCAmelCase : Tuple = get_test_to_tester_mapping(__a) _lowerCAmelCase : Union[str, Any] = {"BertModelTest": "BertModelTester"} _lowerCAmelCase : Union[str, Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__a), __a) self.assertEqual(get_test_info.to_json(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = get_model_to_test_mapping(__a) _lowerCAmelCase : int = get_model_to_test_mapping(__a) _lowerCAmelCase : str = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _lowerCAmelCase : str = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__a), __a) self.assertEqual(get_test_info.to_json(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = get_model_to_tester_mapping(__a) _lowerCAmelCase : Tuple = get_model_to_tester_mapping(__a) _lowerCAmelCase : Tuple = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _lowerCAmelCase : Any = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__a), __a) self.assertEqual(get_test_info.to_json(__a), __a)
300
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _snake_case = "base_with_context" def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) _lowerCAmelCase : str = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase : List[str] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : Optional[Any] = ly_weight["attention"] _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) _lowerCAmelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase : Any = weights[F"layers_{lyr_num}"] _lowerCAmelCase : List[Any] = ly_weight["attention"] _lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCAmelCase : List[Any] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : str = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : str = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCAmelCase : Tuple = ly_weight["self_attention"] _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : Dict = ly_weight["MultiHeadDotProductAttention_0"] _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCAmelCase : Tuple = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) _lowerCAmelCase : Dict = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] _lowerCAmelCase : List[Any] = os.path.join(args.checkpoint_path , ".." , "config.gin" ) _lowerCAmelCase : List[str] = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) _lowerCAmelCase : Dict = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) _lowerCAmelCase : Any = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCAmelCase : List[Any] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCAmelCase : Optional[Any] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowerCAmelCase : Optional[int] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _lowerCamelCase ) _lowerCAmelCase : List[Any] = load_decoder(ta_checkpoint["target"]["decoder"] , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) _lowerCAmelCase : str = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) _snake_case = parser.parse_args() main(args)
300
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
1
from __future__ import annotations _snake_case = tuple[int, int, int] _snake_case = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _snake_case = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- _snake_case = "EGZWVONAHDCLFQMSIPJBYUKXTR" _snake_case = "FOBHMDKEXQNRAULPGSJVTYICZW" _snake_case = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- _snake_case = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- _snake_case = "RMDJXFUWGISLHVTCQNKYPBEZOA" _snake_case = "SGLCPQWZHKXAREONTFBVIYJUDM" _snake_case = "HVSICLTYKQUBXDWAJZOMFGPREN" _snake_case = "RZWQHFMVDBKICJLNTUXAGYPSOE" _snake_case = "LFKIJODBEGAMQPXVUHYSTCZRWN" _snake_case = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (unique_rotsel := len(set(_lowerCamelCase ) )) < 3: _lowerCAmelCase : Any = F"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(_lowerCamelCase ) # Checks if rotor positions are valid _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = rotpos if not 0 < rotorposa <= len(_lowerCamelCase ): _lowerCAmelCase : List[str] = F"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(_lowerCamelCase ) if not 0 < rotorposa <= len(_lowerCamelCase ): _lowerCAmelCase : str = F"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_lowerCamelCase ) if not 0 < rotorposa <= len(_lowerCamelCase ): _lowerCAmelCase : List[Any] = F"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_lowerCamelCase ) # Validates string and returns dict _lowerCAmelCase : Any = _plugboard(_lowerCamelCase ) return rotpos, rotsel, pbdict def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : int = F"Plugboard setting isn't type string ({type(_lowerCamelCase )})" raise TypeError(_lowerCamelCase ) elif len(_lowerCamelCase ) % 2 != 0: _lowerCAmelCase : Union[str, Any] = F"Odd number of symbols ({len(_lowerCamelCase )})" raise Exception(_lowerCamelCase ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique _lowerCAmelCase : List[Any] = set() for i in pbstring: if i not in abc: _lowerCAmelCase : str = F"'{i}' not in list of symbols" raise Exception(_lowerCamelCase ) elif i in tmppbl: _lowerCAmelCase : Tuple = F"Duplicate symbol ({i})" raise Exception(_lowerCamelCase ) else: tmppbl.add(_lowerCamelCase ) del tmppbl # Created the dictionary _lowerCAmelCase : List[str] = {} for j in range(0 , len(_lowerCamelCase ) - 1 , 2 ): _lowerCAmelCase : Optional[Any] = pbstring[j + 1] _lowerCAmelCase : Any = pbstring[j] return pb def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = (rotora, rotora, rotora) , _lowerCamelCase = "" , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = text.upper() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = _validator( _lowerCamelCase , _lowerCamelCase , plugb.upper() ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = rotor_position _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _lowerCAmelCase : str = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _lowerCAmelCase : Optional[Any] = plugboard[symbol] # rotor ra -------------------------- _lowerCAmelCase : Optional[Any] = abc.index(_lowerCamelCase ) + rotorposa _lowerCAmelCase : Tuple = rotora[index % len(_lowerCamelCase )] # rotor rb -------------------------- _lowerCAmelCase : int = abc.index(_lowerCamelCase ) + rotorposa _lowerCAmelCase : str = rotora[index % len(_lowerCamelCase )] # rotor rc -------------------------- _lowerCAmelCase : List[Any] = abc.index(_lowerCamelCase ) + rotorposa _lowerCAmelCase : Tuple = rotora[index % len(_lowerCamelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _lowerCAmelCase : Dict = reflector[symbol] # 2nd rotors _lowerCAmelCase : Union[str, Any] = abc[rotora.index(_lowerCamelCase ) - rotorposa] _lowerCAmelCase : str = abc[rotora.index(_lowerCamelCase ) - rotorposa] _lowerCAmelCase : str = abc[rotora.index(_lowerCamelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: _lowerCAmelCase : Union[str, Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowerCamelCase ): _lowerCAmelCase : List[Any] = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase ): _lowerCAmelCase : int = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": _snake_case = "This is my Python script that emulates the Enigma machine from WWII." _snake_case = (1, 1, 1) _snake_case = "pictures" _snake_case = (rotora, rotora, rotora) _snake_case = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__) class UpperCAmelCase_ ( a): lowerCamelCase__ = field(default=a , metadata={'help': 'Whether to use SortishSampler or not.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = super().to_dict() for k, v in d.items(): if isinstance(__a, __a): _lowerCAmelCase : str = v.to_dict() return d
300
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.0_5457_1817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCAmelCase : Optional[int] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : Dict = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
300
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if "." in tensor_name: _lowerCAmelCase : Optional[Any] = tensor_name.split("." ) for split in splits[:-1]: _lowerCAmelCase : int = getattr(_lowerCamelCase , _lowerCamelCase ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) _lowerCAmelCase : Any = new_module _lowerCAmelCase : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"{module} does not have a parameter or a buffer named {tensor_name}." ) _lowerCAmelCase : str = tensor_name in module._buffers _lowerCAmelCase : List[str] = getattr(_lowerCamelCase , _lowerCamelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : Union[str, Any] = False if is_buffer or not is_bitsandbytes_available(): _lowerCAmelCase : List[str] = False _lowerCAmelCase : Any = False else: _lowerCAmelCase : Tuple = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _lowerCAmelCase : Any = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _lowerCAmelCase : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _lowerCAmelCase : Any = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): _lowerCAmelCase : Any = value.to("cpu" ) if value.dtype == torch.inta: _lowerCAmelCase : Optional[Any] = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: _lowerCAmelCase : List[str] = torch.tensor(_lowerCamelCase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowerCamelCase ) and fpaa_statistics is None: _lowerCAmelCase : Any = new_value.T _lowerCAmelCase : List[str] = old_value.__dict__ if is_abit: _lowerCAmelCase : Dict = bnb.nn.IntaParams(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) elif is_abit: _lowerCAmelCase : Dict = bnb.nn.Paramsabit(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(_lowerCamelCase ) ) else: if value is None: _lowerCAmelCase : List[Any] = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): _lowerCAmelCase : List[str] = value.to(_lowerCamelCase ) else: _lowerCAmelCase : int = torch.tensor(_lowerCamelCase , device=_lowerCamelCase ) if is_buffer: _lowerCAmelCase : Any = new_value else: _lowerCAmelCase : Any = nn.Parameter(_lowerCamelCase , requires_grad=old_value.requires_grad ) _lowerCAmelCase : Dict = new_value def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: _lowerCAmelCase : Tuple = [] current_key_name.append(_lowerCamelCase ) if (isinstance(_lowerCamelCase , nn.Linear ) or isinstance(_lowerCamelCase , _lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(_lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase , _lowerCAmelCase : int = module.weight.shape else: _lowerCAmelCase : Dict = module.in_features _lowerCAmelCase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": _lowerCAmelCase : Dict = bnb.nn.LinearabitLt( _lowerCamelCase , _lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _lowerCAmelCase : int = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _lowerCAmelCase : str = bnb.nn.Linearabit( _lowerCamelCase , _lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _lowerCAmelCase : Union[str, Any] = True # Store the module class in case we need to transpose the weight later _lowerCAmelCase : Any = type(_lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowerCamelCase ) if len(list(module.children() ) ) > 0: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_been_replaced=_lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert _lowerCAmelCase , _lowerCAmelCase : List[Any] = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def A ( *_lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , _lowerCamelCase , ) return replace_with_bnb_linear(*_lowerCamelCase , **_lowerCamelCase ) def A ( *_lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , _lowerCamelCase , ) return set_module_quantized_tensor_to_device(*_lowerCamelCase , **_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = deepcopy(_lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _lowerCAmelCase : str = find_tied_parameters(_lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowerCAmelCase : Optional[int] = sum(_lowerCamelCase , [] ) _lowerCAmelCase : List[Any] = len(_lowerCamelCase ) > 0 # Check if it is a base model _lowerCAmelCase : List[str] = not hasattr(_lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowerCAmelCase : Any = list(model.named_children() ) _lowerCAmelCase : str = [list_modules[-1][0]] # add last module together with tied weights _lowerCAmelCase : Tuple = set(_lowerCamelCase ) - set(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = list(set(_lowerCamelCase ) ) + list(_lowerCamelCase ) # remove ".weight" from the keys _lowerCAmelCase : int = [".weight", ".bias"] _lowerCAmelCase : List[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowerCAmelCase : Optional[Any] = name.replace(_lowerCamelCase , "" ) filtered_module_names.append(_lowerCamelCase ) return filtered_module_names
