code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int , snake_case : bool , snake_case : list[int] , snake_case : float )-> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , snake_case , snake_case , snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case , snake_case , snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , snake_case , snake_case , snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case , snake_case , snake_case ) , ) def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] UpperCAmelCase__ : List[str] = math.log(len(snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , snake_case , snake_case , snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
364
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
0
"""simple docstring""" import re def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> bool: '''simple docstring''' UpperCAmelCase__ : Dict = re.compile(r"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(snake_case , snake_case ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
365
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : int = "mock-s3-bucket" UpperCAmelCase__ : Any = f's3://{mock_bucket}' UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case ) assert dataset_path.startswith("s3://" ) is False UpperCAmelCase__ : str = "./local/path" UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is True UpperCAmelCase__ : str = fsspec.filesystem("file" ) UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case ) UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCAmelCase__ : int = compressed_file_paths[protocol] UpperCAmelCase__ : Any = "dataset.jsonl" UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case ) UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
298
0
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowerCAmelCase : Any = """bart""" _lowerCAmelCase : int = True @st.cache(allow_output_mutation=snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> List[str]: if LOAD_DENSE_INDEX: UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) UpperCAmelCase__ : Tuple = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) UpperCAmelCase__ : Dict = qar_model.eval() else: UpperCAmelCase__ : Dict = (None, None) if MODEL_TYPE == "bart": UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) UpperCAmelCase__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) UpperCAmelCase__ : int = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) UpperCAmelCase__ : Tuple = sas_model.eval() else: UpperCAmelCase__ : Tuple = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> str: if LOAD_DENSE_INDEX: UpperCAmelCase__ : List[Any] = faiss.StandardGpuResources() UpperCAmelCase__ : Any = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] UpperCAmelCase__ : Optional[int] = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) UpperCAmelCase__ : Union[str, Any] = faiss.IndexFlatIP(128 ) UpperCAmelCase__ : Any = faiss.index_cpu_to_gpu(snake_case , 1 , snake_case ) wikiaab_gpu_index_flat.add(snake_case ) # TODO fix for larger GPU else: UpperCAmelCase__ : Union[str, Any] = (None, None) UpperCAmelCase__ : int = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case ) def SCREAMING_SNAKE_CASE__ ( )-> Tuple: UpperCAmelCase__ : List[str] = datasets.load_dataset("eli5" , name="LFQA_reddit" ) UpperCAmelCase__ : Any = elia["train_eli5"] UpperCAmelCase__ : List[Any] = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) UpperCAmelCase__ : List[Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case ) return (elia_train, eli5_train_q_index) _lowerCAmelCase : List[Any] = load_indexes() _lowerCAmelCase : Optional[Any] = load_models() _lowerCAmelCase : Optional[int] = load_train_data() def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : str=10 )-> List[str]: UpperCAmelCase__ : str = embed_questions_for_retrieval([question] , snake_case , snake_case ) UpperCAmelCase__ : Any = eli5_train_q_index.search(snake_case , snake_case ) UpperCAmelCase__ : List[str] = [elia_train[int(snake_case )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : Tuple="wiki40b" , snake_case : Dict="dense" , snake_case : Optional[int]=10 )-> Any: if source == "none": UpperCAmelCase__ : Optional[int] = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": UpperCAmelCase__ : int = query_qa_dense_index( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) else: UpperCAmelCase__ : Any = query_es_index( snake_case , snake_case , index_name="english_wiki40b_snippets_100w" , n_results=snake_case , ) UpperCAmelCase__ : Optional[Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] UpperCAmelCase__ : str = "question: {} context: {}".format(snake_case , snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case : None), } ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[int] , snake_case : Any , snake_case : Dict=64 , snake_case : Any=256 , snake_case : Optional[Any]=False , snake_case : Optional[int]=2 , snake_case : Optional[Any]=0.95 , snake_case : Dict=0.8 )-> Optional[Any]: with torch.no_grad(): UpperCAmelCase__ : List[str] = qa_sas_generate( snake_case , snake_case , snake_case , num_answers=1 , num_beams=snake_case , min_len=snake_case , max_len=snake_case , do_sample=snake_case , temp=snake_case , top_p=snake_case , top_k=snake_case , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _lowerCAmelCase : Dict = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _lowerCAmelCase : Union[str, Any] = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowerCAmelCase : Optional[Any] = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _lowerCAmelCase : int = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _lowerCAmelCase : Union[str, Any] = st.sidebar.checkbox("""Demo options""") if demo_options: _lowerCAmelCase : str = st.sidebar.selectbox( """""", action_list, index=3, ) _lowerCAmelCase : List[str] = action_list.index(action_st) _lowerCAmelCase : int = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _lowerCAmelCase : int = show_type == """Show full text of passages""" else: _lowerCAmelCase : Optional[int] = 3 _lowerCAmelCase : Any = True _lowerCAmelCase : str = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _lowerCAmelCase : Union[str, Any] = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _lowerCAmelCase : Any = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _lowerCAmelCase : Optional[Any] = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _lowerCAmelCase : Union[str, Any] = """wiki40b""" _lowerCAmelCase : Any = """dense""" _lowerCAmelCase : Tuple = """beam""" _lowerCAmelCase : Dict = 2 _lowerCAmelCase : Any = 64 _lowerCAmelCase : Optional[int] = 256 _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Dict = st.sidebar.checkbox("""Generation options""") if generate_options: _lowerCAmelCase : str = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _lowerCAmelCase : Optional[Any] = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _lowerCAmelCase : Tuple = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _lowerCAmelCase : List[str] = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _lowerCAmelCase : int = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowerCAmelCase : str = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowerCAmelCase : int = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowerCAmelCase : Dict = None # start main text _lowerCAmelCase : Optional[Any] = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _lowerCAmelCase : Union[str, Any] = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowerCAmelCase : Optional[int] = st.text_input("""Enter your question here:""", """""") else: _lowerCAmelCase : Optional[Any] = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _lowerCAmelCase : Optional[int] = make_support(question, source=wiki_source, method="""dense""", n_results=10) _lowerCAmelCase : int = make_support(question, source=wiki_source, method="""sparse""", n_results=10) _lowerCAmelCase : Any = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowerCAmelCase : int = support_list[:10] _lowerCAmelCase : Any = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _lowerCAmelCase : Any = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowerCAmelCase : Union[str, Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _lowerCAmelCase : List[Any] = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _lowerCAmelCase : int = res[1].strip() if sec_titles == "": _lowerCAmelCase : int = """[{}]({})""".format(res[0], wiki_url) else: _lowerCAmelCase : Any = sec_titles.split(""" & """) _lowerCAmelCase : Tuple = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _lowerCAmelCase : int = find_nearest_training(question) _lowerCAmelCase : Optional[Any] = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _lowerCAmelCase : str = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _lowerCAmelCase : Union[str, Any] = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : int , snake_case__ : int , snake_case__ : List[str]=1_3 , snake_case__ : Any=3_2 , snake_case__ : Tuple=3 , snake_case__ : str=4 , snake_case__ : Optional[Any]=[1_0, 2_0, 3_0, 4_0] , snake_case__ : Any=[2, 2, 3, 2] , snake_case__ : Optional[int]=True , snake_case__ : List[Any]=True , snake_case__ : List[Any]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : str=1_0 , snake_case__ : int=0.02 , snake_case__ : Optional[int]=["stage2", "stage3", "stage4"] , snake_case__ : Optional[Any]=3 , snake_case__ : str=None , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : Optional[Any] = num_stages UpperCAmelCase__ : Union[str, Any] = hidden_sizes UpperCAmelCase__ : List[Any] = depths UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Tuple = out_features UpperCAmelCase__ : int = num_labels UpperCAmelCase__ : Dict = scope UpperCAmelCase__ : Any = num_stages def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : str = self.get_config() return config, pixel_values, labels def __a ( self : Dict ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __a ( self : str ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=snake_case__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=snake_case__ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def __a ( self : Tuple , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UperNetForSemanticSegmentation(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Any = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : List[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ ={'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = UperNetModelTester(self ) UpperCAmelCase__ : List[Any] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : int ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self : Union[str, Any] ): '''simple docstring''' return def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) UpperCAmelCase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[str] = [*signature.parameters.keys()] UpperCAmelCase__ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def __a ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def __a ( self : int ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __a ( self : str ): '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __a ( self : Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self : Optional[Any] ): '''simple docstring''' pass def __a ( self : str ): '''simple docstring''' def check_hidden_states_output(snake_case__ : str , snake_case__ : Tuple , snake_case__ : str ): UpperCAmelCase__ : Any = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : str = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Optional[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Any = _config_zero_init(snake_case__ ) UpperCAmelCase__ : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(config=snake_case__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def __a ( self : Any ): '''simple docstring''' pass @slow def __a ( self : Optional[Any] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> List[str]: '''simple docstring''' UpperCAmelCase__ : str = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) UpperCAmelCase__ : Dict = Image.open(snake_case ).convert("RGB" ) return image @require_torch @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) UpperCAmelCase__ : Any = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(snake_case__ ) UpperCAmelCase__ : int = prepare_img() UpperCAmelCase__ : Optional[int] = processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1e-4 ) ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) UpperCAmelCase__ : List[str] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = prepare_img() UpperCAmelCase__ : Dict = processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) with torch.no_grad(): UpperCAmelCase__ : int = model(**snake_case__ ) UpperCAmelCase__ : str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1e-4 ) )
367
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCAmelCase : Optional[Any] = """src/transformers""" _lowerCAmelCase : List[str] = """docs/source/en/tasks""" def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : Tuple , snake_case : str )-> Any: '''simple docstring''' with open(snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase__ : Tuple = f.readlines() # Find the start prompt. UpperCAmelCase__ : Dict = 0 while not lines[start_index].startswith(snake_case ): start_index += 1 start_index += 1 UpperCAmelCase__ : List[str] = start_index while not lines[end_index].startswith(snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : Any = direct_transformers_import(TRANSFORMERS_PATH) _lowerCAmelCase : Optional[Any] = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCAmelCase : Optional[int] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Dict = TASK_GUIDE_TO_MODELS[task_guide] UpperCAmelCase__ : Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case , set() ) UpperCAmelCase__ : str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : List[Any]=False )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = _find_text_in_file( filename=os.path.join(snake_case , snake_case ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) UpperCAmelCase__ : Optional[int] = get_model_list_for_task(snake_case ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case , snake_case ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' " to fix this." ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowerCAmelCase : Union[str, Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
368
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=512, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> Tuple: '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) _lowerCAmelCase : Optional[Any] = parser.parse_args() _lowerCAmelCase : Optional[Any] = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
369
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowerCAmelCase : Any = False try: _lowerCAmelCase : List[str] = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowerCAmelCase__ : def __init__( self : Dict , snake_case__ : str = None , snake_case__ : list = [] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[str] = choices UpperCAmelCase__ : Optional[int] = prompt if sys.platform == "win32": UpperCAmelCase__ : Optional[Any] = "*" else: UpperCAmelCase__ : List[str] = "➔ " def __a ( self : int , snake_case__ : int , snake_case__ : str = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , snake_case__ ) else: forceWrite(self.choices[index] , snake_case__ ) def __a ( self : List[str] , snake_case__ : int ): '''simple docstring''' if index == self.position: forceWrite(f' {self.arrow_char} ' ) self.write_choice(snake_case__ ) else: forceWrite(f' {self.choices[index]}' ) reset_cursor() def __a ( self : Optional[int] , snake_case__ : Direction , snake_case__ : int = 1 ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(snake_case__ ) move_cursor(snake_case__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def __a ( self : Dict ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def __a ( self : str ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def __a ( self : str ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def __a ( self : Union[str, Any] ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(snake_case__ )] for number in range(1_0 )] ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = int(chr(self.current_selection ) ) UpperCAmelCase__ : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , snake_case__ ) else: return else: return def __a ( self : List[str] , snake_case__ : int = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) UpperCAmelCase__ : List[str] = default_choice for i in range(len(self.choices ) ): self.print_choice(snake_case__ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: UpperCAmelCase__ : Dict = int(builtins.input() ) except ValueError: UpperCAmelCase__ : Tuple = default_choice else: UpperCAmelCase__ : int = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(snake_case__ , "\n" ) return choice
370
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> Dict: '''simple docstring''' UpperCAmelCase__ : List[Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCAmelCase__ : int = s_dict.pop(snake_case ) elif "subsample" in key: UpperCAmelCase__ : int = s_dict.pop(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = emb.weight.shape UpperCAmelCase__ : List[Any] = nn.Linear(snake_case , snake_case , bias=snake_case ) UpperCAmelCase__ : Optional[Any] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : int )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Dict = torch.load(snake_case , map_location="cpu" ) UpperCAmelCase__ : int = mam_aaa["args"] UpperCAmelCase__ : int = mam_aaa["model"] UpperCAmelCase__ : Union[str, Any] = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(snake_case ) rename_keys(snake_case ) UpperCAmelCase__ : List[str] = state_dict["decoder.embed_tokens.weight"].shape[0] UpperCAmelCase__ : Optional[Any] = args.share_decoder_input_output_embed UpperCAmelCase__ : int = [int(snake_case ) for i in args.conv_kernel_sizes.split("," )] UpperCAmelCase__ : Tuple = SpeechaTextConfig( vocab_size=snake_case , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(snake_case ) , conv_channels=args.conv_channels , conv_kernel_sizes=snake_case , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=snake_case , num_beams=5 , max_length=200 , use_cache=snake_case , decoder_start_token_id=2 , early_stopping=snake_case , ) UpperCAmelCase__ : Optional[int] = SpeechaTextForConditionalGeneration(snake_case ) UpperCAmelCase__ : Dict = model.model.load_state_dict(snake_case , strict=snake_case ) if len(snake_case ) > 0 and not set(snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f' but all the following weights are missing {missing}' ) if tie_embeds: UpperCAmelCase__ : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase__ : List[Any] = lm_head_weights model.save_pretrained(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
371
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
298
0
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
350
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
0
"""simple docstring""" from collections.abc import Iterable from typing import Any class lowerCAmelCase__ : def __init__( self : List[Any] , snake_case__ : int | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Dict ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'{self.value}': (self.left, self.right)} , indent=1 ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = root def __str__( self : Any ): '''simple docstring''' return str(self.root ) def __a ( self : int , snake_case__ : Node , snake_case__ : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : List[Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case__ ): # If it is the right children UpperCAmelCase__ : int = new_children else: UpperCAmelCase__ : int = new_children else: UpperCAmelCase__ : Tuple = new_children def __a ( self : Optional[Any] , snake_case__ : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def __a ( self : List[Any] ): '''simple docstring''' return self.root is None def __a ( self : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Node(snake_case__ ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : str = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : Optional[int] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Any = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : List[Any] = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : List[str] = new_node break else: UpperCAmelCase__ : Any = parent_node.right UpperCAmelCase__ : int = parent_node def __a ( self : Dict , *snake_case__ : Union[str, Any] ): '''simple docstring''' for value in values: self.