300
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
1
from collections.abc import Callable import numpy as np def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : List[Any] = np.zeros((n + 1,) ) _lowerCAmelCase : Dict = ya _lowerCAmelCase : List[Any] = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : str = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) _lowerCAmelCase : List[Any] = y[k] + ( (step_size / 2) * (ode_func(_lowerCamelCase , y[k] ) + ode_func(x + step_size , _lowerCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
300
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( _lowerCamelCase = "laptop" ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = F"https://www.amazon.in/laptop/s?k={product}" _lowerCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCAmelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCAmelCase : Any = item.ha.text _lowerCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCAmelCase : Any = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCAmelCase : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCAmelCase : str = "Not available" try: _lowerCAmelCase : Optional[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCAmelCase : Optional[Any] = "" try: _lowerCAmelCase : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCAmelCase : Optional[Any] = float("nan" ) except AttributeError: pass _lowerCAmelCase : Any = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCAmelCase : List[str] = " " _lowerCAmelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
300
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( a): def __init__( self, __a, __a): '''simple docstring''' super().__init__() self.register_modules(unet=__a, scheduler=__a) @torch.no_grad() def __call__( self, __a = 1, __a = 100, __a = None, __a = None, __a = True, ): '''simple docstring''' if audio_length_in_s is None: _lowerCAmelCase : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate _lowerCAmelCase : List[Any] = audio_length_in_s * self.unet.config.sample_rate _lowerCAmelCase : Dict = 2 ** len(self.unet.up_blocks) if sample_size < 3 * down_scale_factor: raise ValueError( f"{audio_length_in_s} is too small. Make sure it's bigger or equal to" f" {3 * down_scale_factor / self.unet.config.sample_rate}.") _lowerCAmelCase : Optional[int] = int(__a) if sample_size % down_scale_factor != 0: _lowerCAmelCase : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" " process.") _lowerCAmelCase : Union[str, Any] = int(__a) _lowerCAmelCase : Dict = next(iter(self.unet.parameters())).dtype _lowerCAmelCase : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a, __a) and len(__a) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__a)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators.") _lowerCAmelCase : List[str] = randn_tensor(__a, generator=__a, device=self.device, dtype=__a) # set step values self.scheduler.set_timesteps(__a, device=audio.device) _lowerCAmelCase : int = self.scheduler.timesteps.to(__a) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _lowerCAmelCase : Union[str, Any] = self.unet(__a, __a).sample # 2. compute previous image: x_t -> t_t-1 _lowerCAmelCase : str = self.scheduler.step(__a, __a, __a).prev_sample _lowerCAmelCase : Tuple = audio.clamp(-1, 1).float().cpu().numpy() _lowerCAmelCase : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a)
300
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase_ : def __init__( self, __a, __a=2, __a=True, __a=False, __a=10, __a=3, __a=32 * 8, __a=32 * 8, __a=4, __a=64, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[str] = is_training _lowerCAmelCase : str = use_auxiliary_loss _lowerCAmelCase : Optional[Any] = num_queries _lowerCAmelCase : int = num_channels _lowerCAmelCase : Optional[Any] = min_size _lowerCAmelCase : int = max_size _lowerCAmelCase : str = num_labels _lowerCAmelCase : int = hidden_dim _lowerCAmelCase : Dict = hidden_dim def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( __a) _lowerCAmelCase : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size], device=__a) _lowerCAmelCase : Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=__a) > 0.5 ).float() _lowerCAmelCase : Dict = (torch.rand((self.batch_size, self.num_labels), device=__a) > 0.5).long() _lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = MaskaFormerConfig( hidden_size=self.hidden_dim, ) _lowerCAmelCase : List[Any] = self.num_queries _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : int = [1, 1, 1, 1] _lowerCAmelCase : Any = self.num_channels _lowerCAmelCase : List[Any] = 64 _lowerCAmelCase : Optional[Any] = 128 _lowerCAmelCase : Union[str, Any] = self.hidden_dim _lowerCAmelCase : int = self.hidden_dim _lowerCAmelCase : List[str] = self.hidden_dim return config def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Tuple = output.encoder_hidden_states _lowerCAmelCase : Dict = output.pixel_decoder_hidden_states _lowerCAmelCase : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__a), len(config.backbone_config.depths)) self.parent.assertTrue(len(__a), len(config.backbone_config.depths)) self.parent.assertTrue(len(__a), config.decoder_layers) def snake_case__ ( self, __a, __a, __a, __a=False): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : Optional[Any] = MaskaFormerModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model(pixel_values=__a, pixel_mask=__a) _lowerCAmelCase : Optional[Any] = model(__a, output_hidden_states=__a) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(__a, __a) def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = MaskaFormerForUniversalSegmentation(config=__a) model.to(__a) model.eval() def comm_check_on_output(__a): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(pixel_values=__a, pixel_mask=__a) _lowerCAmelCase : List[str] = model(__a) comm_check_on_output(__a) _lowerCAmelCase : Union[str, Any] = model( pixel_values=__a, pixel_mask=__a, mask_labels=__a, class_labels=__a) comm_check_on_output(__a) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape, torch.Size([1])) @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase__ = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = MaskaFormerModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, has_text_modality=__a) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a, **__a, output_hidden_states=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__a) @unittest.skip(reason="Mask2Former does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings") def snake_case__ ( self): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(__a) _lowerCAmelCase : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : List[str] = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _lowerCAmelCase : Tuple = MaskaFormerModel.from_pretrained(__a) self.assertIsNotNone(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = (self.model_tester.min_size,) * 2 _lowerCAmelCase : Dict = { "pixel_values": torch.randn((2, 3, *size), device=__a), "mask_labels": torch.randn((2, 10, *size), device=__a), "class_labels": torch.zeros(2, 10, device=__a).long(), } _lowerCAmelCase : Any = self.model_tester.get_config() _lowerCAmelCase : Optional[int] = MaskaFormerForUniversalSegmentation(__a).to(__a) _lowerCAmelCase : Optional[int] = model(**__a) self.assertTrue(outputs.loss is not None) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a, **__a, output_hidden_states=__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(__a).to(__a) _lowerCAmelCase : Any = model(**__a, output_attentions=__a) self.assertTrue(outputs.attentions is not None) def snake_case__ ( self): '''simple docstring''' if not self.model_tester.is_training: return _lowerCAmelCase : Union[str, Any] = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : List[str] = model_class(__a) model.to(__a) model.train() _lowerCAmelCase : Any = model(__a, mask_labels=__a, class_labels=__a).loss loss.backward() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : List[Any] = True _lowerCAmelCase : int = model_class(__a).to(__a) model.train() _lowerCAmelCase : Optional[int] = model(__a, mask_labels=__a, class_labels=__a) _lowerCAmelCase : Optional[int] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCAmelCase : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _lowerCAmelCase : str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCAmelCase : Dict = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__a) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) _snake_case = 1e-4 def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def snake_case__ ( self): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(__a) _lowerCAmelCase : Optional[int] = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="pt").to(__a) _lowerCAmelCase : Optional[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(__a, (1, 3, 384, 384)) with torch.no_grad(): _lowerCAmelCase : int = model(**__a) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]]).to(__a) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], __a, atol=__a)) _lowerCAmelCase : Any = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]]).to(__a) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], __a, atol=__a)) _lowerCAmelCase : str = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]]).to(__a) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], __a, atol=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(__a).eval() _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Union[str, Any] = prepare_img() _lowerCAmelCase : Any = image_processor(__a, return_tensors="pt").to(__a) _lowerCAmelCase : int = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(__a, (1, 3, 384, 384)) with torch.no_grad(): _lowerCAmelCase : Tuple = model(**__a) # masks_queries_logits _lowerCAmelCase : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) _lowerCAmelCase : Dict = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] _lowerCAmelCase : List[Any] = torch.tensor(__a).to(__a) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], __a, atol=__a)) # class_queries_logits _lowerCAmelCase : List[Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1)) _lowerCAmelCase : Optional[Any] = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ]).to(__a) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], __a, atol=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(__a).eval() _lowerCAmelCase : Any = self.default_image_processor _lowerCAmelCase : Dict = image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))], segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)], return_tensors="pt", ) _lowerCAmelCase : Dict = inputs["pixel_values"].to(__a) _lowerCAmelCase : List[Any] = [el.to(__a) for el in inputs["mask_labels"]] _lowerCAmelCase : str = [el.to(__a) for el in inputs["class_labels"]] with torch.no_grad(): _lowerCAmelCase : Dict = model(**__a) self.assertTrue(outputs.loss is not None)
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Dict = feat_extract_activation _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : List[Any] = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : Dict = num_conv_pos_embedding_groups _lowerCAmelCase : Any = len(self.conv_dim) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : Tuple = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : Dict = feat_proj_dropout _lowerCAmelCase : Optional[int] = final_dropout _lowerCAmelCase : Dict = layerdrop _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : int = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : int = mask_time_min_masks _lowerCAmelCase : List[Any] = mask_feature_prob _lowerCAmelCase : List[Any] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : List[str] = num_codevector_groups _lowerCAmelCase : List[Any] = contrastive_logits_temperature _lowerCAmelCase : int = feat_quantizer_dropout _lowerCAmelCase : Any = num_negatives _lowerCAmelCase : Dict = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : Tuple = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : List[str] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } _snake_case = { "gpt2": 1024, "gpt2-medium": 1024, "gpt2-large": 1024, "gpt2-xl": 1024, "distilgpt2": 1024, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] lowerCamelCase__ = GPTaTokenizer def __init__( self, __a=None, __a=None, __a=None, __a="<|endoftext|>", __a="<|endoftext|>", __a="<|endoftext|>", __a=False, **__a, ): '''simple docstring''' super().