__insert(snake_case__ ) def __a ( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: UpperCAmelCase__ : Union[str, Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : Union[str, Any] = node.left if value < node.value else node.right return node def __a ( self : str , snake_case__ : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : List[Any] = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Any = node.right return node def __a ( self : Optional[int] , snake_case__ : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Union[str, Any] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : List[Any] = self.root while node.left is not None: UpperCAmelCase__ : List[Any] = node.left return node def __a ( self : Tuple , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.search(snake_case__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case__ , snake_case__ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case__ , node.left ) else: UpperCAmelCase__ : Optional[int] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : int = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __a ( self : Union[str, Any] , snake_case__ : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __a ( self : Any , snake_case__ : Tuple=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __a ( self : int , snake_case__ : list , snake_case__ : Node | None ): '''simple docstring''' if node: self.inorder(snake_case__ , node.left ) arr.append(node.value ) self.inorder(snake_case__ , node.right ) def __a ( self : Optional[Any] , snake_case__ : int , snake_case__ : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(snake_case__ , snake_case__ ) # append all values to list using inorder traversal return arr[k - 1] def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None )-> list[Node]: '''simple docstring''' UpperCAmelCase__ : Dict = [] if curr_node is not None: UpperCAmelCase__ : List[str] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : Dict = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : Optional[int] = BinarySearchTree() for i in testlist: t.insert(snake_case ) # Prints all the elements of the list in order traversal print(snake_case ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(snake_case ) print(snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
351
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : Any = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__ : def __init__( self : Union[str, Any] , snake_case__ : Any , snake_case__ : Any=1_3 , snake_case__ : Dict=7 , snake_case__ : Dict=True , snake_case__ : Optional[Any]=True , snake_case__ : Optional[int]=True , snake_case__ : List[str]=True , snake_case__ : List[str]=9_9 , snake_case__ : str=3_2 , snake_case__ : List[Any]=2 , snake_case__ : int=4 , snake_case__ : Any=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Any=0.1 , snake_case__ : Optional[int]=5_1_2 , snake_case__ : List[str]=1_6 , snake_case__ : Union[str, Any]=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Optional[int]=3 , snake_case__ : List[Any]=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : Union[str, Any] = 1_3 UpperCAmelCase__ : str = 7 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : int = True UpperCAmelCase__ : Dict = 9_9 UpperCAmelCase__ : Any = 3_8_4 UpperCAmelCase__ : str = 2 UpperCAmelCase__ : Union[str, Any] = 4 UpperCAmelCase__ : Any = 3_7 UpperCAmelCase__ : List[Any] = "gelu" UpperCAmelCase__ : Optional[int] = 0.1 UpperCAmelCase__ : Union[str, Any] = 0.1 UpperCAmelCase__ : List[Any] = 5_1_2 UpperCAmelCase__ : int = 1_6 UpperCAmelCase__ : List[str] = 2 UpperCAmelCase__ : Optional[Any] = 0.02 UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Optional[Any] = 1_2_8 UpperCAmelCase__ : List[Any] = 2 UpperCAmelCase__ : Any = 9 UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : Any = None def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[Any] = None if self.use_input_mask: UpperCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Dict = None if self.use_labels: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : str , snake_case__ : Any , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = TFConvBertModel(config=snake_case__ ) UpperCAmelCase__ : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase__ : int = [input_ids, input_mask] UpperCAmelCase__ : List[Any] = model(snake_case__ ) UpperCAmelCase__ : Any = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = TFConvBertForMaskedLM(config=snake_case__ ) UpperCAmelCase__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : Dict = TFConvBertForSequenceClassification(config=snake_case__ ) UpperCAmelCase__ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : Tuple = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Any , snake_case__ : Any , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.num_choices UpperCAmelCase__ : Union[str, Any] = TFConvBertForMultipleChoice(config=snake_case__ ) UpperCAmelCase__ : List[str] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : Optional[int] = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : Any = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase__ : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Any , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : Any = TFConvBertForTokenClassification(config=snake_case__ ) UpperCAmelCase__ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFConvBertForQuestionAnswering(config=snake_case__ ) UpperCAmelCase__ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : str = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : str = config_and_inputs UpperCAmelCase__ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = TFConvBertModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Any = True UpperCAmelCase__ : str = True if hasattr(snake_case__ , "use_cache" ): UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Tuple = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ : Union[str, Any] = getattr(self.model_tester , "key_length" , snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : str = self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase__ : Any = model_class(snake_case__ ) UpperCAmelCase__ : Dict = len(model(snake_case__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ , saved_model=snake_case__ ) UpperCAmelCase__ : Dict = os.path.join(snake_case__ , "saved_model" , "1" ) UpperCAmelCase__ : Union[str, Any] = tf.keras.models.load_model(snake_case__ ) UpperCAmelCase__ : List[Any] = model(snake_case__ ) if self.is_encoder_decoder: UpperCAmelCase__ : Any = outputs["encoder_hidden_states"] UpperCAmelCase__ : Dict = outputs["encoder_attentions"] else: UpperCAmelCase__ : int = outputs["hidden_states"] UpperCAmelCase__ : int = outputs["attentions"] self.assertEqual(len(snake_case__ ) , snake_case__ ) UpperCAmelCase__ : Optional[int] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : int = True UpperCAmelCase__ : Any = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ : List[str] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ : List[Any] = getattr(self.model_tester , "key_length" , snake_case__ ) UpperCAmelCase__ : List[str] = getattr(self.model_tester , "key_length" , snake_case__ ) def check_decoder_attentions_output(snake_case__ : int ): UpperCAmelCase__ : List[str] = len(snake_case__ ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ : Tuple = outputs.decoder_attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case__ : Any ): UpperCAmelCase__ : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : str = model_class(snake_case__ ) UpperCAmelCase__ : Dict = model(self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : Union[str, Any] = len(snake_case__ ) self.assertEqual(config.output_hidden_states , snake_case__ ) check_encoder_attentions_output(snake_case__ ) if self.is_encoder_decoder: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : Dict = model(self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(config.output_hidden_states , snake_case__ ) check_decoder_attentions_output(snake_case__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : Any = model_class(snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(config.output_hidden_states , snake_case__ ) check_encoder_attentions_output(snake_case__ ) # Check attention is always last and order is fine UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : str = model_class(snake_case__ ) UpperCAmelCase__ : int = model(self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case__ ) ) self.assertEqual(model.config.output_hidden_states , snake_case__ ) check_encoder_attentions_output(snake_case__ ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCAmelCase__ : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ : Tuple = model(snake_case__ )[0] UpperCAmelCase__ : int = [1, 6, 7_6_8] self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : str = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case__ , atol=1e-4 )
353
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ : Tuple = input_file.read() UpperCAmelCase__ : Tuple = regexp.search(snake_case__ ) return match def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ : int = regexp.finditer(snake_case__ ) UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path("./datasets" ) UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = Path("./datasets" ) UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
298
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =0 SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =3.0 class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() UpperCAmelCase__ : Optional[int] = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCAmelCase__ : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ["torchrun", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase : str = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _lowerCAmelCase : Any = Accelerator(kwargs_handlers=[ddp_scaler]) _lowerCAmelCase : List[str] = torch.nn.Linear(100, 200) _lowerCAmelCase : Tuple = accelerator.prepare(model) # Check the values changed in kwargs _lowerCAmelCase : int = """""" _lowerCAmelCase : List[str] = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
354