__init__( __a, __a, tokenizer_file=__a, unk_token=__a, bos_token=__a, eos_token=__a, add_prefix_space=__a, **__a, ) _lowerCAmelCase : Tuple = kwargs.pop("add_bos_token", __a) _lowerCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", __a) != add_prefix_space: _lowerCAmelCase : Optional[Any] = getattr(__a, pre_tok_state.pop("type")) _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**__a) _lowerCAmelCase : List[Any] = add_prefix_space def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words", __a) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = kwargs.get("is_split_into_words", __a) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__a, **__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[Any] = self._tokenizer.model.save(__a, name=__a) return tuple(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a, add_special_tokens=__a) + [self.eos_token_id]) if len(__a) > self.model_max_length: _lowerCAmelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids
300
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _snake_case = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" _snake_case = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" _snake_case = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), }), codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"], reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ], ) def snake_case__ ( self, __a, __a, __a=None, __a=True, __a=False): '''simple docstring''' if rouge_types is None: _lowerCAmelCase : Dict = ["rouge1", "rouge2", "rougeL", "rougeLsum"] _lowerCAmelCase : List[Any] = rouge_scorer.RougeScorer(rouge_types=__a, use_stemmer=__a) if use_aggregator: _lowerCAmelCase : List[Any] = scoring.BootstrapAggregator() else: _lowerCAmelCase : int = [] for ref, pred in zip(__a, __a): _lowerCAmelCase : int = scorer.score(__a, __a) if use_aggregator: aggregator.add_scores(__a) else: scores.append(__a) if use_aggregator: _lowerCAmelCase : List[Any] = aggregator.aggregate() else: _lowerCAmelCase : Union[str, Any] = {} for key in scores[0]: _lowerCAmelCase : List[str] = [score[key] for score in scores] return result
300
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
1
_snake_case = {} def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCAmelCase : List[str] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCAmelCase : Any = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCAmelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCAmelCase : Tuple = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCAmelCase : int = state_late + state_absent + state_ontime _lowerCAmelCase : List[str] = prizestrings return prizestrings def A ( _lowerCamelCase = 30 ): '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
300
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = {"tokenizer_file": "tokenizer.json"} _snake_case = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class UpperCAmelCase_ ( a): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ['input_ids', 'attention_mask'] lowerCamelCase__ = None def __init__( self, __a=None, __a=None, __a=None, __a="<unk>", __a="<s>", __a="</s>", __a="<pad>", __a=False, __a=False, **__a, ): '''simple docstring''' super().__init__( __a, __a, tokenizer_file=__a, unk_token=__a, bos_token=__a, eos_token=__a, pad_token=__a, add_prefix_space=__a, clean_up_tokenization_spaces=__a, **__a, ) _lowerCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", __a) != add_prefix_space: _lowerCAmelCase : List[str] = getattr(__a, pre_tok_state.pop("type")) _lowerCAmelCase : List[str] = add_prefix_space _lowerCAmelCase : Optional[int] = pre_tok_class(**__a) _lowerCAmelCase : Optional[int] = add_prefix_space def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : List[Any] = kwargs.get("is_split_into_words", __a) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs.") return super()._batch_encode_plus(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : str = kwargs.get("is_split_into_words", __a) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs.") return super()._encode_plus(*__a, **__a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : List[Any] = self._tokenizer.model.save(__a, name=__a) return tuple(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a, add_special_tokens=__a) + [self.eos_token_id]) if len(__a) > self.model_max_length: _lowerCAmelCase : Dict = input_ids[-self.model_max_length :] return input_ids
300
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") _snake_case = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _snake_case = sorted(arg_to_scheduler.keys()) _snake_case = "{" + ", ".join(arg_to_scheduler_choices) + "}" class UpperCAmelCase_ ( pl.LightningModule): def __init__( self, __a, __a=None, __a="base", __a=None, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__a) _lowerCAmelCase : Any = 0 _lowerCAmelCase : Tuple = Path(self.hparams.output_dir) _lowerCAmelCase : Tuple = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({"num_labels": num_labels} if num_labels is not None else {}), cache_dir=__a, **__a, ) else: _lowerCAmelCase : PretrainedConfig = config _lowerCAmelCase : Any = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams, __a, __a): assert hasattr(self.config, __a), f"model config doesn't have a `{p}` attribute" setattr(self.config, __a, getattr(self.hparams, __a)) if tokenizer is None: _lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=__a, ) else: _lowerCAmelCase : PreTrainedTokenizer = tokenizer _lowerCAmelCase : Any = MODEL_MODES[mode] if model is None: _lowerCAmelCase : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool(".ckpt" in self.hparams.model_name_or_path), config=self.config, cache_dir=__a, ) else: _lowerCAmelCase : Optional[int] = model def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Dict = self.model_type.from_pretrained(*__a, **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = arg_to_scheduler[self.hparams.lr_scheduler] _lowerCAmelCase : Tuple = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps()) _lowerCAmelCase : Dict = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model _lowerCAmelCase : Optional[int] = ["bias", "LayerNorm.weight"] _lowerCAmelCase : Optional[Any] = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] if self.hparams.adafactor: _lowerCAmelCase : int = Adafactor( __a, lr=self.hparams.learning_rate, scale_parameter=__a, relative_step=__a) else: _lowerCAmelCase : List[Any] = AdamW( __a, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon) _lowerCAmelCase : Optional[Any] = optimizer _lowerCAmelCase : int = self.get_lr_scheduler() return [optimizer], [scheduler] def snake_case__ ( self, __a, __a): '''simple docstring''' return self.validation_step(__a, __a) def snake_case__ ( self, __a): '''simple docstring''' return self.validation_end(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores _lowerCAmelCase : List[str] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def snake_case__ ( self, __a): '''simple docstring''' if stage == "test": _lowerCAmelCase : List[Any] = len(self.test_dataloader().dataset) else: _lowerCAmelCase : str = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=__a) _lowerCAmelCase : Tuple = len(self.train_dataloader().dataset) def snake_case__ ( self, __a, __a, __a = False): '''simple docstring''' raise NotImplementedError("You must implement this for your task") def snake_case__ ( self): '''simple docstring''' return self.train_loader def snake_case__ ( self): '''simple docstring''' return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=__a) def snake_case__ ( self): '''simple docstring''' return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=__a) def snake_case__ ( self, __a): '''simple docstring''' return os.path.join( self.hparams.data_dir, "cached_{}_{}_{}".format( __a, list(filter(__a, self.hparams.model_name_or_path.split("/"))).pop(), str(self.hparams.max_seq_length), ), ) @pl.utilities.rank_zero_only def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.output_dir.joinpath("best_tfmr") _lowerCAmelCase : Tuple = self.step_count self.model.save_pretrained(__a) self.tokenizer.save_pretrained(__a) @staticmethod def snake_case__ ( __a, __a): '''simple docstring''' parser.add_argument( "--model_name_or_path", default=__a, type=__a, required=__a, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--config_name", default="", type=__a, help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name", default=__a, type=__a, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default=str(Path(__a).parent / "test_run" / "cache"), type=__a, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--encoder_layerdrop", type=__a, help="Encoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--decoder_layerdrop", type=__a, help="Decoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--dropout", type=__a, help="Dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--attention_dropout", type=__a, help="Attention dropout probability (Optional). Goes into model.config", ) parser.add_argument("--learning_rate", default=5E-5, type=__a, help="The initial learning rate for Adam.") parser.add_argument( "--lr_scheduler", default="linear", choices=__a, metavar=__a, type=__a, help="Learning rate scheduler", ) parser.add_argument("--weight_decay", default=0.0, type=__a, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1E-8, type=__a, help="Epsilon for Adam optimizer.") parser.add_argument("--warmup_steps", default=0, type=__a, help="Linear warmup over warmup_steps.") parser.add_argument("--num_workers", default=4, type=__a, help="kwarg passed to DataLoader") parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=__a) parser.add_argument("--train_batch_size", default=32, type=__a) parser.add_argument("--eval_batch_size", default=32, type=__a) parser.add_argument("--adafactor", action="store_true") class UpperCAmelCase_ ( pl.Callback): def snake_case__ ( self, __a, __a): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class UpperCAmelCase_ ( pl.Callback): def snake_case__ ( self, __a, __a): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__a) class UpperCAmelCase_ ( pl.Callback): def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = trainer.lr_schedulers[0]["scheduler"] _lowerCAmelCase : List[str] = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(__a) def snake_case__ ( self, __a, __a): '''simple docstring''' rank_zero_info("***** Validation results *****") _lowerCAmelCase : Optional[Any] = trainer.callback_metrics # Log results for key in sorted(__a): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__a, str(metrics[key]))) def snake_case__ ( self, __a, __a): '''simple docstring''' rank_zero_info("***** Test results *****") _lowerCAmelCase : Any = trainer.callback_metrics # Log and save results to file _lowerCAmelCase : Any = os.path.join(pl_module.hparams.output_dir, "test_results.txt") with open(__a, "w") as writer: for key in sorted(__a): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__a, str(metrics[key]))) writer.write("{} = {}\n".format(__a, str(metrics[key]))) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' parser.add_argument( "--output_dir" , default=str(Path(_lowerCamelCase ).parent / "test_run" / "model_checkpoints" ) , type=_lowerCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=_lowerCamelCase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=_lowerCamelCase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=_lowerCamelCase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=_lowerCamelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=_lowerCamelCase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(_lowerCamelCase ).parent / "test_run" / "dummy-train-data" ) , type=_lowerCamelCase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[] , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ): '''simple docstring''' pl.seed_everything(args.seed ) # init model _lowerCAmelCase : str = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_lowerCamelCase ) # add custom checkpoints if checkpoint_callback is None: _lowerCAmelCase : Dict = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_lowerCamelCase ) if logging_callback is None: _lowerCAmelCase : Tuple = LoggingCallback() _lowerCAmelCase : Any = {} if args.fpaa: _lowerCAmelCase : Optional[int] = 16 if args.gpus > 1: _lowerCAmelCase : Any = "auto" _lowerCAmelCase : List[Any] = "ddp" _lowerCAmelCase : Union[str, Any] = args.accumulate_grad_batches _lowerCAmelCase : int = None _lowerCAmelCase : Optional[int] = "auto" _lowerCAmelCase : Dict = pl.Trainer.from_argparse_args( _lowerCamelCase , weights_summary=_lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_lowerCamelCase , ) if args.do_train: trainer.fit(_lowerCamelCase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