"""simple docstring""" import numpy as np import datasets _lowerCAmelCase : Optional[int] = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _lowerCAmelCase : Tuple = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _lowerCAmelCase : Optional[int] = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): '''simple docstring''' # convert to numpy arrays UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ ) UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T ) try: UpperCAmelCase__ : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ ) UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ ) UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
298
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ : Tuple = input_file.read() UpperCAmelCase__ : Tuple = regexp.search(snake_case__ ) return match def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ : int = regexp.finditer(snake_case__ ) UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path("./datasets" ) UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = Path("./datasets" ) UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
355
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' # if UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : Any = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase : Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : List[Any] , snake_case : Optional[Any] )-> int: '''simple docstring''' UpperCAmelCase__ : int = state_dict.pop(snake_case ) UpperCAmelCase__ : str = val def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> int: '''simple docstring''' UpperCAmelCase__ : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase__ : Optional[Any] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase__ : Dict = value else: UpperCAmelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : List[str]=False )-> Any: '''simple docstring''' UpperCAmelCase__ : Dict = "" if is_panoptic: UpperCAmelCase__ : List[Any] = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase__ : List[str] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase__ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ : Optional[Any] = in_proj_weight[:256, :] UpperCAmelCase__ : List[str] = in_proj_bias[:256] UpperCAmelCase__ : int = in_proj_weight[256:512, :] UpperCAmelCase__ : Any = in_proj_bias[256:512] UpperCAmelCase__ : List[str] = in_proj_weight[-256:, :] UpperCAmelCase__ : List[Any] = in_proj_bias[-256:] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : List[Any] )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Any = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase__ : Optional[Any] = "resnet101" if "dc5" in model_name: UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Tuple = "panoptic" in model_name if is_panoptic: UpperCAmelCase__ : Any = 250 else: UpperCAmelCase__ : str = 91 UpperCAmelCase__ : Optional[int] = "huggingface/label-files" UpperCAmelCase__ : Tuple = "coco-detection-id2label.json" UpperCAmelCase__ : Tuple = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ : Dict = {int(snake_case ): v for k, v in idalabel.items()} UpperCAmelCase__ : Optional[int] = idalabel UpperCAmelCase__ : Tuple = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase__ : str = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase__ : Tuple = ConditionalDetrImageProcessor(format=snake_case ) # prepare image UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case , return_tensors="pt" ) UpperCAmelCase__ : Optional[int] = encoding["pixel_values"] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub UpperCAmelCase__ : List[str] = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case , pretrained=snake_case ).eval() UpperCAmelCase__ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase__ : Optional[Any] = "conditional_detr." + src rename_key(snake_case , snake_case , snake_case ) UpperCAmelCase__ : Tuple = rename_backbone_keys(snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case , is_panoptic=snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase__ : List[str] = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase__ : Union[str, Any] = state_dict.pop(snake_case ) UpperCAmelCase__ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase__ : str = state_dict.pop(snake_case ) UpperCAmelCase__ : List[str] = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase__ : List[str] = state_dict.pop(snake_case ) UpperCAmelCase__ : List[str] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase__ : Optional[Any] = state_dict.pop(snake_case ) UpperCAmelCase__ : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase__ : str = ConditionalDetrForSegmentation(snake_case ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case ) model.load_state_dict(snake_case ) model.eval() model.push_to_hub(repo_id=snake_case , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase__ : List[str] = conditional_detr(snake_case ) UpperCAmelCase__ : Union[str, Any] = model(snake_case ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
357
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
0
"""simple docstring""" from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> list[int]: '''simple docstring''' UpperCAmelCase__ : Tuple = str(snake_case ) UpperCAmelCase__ : Union[str, Any] = [n] for i in range(1 , len(snake_case ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> bool: '''simple docstring''' if len(str(snake_case ) ) > 3: if not is_prime(int(str(snake_case )[-3:] ) ) or not is_prime(int(str(snake_case )[:3] ) ): return False return True def SCREAMING_SNAKE_CASE__ ( snake_case : int = 11 )-> list[int]: '''simple docstring''' UpperCAmelCase__ : list[int] = [] UpperCAmelCase__ : Dict = 13 while len(snake_case ) != count: if validate(snake_case ): UpperCAmelCase__ : Any = list_truncated_nums(snake_case ) if all(is_prime(snake_case ) for i in list_nums ): list_truncated_primes.append(snake_case ) num += 2 return list_truncated_primes def SCREAMING_SNAKE_CASE__ ( )-> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
358
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _lowerCAmelCase : List[Any] = logging.get_logger("""transformers.models.speecht5""") _lowerCAmelCase : Any = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } _lowerCAmelCase : List[str] = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } _lowerCAmelCase : Dict = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } _lowerCAmelCase : str = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } _lowerCAmelCase : Tuple = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } _lowerCAmelCase : List[str] = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } _lowerCAmelCase : Optional[Any] = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } _lowerCAmelCase : Optional[Any] = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } _lowerCAmelCase : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _lowerCAmelCase : Optional[Any] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Any = [] _lowerCAmelCase : Tuple = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] _lowerCAmelCase : Dict = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] _lowerCAmelCase : int = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] _lowerCAmelCase : int = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : Optional[Any] , snake_case : str , snake_case : Any , snake_case : Optional[int] )-> Dict: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ : List[str] = getattr(snake_case , snake_case ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(snake_case , snake_case ).shape else: UpperCAmelCase__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCAmelCase__ : Dict = value elif weight_type == "weight_g": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "running_mean": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "running_var": UpperCAmelCase__ : List[Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple )-> Tuple: '''simple docstring''' for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ : str = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[Any] )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] if task == "s2t": UpperCAmelCase__ : List[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Optional[int] = MAPPING_S2T UpperCAmelCase__ : Optional[int] = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : str = None UpperCAmelCase__ : Union[str, Any] = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Tuple = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : str = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(snake_case , snake_case ): logger.info(f'{name} was ignored' ) continue UpperCAmelCase__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ : Optional[Any] = key.split(".*." ) if prefix in name and suffix in name: UpperCAmelCase__ : Optional[int] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(snake_case )[0].split("." )[-2] UpperCAmelCase__ : str = mapped_key.replace("*" , snake_case ) if "weight_g" in name: UpperCAmelCase__ : Optional[int] = "weight_g" elif "weight_v" in name: UpperCAmelCase__ : Optional[Any] = "weight_v" elif "bias" in name: UpperCAmelCase__ : Any = "bias" elif "weight" in name: UpperCAmelCase__ : List[Any] = "weight" elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = "running_mean" elif "running_var" in name: UpperCAmelCase__ : List[Any] = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[int] = "num_batches_tracked" else: UpperCAmelCase__ : List[Any] = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : Any , snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = full_name.split("conv_layers." )[-1] UpperCAmelCase__ : Dict = name.split("." ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCAmelCase__ : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCAmelCase__ : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) UpperCAmelCase__ : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCAmelCase__ : List[str] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Dict , snake_case : int , snake_case : Union[str, Any]=None , snake_case : Dict=None , snake_case : Tuple=None , )-> Optional[Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase__ : Union[str, Any] = SpeechTaConfig.from_pretrained(snake_case ) else: UpperCAmelCase__ : List[Any] = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : List[Any] = config.max_text_positions UpperCAmelCase__ : str = SpeechTaForSpeechToText(snake_case ) elif task == "t2s": UpperCAmelCase__ : Tuple = 1876 UpperCAmelCase__ : Union[str, Any] = 600 UpperCAmelCase__ : Any = config.max_speech_positions UpperCAmelCase__ : Optional[int] = SpeechTaForTextToSpeech(snake_case ) elif task == "s2s": UpperCAmelCase__ : List[str] = 1876 UpperCAmelCase__ : Dict = config.max_speech_positions UpperCAmelCase__ : Union[str, Any] = SpeechTaForSpeechToSpeech(snake_case ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: UpperCAmelCase__ : int = SpeechTaTokenizer(snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : List[Any] = AddedToken("<mask>" , lstrip=snake_case , rstrip=snake_case ) UpperCAmelCase__ : Union[str, Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) UpperCAmelCase__ : Optional[int] = SpeechTaFeatureExtractor() UpperCAmelCase__ : int = SpeechTaProcessor(tokenizer=snake_case , feature_extractor=snake_case ) processor.save_pretrained(snake_case ) UpperCAmelCase__ : Any = torch.load(snake_case ) recursively_load_weights(fairseq_checkpoint["model"] , snake_case , snake_case ) model.save_pretrained(snake_case ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(snake_case ) model.push_to_hub(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _lowerCAmelCase : int = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =BioGptTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Union[str, Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Optional[int] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = "lower newer" UpperCAmelCase__ : List[Any] = "lower newer" return input_text, output_text def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : str = "lower" UpperCAmelCase__ : Tuple = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : str = tokens + ["<unk>"] UpperCAmelCase__ : Tuple = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) UpperCAmelCase__ : Dict = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : int = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : str = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
360
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md""" _lowerCAmelCase : Dict = uuida().hex _lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]: '''simple docstring''' if token is None: UpperCAmelCase__ : Optional[Any] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Tuple = whoami(snake_case )["name"] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case ) UpperCAmelCase__ : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() ) UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None UpperCAmelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : Dict = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : str = old_diffusers_cache UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser() UpperCAmelCase__ : Any = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Any = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : List[str] = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: UpperCAmelCase__ : int = weights_name.split("." ) UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Optional[int] = ".".join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *, snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase__ : List[Any] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , ) try: # 2. Load model file as usual UpperCAmelCase__ : Dict = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
298
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : float , snake_case : float , snake_case : float , )-> float: '''simple docstring''' UpperCAmelCase__ : int = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: UpperCAmelCase__ : Any = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Optional[int] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _lowerCAmelCase : List[str] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
361
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy() UpperCAmelCase__ : List[Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
298
0
"""simple docstring""" from math import ceil def SCREAMING_SNAKE_CASE__ ( snake_case : int = 1001 )-> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase__ : Tuple = 2 * i + 1 UpperCAmelCase__ : Dict = 2 * i UpperCAmelCase__ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowerCAmelCase : Union[str, Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
362
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Any = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _lowerCAmelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''mask2former''' SCREAMING_SNAKE_CASE_ =['''swin'''] SCREAMING_SNAKE_CASE_ ={'''hidden_size''': '''hidden_dim'''} def __init__( self : int , snake_case__ : Optional[Dict] = None , snake_case__ : int = 2_5_6 , snake_case__ : int = 2_5_6 , snake_case__ : int = 2_5_6 , snake_case__ : int = 1_0_2_4 , snake_case__ : str = "relu" , snake_case__ : int = 6 , snake_case__ : int = 1_0 , snake_case__ : int = 8 , snake_case__ : float = 0.0 , snake_case__ : int = 2_0_4_8 , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : int = 4 , snake_case__ : int = 2_5_5 , snake_case__ : int = 1_0_0 , snake_case__ : float = 0.1 , snake_case__ : float = 2.0 , snake_case__ : float = 5.0 , snake_case__ : float = 5.0 , snake_case__ : int = 1_2_5_4_4 , snake_case__ : float = 3.0 , snake_case__ : float = 0.75 , snake_case__ : float = 0.02 , snake_case__ : float = 1.0 , snake_case__ : bool = True , snake_case__ : List[int] = [4, 8, 1_6, 3_2] , snake_case__ : bool = None , **snake_case__ : int , ): '''simple docstring''' if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) UpperCAmelCase__ : Dict = CONFIG_MAPPING["swin"]( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=snake_case__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Union[str, Any] = backbone_config.pop("model_type" ) UpperCAmelCase__ : Dict = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : Optional[int] = config_class.from_dict(snake_case__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) UpperCAmelCase__ : List[str] = backbone_config UpperCAmelCase__ : Union[str, Any] = feature_size UpperCAmelCase__ : Dict = mask_feature_size UpperCAmelCase__ : Optional[int] = hidden_dim UpperCAmelCase__ : List[Any] = encoder_feedforward_dim UpperCAmelCase__ : Optional[int] = activation_function UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = decoder_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Optional[int] = dim_feedforward UpperCAmelCase__ : Tuple = pre_norm UpperCAmelCase__ : Any = enforce_input_projection UpperCAmelCase__ : Union[str, Any] = common_stride UpperCAmelCase__ : List[str] = ignore_value UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : Any = no_object_weight UpperCAmelCase__ : Optional[int] = class_weight UpperCAmelCase__ : List[Any] = mask_weight UpperCAmelCase__ : List[Any] = dice_weight UpperCAmelCase__ : Optional[Any] = train_num_points UpperCAmelCase__ : Dict = oversample_ratio UpperCAmelCase__ : Optional[int] = importance_sample_ratio UpperCAmelCase__ : Any = init_std UpperCAmelCase__ : str = init_xavier_std UpperCAmelCase__ : List[str] = use_auxiliary_loss UpperCAmelCase__ : Optional[int] = feature_strides UpperCAmelCase__ : List[str] = output_auxiliary_logits UpperCAmelCase__ : Tuple = decoder_layers super().__init__(**snake_case__ ) @classmethod def __a ( cls : str , snake_case__ : PretrainedConfig , **snake_case__ : Any ): '''simple docstring''' return cls( backbone_config=snake_case__ , **snake_case__ , ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : int = self.backbone_config.to_dict() UpperCAmelCase__ : Optional[Any] = self.__class__.model_type return output
363
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = list(range(snake_case ) ) # Find permutation while factorials: UpperCAmelCase__ : str = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
0
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : int , snake_case__ : Optional[Any]="" , snake_case__ : str="train" ): '''simple docstring''' assert os.path.isdir(snake_case__ ) UpperCAmelCase__ : int = [] UpperCAmelCase__ : int = os.listdir(snake_case__ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue UpperCAmelCase__ : str = os.path.join(snake_case__ , snake_case__ ) if not os.path.isfile(snake_case__ ): continue self.documents.append(snake_case__ ) def __len__( self : int ): '''simple docstring''' return len(self.documents ) def __getitem__( self : Dict , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.documents[idx] UpperCAmelCase__ : List[Any] = document_path.split("/" )[-1] with open(snake_case__ , encoding="utf-8" ) as source: UpperCAmelCase__ : List[str] = source.read() UpperCAmelCase__ : Optional[Any] = process_story(snake_case__ ) return document_name, story_lines, summary_lines def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = list(filter(lambda snake_case : len(snake_case ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it UpperCAmelCase__ : Tuple = [_add_missing_period(snake_case ) for line in nonempty_lines] # gather article lines UpperCAmelCase__ : str = [] UpperCAmelCase__ : Any = deque(snake_case ) while True: try: UpperCAmelCase__ : Optional[int] = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(snake_case ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines UpperCAmelCase__ : Optional[Any] = list(filter(lambda snake_case : not t.startswith("@highlight" ) , snake_case ) ) return story_lines, summary_lines def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> Dict: '''simple docstring''' UpperCAmelCase__ : Optional[int] = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : List[Any] , snake_case : str )-> int: '''simple docstring''' if len(snake_case ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(snake_case )) ) return sequence def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Union[str, Any] )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = torch.ones_like(snake_case ) UpperCAmelCase__ : Optional[Any] = sequence == pad_token_id UpperCAmelCase__ : Optional[Any] = 0 return mask def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : Tuple , snake_case : str )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Dict = [tokenizer.encode(snake_case ) for line in story_lines] UpperCAmelCase__ : Optional[Any] = [token for sentence in story_lines_token_ids for token in sentence] UpperCAmelCase__ : Any = [tokenizer.encode(snake_case ) for line in summary_lines] UpperCAmelCase__ : Dict = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : Optional[Any] )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : str = [] for sequence in batch: UpperCAmelCase__ : Dict = -1 UpperCAmelCase__ : Optional[Any] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(snake_case ) return torch.tensor(snake_case )
364
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
0
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , snake_case__ : Dict[str, int] , snake_case__ : List[str] , snake_case__ : int = None , snake_case__ : int = None ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Optional[Any] = pad_token_id UpperCAmelCase__ : Any = max_length UpperCAmelCase__ : int = vocab UpperCAmelCase__ : Optional[int] = merges UpperCAmelCase__ : List[Any] = BytePairTokenizer(snake_case__ , snake_case__ , sequence_length=snake_case__ ) @classmethod def __a ( cls : Optional[int] , snake_case__ : GPTaTokenizer , *snake_case__ : int , **snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = [" ".join(snake_case__ ) for m in tokenizer.bpe_ranks.keys()] UpperCAmelCase__ : List[str] = tokenizer.get_vocab() return cls(snake_case__ , snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def __a ( cls : str , snake_case__ : Union[str, os.PathLike] , *snake_case__ : Any , **snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = GPTaTokenizer.from_pretrained(snake_case__ , *snake_case__ , **snake_case__ ) return cls.from_tokenizer(snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def __a ( cls : List[Any] , snake_case__ : List[str] ): '''simple docstring''' return cls(**snake_case__ ) def __a ( self : Any ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __a ( self : Tuple , snake_case__ : Any , snake_case__ : int = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.tf_tokenizer(snake_case__ ) UpperCAmelCase__ : Optional[int] = tf.ones_like(snake_case__ ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCAmelCase__ : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: UpperCAmelCase__ : Optional[Any] = pad_model_inputs( snake_case__ , max_seq_length=snake_case__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
365
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : int = "mock-s3-bucket" UpperCAmelCase__ : Any = f's3://{mock_bucket}' UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case ) assert dataset_path.startswith("s3://" ) is False UpperCAmelCase__ : str = "./local/path" UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is True UpperCAmelCase__ : str = fsspec.filesystem("file" ) UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case ) UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCAmelCase__ : int = compressed_file_paths[protocol] UpperCAmelCase__ : Any = "dataset.jsonl" UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case ) UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
298
0
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowerCAmelCase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int , snake_case : list[int] , snake_case : int )-> int: for i in range(snake_case , snake_case ): if array[i] == target: return i return -1 def SCREAMING_SNAKE_CASE__ ( snake_case : list[int] , snake_case : int )-> int: UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : List[Any] = len(snake_case ) while left <= right: if right - left < precision: return lin_search(snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase__ : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase__ : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase__ : Any = two_third + 1 else: UpperCAmelCase__ : str = one_third + 1 UpperCAmelCase__ : Union[str, Any] = two_third - 1 else: return -1 def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int , snake_case : list[int] , snake_case : int )-> int: if left < right: if right - left < precision: return lin_search(snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase__ : str = (left + right) // 3 + 1 UpperCAmelCase__ : Any = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(snake_case , one_third - 1 , snake_case , snake_case ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , snake_case , snake_case , snake_case ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , snake_case , snake_case ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = input("""Enter numbers separated by comma:\n""").strip() _lowerCAmelCase : str = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _lowerCAmelCase : List[str] = int(input("""Enter the number to be found in the list:\n""").strip()) _lowerCAmelCase : Optional[Any] = ite_ternary_search(collection, target) _lowerCAmelCase : Dict = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("""Not found""")
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
0
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase : Optional[int] = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase__ : Optional[int] = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> List[str]: '''simple docstring''' UpperCAmelCase__ : int = {} UpperCAmelCase__ : Tuple = os.path.join(snake_case , "all_results.json" ) if os.path.exists(snake_case ): with open(snake_case , "r" ) as f: UpperCAmelCase__ : Any = json.load(snake_case ) else: raise ValueError(f'can\'t find {path}' ) return results def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() _lowerCAmelCase : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase__ ( __magic_name__ ): @classmethod def __a ( cls : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Optional[int] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase__ : List[str] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def __a ( cls : Optional[Any] ): '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : List[str] = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) UpperCAmelCase__ : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : int = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) UpperCAmelCase__ : Optional[Any] = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : str = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) UpperCAmelCase__ : Dict = get_results(snake_case__ ) self.assertLess(result["perplexity"] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase__ : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Any = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) UpperCAmelCase__ : Dict = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : List[Any] = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) UpperCAmelCase__ : Tuple = get_results(snake_case__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 2_8 ) self.assertGreaterEqual(result["eval_exact"] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : List[str] = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) UpperCAmelCase__ : int = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Dict = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) UpperCAmelCase__ : str = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_rouge1"] , 1_0 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Tuple = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) UpperCAmelCase__ : List[str] = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_bleu"] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "translation_no_trainer" ) ) ) @slow def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) UpperCAmelCase__ : Optional[int] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Optional[int] = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) UpperCAmelCase__ : List[str] = get_results(snake_case__ ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Optional[Any] = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) UpperCAmelCase__ : Dict = get_results(snake_case__ ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case__ , "image_classification_no_trainer" ) ) )
367
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int , snake_case : int )-> float: '''simple docstring''' UpperCAmelCase__ : str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
368
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[int] , snake_case__ : Dict , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : int = 3_2 , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_5_5 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , snake_case__ : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , snake_case__ : bool = True , snake_case__ : Tuple=7 , snake_case__ : List[str]=3_0 , snake_case__ : Optional[int]=4_0_0 , snake_case__ : Optional[Any]=3 , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : List[Any] = do_resize UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_8_8} UpperCAmelCase__ : Tuple = size_divisor UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : List[str] = rescale_factor UpperCAmelCase__ : List[str] = do_normalize UpperCAmelCase__ : Optional[int] = do_center_crop UpperCAmelCase__ : List[Any] = image_mean UpperCAmelCase__ : Dict = image_std UpperCAmelCase__ : Optional[Any] = do_pad UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : Optional[int] = min_resolution UpperCAmelCase__ : List[str] = max_resolution def __a ( self : Optional[int] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Tuple = self.size["shortest_edge"] UpperCAmelCase__ : List[str] = image_inputs[0] if isinstance(snake_case__ , Image.Image ): UpperCAmelCase__ : Dict = image.size else: UpperCAmelCase__ : Optional[Any] = image.shape[1], image.shape[2] UpperCAmelCase__ : Optional[Any] = size / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ : Union[str, Any] = size, scale * w else: UpperCAmelCase__ : Optional[int] = scale * h, size UpperCAmelCase__ : Optional[Any] = int((1_3_3_3 / 8_0_0) * size ) if max(snake_case__ , snake_case__ ) > max_size: UpperCAmelCase__ : int = max_size / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = newh * scale UpperCAmelCase__ : Union[str, Any] = neww * scale UpperCAmelCase__ : Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 ) UpperCAmelCase__ : List[str] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase__ : Union[str, Any] = [] for image in image_inputs: UpperCAmelCase__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] UpperCAmelCase__ : Tuple = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = BridgeTowerImageProcessingTester(self ) @property def __a ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "size_divisor" ) ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Any = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : int = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