300
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _snake_case = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase_ : def __init__( self, __a, __a=16, __a=13, __a=7, __a=14, __a=10, __a=19, __a=5, __a=4, __a=True, __a=16, __a=2, __a=4, __a=4, __a="gelu", __a=0.1, __a=0.1, __a=[1, 2, 3, 4, 5], __a=25, __a=5, ): '''simple docstring''' _lowerCAmelCase : int = d_model _lowerCAmelCase : Tuple = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Optional[int] = prediction_length _lowerCAmelCase : Tuple = context_length _lowerCAmelCase : List[Any] = cardinality _lowerCAmelCase : Union[str, Any] = num_time_features _lowerCAmelCase : Any = lags_sequence _lowerCAmelCase : Optional[Any] = embedding_dimension _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : str = context_length _lowerCAmelCase : Tuple = prediction_length + label_length _lowerCAmelCase : List[Any] = label_length _lowerCAmelCase : Optional[Any] = moving_average _lowerCAmelCase : List[str] = autocorrelation_factor def snake_case__ ( self): '''simple docstring''' return AutoformerConfig( d_model=self.d_model, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, prediction_length=self.prediction_length, context_length=self.context_length, label_length=self.label_length, lags_sequence=self.lags_sequence, num_time_features=self.num_time_features, num_static_categorical_features=1, cardinality=[self.cardinality], embedding_dimension=[self.embedding_dimension], moving_average=self.moving_average, ) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Any = config.context_length + max(config.lags_sequence) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, 1], config.cardinality[0]) _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features]) _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, _past_length]) _lowerCAmelCase : str = floats_tensor([self.batch_size, _past_length]) > 0.5 # decoder inputs _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features]) _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, config.prediction_length]) _lowerCAmelCase : List[str] = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_config() _lowerCAmelCase : Dict = self.prepare_autoformer_inputs_dict(__a) return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = AutoformerModel(config=__a).to(__a).eval() _lowerCAmelCase : List[str] = model(**__a) _lowerCAmelCase : List[Any] = outputs.encoder_last_hidden_state _lowerCAmelCase : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Union[str, Any] = model.get_encoder() encoder.save_pretrained(__a) _lowerCAmelCase : Optional[int] = AutoformerEncoder.from_pretrained(__a).to(__a) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = model.create_network_inputs(**__a) _lowerCAmelCase , _lowerCAmelCase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...]) _lowerCAmelCase : Dict = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]), dim=-1, ) _lowerCAmelCase : Tuple = encoder(inputs_embeds=__a)[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3) _lowerCAmelCase : Optional[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...], dim=1) .unsqueeze(1) .repeat(1, config.prediction_length, 1) ) _lowerCAmelCase : List[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]], device=enc_input.device, ) _lowerCAmelCase : Optional[int] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros), dim=1), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) _lowerCAmelCase : Any = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean), dim=1), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : int = model.get_decoder() decoder.save_pretrained(__a) _lowerCAmelCase : Tuple = AutoformerDecoder.from_pretrained(__a).to(__a) _lowerCAmelCase : Any = decoder( trend=__a, inputs_embeds=__a, encoder_hidden_states=__a, )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3) @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCamelCase__ = (AutoformerForPrediction,) if is_torch_available() else () lowerCamelCase__ = {'feature-extraction': AutoformerModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = AutoformerModelTester(self) _lowerCAmelCase : List[str] = ConfigTester(self, config_class=__a, has_text_modality=__a) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(__a) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a) _lowerCAmelCase , _lowerCAmelCase : Any = model_class.from_pretrained(__a, output_loading_info=__a) self.assertEqual(info["missing_keys"], []) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a) @unittest.skip(reason="Model has no tokens embeddings") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = inspect.signature(getattr(__a, "forward")) # The main input is the name of the argument after `self` _lowerCAmelCase : Union[str, Any] = list(model_signature.parameters.keys())[1] self.assertEqual(AutoformerModel.main_input_name, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(__a) _lowerCAmelCase : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : int = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask") expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ]) self.assertListEqual(arg_names[: len(__a)], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[int] = getattr(self.model_tester, "seq_length", __a) _lowerCAmelCase : Union[str, Any] = getattr(self.model_tester, "decoder_seq_length", __a) _lowerCAmelCase : Tuple = getattr(self.model_tester, "encoder_seq_length", __a) _lowerCAmelCase : Optional[Any] = getattr(self.model_tester, "d_model", __a) _lowerCAmelCase : List[Any] = getattr(self.model_tester, "num_attention_heads", __a) _lowerCAmelCase : int = d_model // num_attention_heads for model_class in self.all_model_classes: _lowerCAmelCase : str = True _lowerCAmelCase : Tuple = False _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Optional[Any] = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(__a, __a)) _lowerCAmelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : List[Any] = True _lowerCAmelCase : str = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _lowerCAmelCase : Any = model(**self._prepare_for_class(__a, __a)) _lowerCAmelCase : List[Any] = outputs.encoder_attentions self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) _lowerCAmelCase : Dict = len(__a) _lowerCAmelCase : Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a, __a) # decoder attentions _lowerCAmelCase : Optional[Any] = outputs.decoder_attentions self.assertIsInstance(__a, (list, tuple)) self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # cross attentions _lowerCAmelCase : List[Any] = outputs.cross_attentions self.assertIsInstance(__a, (list, tuple)) self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # Check attention is always last and order is fine _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Tuple = True _lowerCAmelCase : Optional[int] = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _lowerCAmelCase : int = model(**self._prepare_for_class(__a, __a)) self.assertEqual(out_len + 2, len(__a)) _lowerCAmelCase : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) @is_flaky() def snake_case__ ( self): '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def A ( _lowerCamelCase="train-batch.pt" ): '''simple docstring''' _lowerCAmelCase : List[str] = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=_lowerCamelCase , repo_type="dataset" ) _lowerCAmelCase : Dict = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) return batch @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly").to(__a) _lowerCAmelCase : List[Any] = prepare_batch() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], future_values=batch["future_values"], future_time_features=batch["future_time_features"], )[0] _lowerCAmelCase : Optional[int] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size)) self.assertEqual(output.shape, __a) _lowerCAmelCase : List[str] = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]], device=__a) self.assertTrue(torch.allclose(output[0, :3, :3], __a, atol=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly").to(__a) _lowerCAmelCase : Union[str, Any] = prepare_batch("val-batch.pt") with torch.no_grad(): _lowerCAmelCase : str = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], ).encoder_last_hidden_state _lowerCAmelCase : Dict = torch.Size((64, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape, __a) _lowerCAmelCase : Any = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]], device=__a) self.assertTrue(torch.allclose(output[0, :3, :3], __a, atol=__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly").to(__a) _lowerCAmelCase : Optional[Any] = prepare_batch("val-batch.pt") with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model.generate( static_categorical_features=batch["static_categorical_features"], past_time_features=batch["past_time_features"], past_values=batch["past_values"], future_time_features=batch["future_time_features"], past_observed_mask=batch["past_observed_mask"], ) _lowerCAmelCase : Dict = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length)) self.assertEqual(outputs.sequences.shape, __a) _lowerCAmelCase : Optional[Any] = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786], device=__a) _lowerCAmelCase : Optional[int] = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -3:], __a, rtol=1E-1))
300
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _snake_case = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(a) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'rag' lowerCamelCase__ = True def __init__( self, __a=None, __a=True, __a=None, __a=None, __a=None, __a=None, __a=None, __a=" / ", __a=" // ", __a=5, __a=300, __a=768, __a=8, __a="wiki_dpr", __a="train", __a="compressed", __a=None, __a=None, __a=False, __a=False, __a=0.0, __a=True, __a=False, __a=False, __a=False, __a=True, __a=None, **__a, ): '''simple docstring''' super().__init__( bos_token_id=__a, pad_token_id=__a, eos_token_id=__a, decoder_start_token_id=__a, forced_eos_token_id=__a, is_encoder_decoder=__a, prefix=__a, vocab_size=__a, **__a, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : List[str] = kwargs.pop("question_encoder") _lowerCAmelCase : Union[str, Any] = question_encoder_config.pop("model_type") _lowerCAmelCase : int = kwargs.pop("generator") _lowerCAmelCase : Optional[Any] = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : int = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : Tuple = AutoConfig.for_model(__a, **__a) _lowerCAmelCase : List[Any] = reduce_loss _lowerCAmelCase : Any = label_smoothing _lowerCAmelCase : Optional[int] = exclude_bos_score _lowerCAmelCase : Optional[Any] = do_marginalize _lowerCAmelCase : Any = title_sep _lowerCAmelCase : Any = doc_sep _lowerCAmelCase : Optional[int] = n_docs _lowerCAmelCase : Optional[Any] = max_combined_length _lowerCAmelCase : List[str] = dataset _lowerCAmelCase : List[str] = dataset_split _lowerCAmelCase : Optional[Any] = index_name _lowerCAmelCase : Dict = retrieval_vector_size _lowerCAmelCase : Union[str, Any] = retrieval_batch_size _lowerCAmelCase : Optional[int] = passages_path _lowerCAmelCase : Dict = index_path _lowerCAmelCase : Tuple = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : str = do_deduplication _lowerCAmelCase : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator, "forced_eos_token_id", __a) @classmethod def snake_case__ ( cls, __a, __a, **__a): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__) _lowerCAmelCase : Union[str, Any] = self.question_encoder.to_dict() _lowerCAmelCase : Any = self.generator.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
300
1