369
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
0
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _lowerCAmelCase : int = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) _lowerCAmelCase : Optional[Any] = dataset.iloc[:, 1:2].values _lowerCAmelCase : Optional[Any] = dataset.iloc[:, 2].values _lowerCAmelCase : int = train_test_split(X, y, test_size=0.2, random_state=0) _lowerCAmelCase : str = PolynomialFeatures(degree=4) _lowerCAmelCase : int = poly_reg.fit_transform(X) _lowerCAmelCase : Any = LinearRegression() pol_reg.fit(X_poly, y) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' plt.scatter(snake_case , snake_case , color="red" ) plt.plot(snake_case , pol_reg.predict(poly_reg.fit_transform(snake_case ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
370
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
0
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
371
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
298
0
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( snake_case )-> bool: '''simple docstring''' UpperCAmelCase__ : Tuple = num - 1 UpperCAmelCase__ : Any = 0 while s % 2 == 0: UpperCAmelCase__ : Optional[int] = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase__ : str = random.randrange(2 , num - 1 ) UpperCAmelCase__ : Union[str, Any] = pow(snake_case , snake_case , snake_case ) if v != 1: UpperCAmelCase__ : int = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase__ : Optional[int] = i + 1 UpperCAmelCase__ : List[str] = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( snake_case )-> bool: '''simple docstring''' if num < 2: return False UpperCAmelCase__ : List[Any] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case = 1024 )-> int: '''simple docstring''' while True: UpperCAmelCase__ : str = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(snake_case ): return num if __name__ == "__main__": _lowerCAmelCase : Dict = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
350
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(snake_case__ ): UpperCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def __a ( self : Tuple ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(snake_case__ ): UpperCAmelCase__ : Optional[int] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def __a ( self : Dict ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(snake_case__ ) UpperCAmelCase__ : Optional[int] = FlaxBertModel.from_pretrained(snake_case__ ) UpperCAmelCase__ : Dict = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ : str ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() @slow def __a ( self : Tuple ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ ) UpperCAmelCase__ : List[str] = FlaxRobertaModel.from_pretrained(snake_case__ ) UpperCAmelCase__ : List[Any] = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ : Any ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() def __a ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase__ : List[Any] = FlaxAutoModel.from_pretrained("bert-base" ) def __a ( self : str ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase__ : Tuple = FlaxAutoModel.from_pretrained(snake_case__ , revision="aaaaaa" ) def __a ( self : Optional[Any] ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): UpperCAmelCase__ : Dict = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def __a ( self : Any ): '''simple docstring''' with self.assertRaisesRegex(snake_case__ , "Use `from_pt=True` to load this model" ): UpperCAmelCase__ : Tuple = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
351
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
0
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _lowerCAmelCase : Tuple = HUGGINGFACE_HUB_CACHE _lowerCAmelCase : int = """config.json""" _lowerCAmelCase : Dict = """diffusion_pytorch_model.bin""" _lowerCAmelCase : Dict = """diffusion_flax_model.msgpack""" _lowerCAmelCase : int = """model.onnx""" _lowerCAmelCase : List[Any] = """diffusion_pytorch_model.safetensors""" _lowerCAmelCase : Any = """weights.pb""" _lowerCAmelCase : int = """https://huggingface.co""" _lowerCAmelCase : Union[str, Any] = default_cache_path _lowerCAmelCase : str = """diffusers_modules""" _lowerCAmelCase : List[str] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) _lowerCAmelCase : Any = ["""fp16""", """non-ema"""] _lowerCAmelCase : List[str] = """.self_attn"""
352
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : int = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ : Tuple = input_file.read() UpperCAmelCase__ : Tuple = regexp.search(snake_case__ ) return match def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ : int = regexp.finditer(snake_case__ ) UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path("./datasets" ) UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = Path("./datasets" ) UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
298
0
"""simple docstring""" from __future__ import annotations _lowerCAmelCase : List[Any] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def SCREAMING_SNAKE_CASE__ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : list[int] , snake_case : int , snake_case : list[list[int]] , )-> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' UpperCAmelCase__ : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case ) ) ] # the reference grid UpperCAmelCase__ : List[str] = 1 UpperCAmelCase__ : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case ) ) ] # the action grid UpperCAmelCase__ : Tuple = init[0] UpperCAmelCase__ : Any = init[1] UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Any = g + heuristic[x][y] # cost from starting cell to destination cell UpperCAmelCase__ : Tuple = [[f, g, x, y]] UpperCAmelCase__ : str = False # flag that is set when search is complete UpperCAmelCase__ : List[Any] = False # flag set if we can't find expand while not found and not resign: if len(snake_case ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCAmelCase__ : Any = cell.pop() UpperCAmelCase__ : Any = next_cell[2] UpperCAmelCase__ : Dict = next_cell[3] UpperCAmelCase__ : str = next_cell[1] if x == goal[0] and y == goal[1]: UpperCAmelCase__ : Any = True else: for i in range(len(snake_case ) ): # to try out different valid actions UpperCAmelCase__ : List[str] = x + DIRECTIONS[i][0] UpperCAmelCase__ : Dict = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCAmelCase__ : List[Any] = g + cost UpperCAmelCase__ : Union[str, Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : Any = i UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Optional[Any] = goal[0] UpperCAmelCase__ : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCAmelCase__ : Dict = x - DIRECTIONS[action[x][y]][0] UpperCAmelCase__ : Any = y - DIRECTIONS[action[x][y]][1] UpperCAmelCase__ : Any = xa UpperCAmelCase__ : Tuple = ya invpath.append([x, y] ) UpperCAmelCase__ : Dict = [] for i in range(len(snake_case ) ): path.append(invpath[len(snake_case ) - 1 - i] ) return path, action if __name__ == "__main__": _lowerCAmelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _lowerCAmelCase : str = [0, 0] # all coordinates are given in format [y,x] _lowerCAmelCase : Union[str, Any] = [len(grid) - 1, len(grid[0]) - 1] _lowerCAmelCase : str = 1 # the cost map which pushes the path closer to the goal _lowerCAmelCase : Any = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _lowerCAmelCase : int = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _lowerCAmelCase : Dict = 99 _lowerCAmelCase : Optional[int] = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
354
"""simple docstring""" import numpy as np import datasets _lowerCAmelCase : Optional[int] = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _lowerCAmelCase : Tuple = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _lowerCAmelCase : Optional[int] = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): '''simple docstring''' # convert to numpy arrays UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ ) UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T ) try: UpperCAmelCase__ : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ ) UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ ) UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
298
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =ShapEImgaImgPipeline SCREAMING_SNAKE_CASE_ =['''image'''] SCREAMING_SNAKE_CASE_ =['''image'''] SCREAMING_SNAKE_CASE_ =[ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE_ =False @property def __a ( self : Any ): '''simple docstring''' return 3_2 @property def __a ( self : Optional[int] ): '''simple docstring''' return 3_2 @property def __a ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self : int ): '''simple docstring''' return 8 @property def __a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=6_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCAmelCase__ : Optional[int] = CLIPVisionModel(snake_case__ ) return model @property def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=snake_case__ , do_normalize=snake_case__ , do_resize=snake_case__ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor @property def __a ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_6, "embedding_dim": self.time_input_dim, "num_embeddings": 3_2, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } UpperCAmelCase__ : Optional[int] = PriorTransformer(**snake_case__ ) return model @property def __a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = { "param_shapes": ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 1_2, "background": ( 0.1, 0.1, 0.1, ), } UpperCAmelCase__ : Optional[Any] = ShapERenderer(**snake_case__ ) return model def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.dummy_prior UpperCAmelCase__ : int = self.dummy_image_encoder UpperCAmelCase__ : Optional[Any] = self.dummy_image_processor UpperCAmelCase__ : List[Any] = self.dummy_renderer UpperCAmelCase__ : Union[str, Any] = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1_0_2_4 , prediction_type="sample" , use_karras_sigmas=snake_case__ , clip_sample=snake_case__ , clip_sample_range=1.0 , ) UpperCAmelCase__ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def __a ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : List[str]=0 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : Dict = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : List[str] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : List[Any] = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 3_2, "output_type": "np", } return inputs def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : int = "cpu" UpperCAmelCase__ : List[str] = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = self.pipeline_class(**snake_case__ ) UpperCAmelCase__ : List[str] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Dict = pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase__ : Optional[Any] = output.images[0] UpperCAmelCase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) UpperCAmelCase__ : int = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self : List[str] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = torch_device == "cpu" UpperCAmelCase__ : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case__ , relax_max_difference=snake_case__ , ) def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_dummy_components() UpperCAmelCase__ : Any = self.pipeline_class(**snake_case__ ) UpperCAmelCase__ : str = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : str = 1 UpperCAmelCase__ : Optional[int] = 2 UpperCAmelCase__ : Any = self.get_dummy_inputs(snake_case__ ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase__ : Optional[int] = batch_size * [inputs[key]] UpperCAmelCase__ : int = pipe(**snake_case__ , num_images_per_prompt=snake_case__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) UpperCAmelCase__ : Any = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) UpperCAmelCase__ : Any = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Any = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase__ : str = pipe( snake_case__ , generator=snake_case__ , guidance_scale=3.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type="np" , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
355
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' # if UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : str = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ["""ConvNextFeatureExtractor"""] _lowerCAmelCase : List[Any] = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
356
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def SCREAMING_SNAKE_CASE__ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , )-> float: '''simple docstring''' UpperCAmelCase__ : List[str] = x_start UpperCAmelCase__ : List[Any] = fnc(snake_case ) UpperCAmelCase__ : Optional[int] = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area UpperCAmelCase__ : int = (x_end - x_start) / steps + xa UpperCAmelCase__ : int = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step UpperCAmelCase__ : Any = xa UpperCAmelCase__ : Any = fxa return area if __name__ == "__main__": def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") _lowerCAmelCase : List[str] = 10 while i <= 100_000: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
357
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) _lowerCAmelCase : List[str] = logging.getLogger(__name__) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) _lowerCAmelCase : str = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: _lowerCAmelCase : Dict = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") _lowerCAmelCase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCAmelCase : Tuple = [0] * args.vocab_size for k, v in counter.items(): _lowerCAmelCase : List[Any] = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
358
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowerCAmelCase : List[Any] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } _lowerCAmelCase : str = { """camembert-base""": 512, } _lowerCAmelCase : Union[str, Any] = """▁""" class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ =['''input_ids''', '''attention_mask'''] def __init__( self : str , snake_case__ : str , snake_case__ : Optional[Any]="<s>" , snake_case__ : int="</s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : int=["<s>NOTUSED", "</s>NOTUSED"] , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token UpperCAmelCase__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) UpperCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) UpperCAmelCase__ : List[str] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> UpperCAmelCase__ : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} UpperCAmelCase__ : Union[str, Any] = len(self.fairseq_tokens_to_ids ) UpperCAmelCase__ : Optional[int] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) UpperCAmelCase__ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __a ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] UpperCAmelCase__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : int ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : Optional[Any] , snake_case__ : str ): '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def __a ( self : Optional[int] , snake_case__ : Optional[int] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(snake_case__ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(snake_case__ ) def __a ( self : Optional[int] , snake_case__ : Optional[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self : Dict , snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Optional[int] = "" UpperCAmelCase__ : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Optional[int] = [] else: current_sub_tokens.append(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def __getstate__( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.__dict__.copy() UpperCAmelCase__ : int = None return state def __setstate__( self : List[Any] , snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ : int = {} UpperCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self : int , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: UpperCAmelCase__ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''blenderbot-small''' SCREAMING_SNAKE_CASE_ =['''past_key_values'''] SCREAMING_SNAKE_CASE_ ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , snake_case__ : str=5_0_2_6_5 , snake_case__ : int=5_1_2 , snake_case__ : Optional[int]=8 , snake_case__ : int=2_0_4_8 , snake_case__ : List[str]=1_6 , snake_case__ : Optional[int]=8 , snake_case__ : Optional[int]=2_0_4_8 , snake_case__ : int=1_6 , snake_case__ : Tuple=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]="gelu" , snake_case__ : Any=5_1_2 , snake_case__ : List[Any]=0.1 , snake_case__ : int=0.0 , snake_case__ : Dict=0.0 , snake_case__ : List[str]=0.02 , snake_case__ : Optional[int]=1 , snake_case__ : Union[str, Any]=False , snake_case__ : Optional[Any]=0 , snake_case__ : Union[str, Any]=1 , snake_case__ : str=2 , snake_case__ : List[str]=2 , **snake_case__ : int , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : Optional[Any] = d_model UpperCAmelCase__ : Any = encoder_ffn_dim UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Dict = decoder_layers UpperCAmelCase__ : Any = decoder_attention_heads UpperCAmelCase__ : Optional[int] = dropout UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : str = activation_dropout UpperCAmelCase__ : List[Any] = activation_function UpperCAmelCase__ : List[Any] = init_std UpperCAmelCase__ : Any = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : Any = use_cache UpperCAmelCase__ : List[Any] = encoder_layers UpperCAmelCase__ : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) class lowerCAmelCase__ ( __magic_name__ ): @property def __a ( self : Dict ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase__ : Any = {0: "batch"} UpperCAmelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase__ : str = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase__ : Dict = self.num_layers for i in range(snake_case__ ): UpperCAmelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase__ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCAmelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __a ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : List[str] = super().outputs else: UpperCAmelCase__ : Tuple = super(snake_case__ , self ).outputs if self.use_past: UpperCAmelCase__ : List[Any] = self.num_layers for i in range(snake_case__ ): UpperCAmelCase__ : List[str] = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __a ( self : str , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Generate decoder inputs UpperCAmelCase__ : Dict = seq_length if not self.use_past else 1 UpperCAmelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[int] = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase__ : str = dict(**snake_case__ , **snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase__ : Tuple = common_inputs["input_ids"].shape UpperCAmelCase__ : Dict = common_inputs["decoder_input_ids"].shape[1] UpperCAmelCase__ : Optional[int] = self.num_attention_heads UpperCAmelCase__ : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : int = decoder_seq_length + 3 UpperCAmelCase__ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase__ : Union[str, Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(snake_case__ , snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase__ : Optional[int] = self.num_layers UpperCAmelCase__ : Union[str, Any] = min(snake_case__ , snake_case__ ) UpperCAmelCase__ : int = max(snake_case__ , snake_case__ ) - min_num_layers UpperCAmelCase__ : Tuple = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(snake_case__ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), ) ) # TODO: test this. UpperCAmelCase__ : str = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(snake_case__ , snake_case__ ): common_inputs["past_key_values"].append((torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) ) return common_inputs def __a ( self : List[Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase__ : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase__ : List[str] = seqlen + 2 UpperCAmelCase__ : List[Any] = self.num_layers UpperCAmelCase__ : Union[str, Any] = self.num_attention_heads UpperCAmelCase__ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : str = common_inputs["attention_mask"].dtype UpperCAmelCase__ : Any = torch.cat( [common_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) UpperCAmelCase__ : List[str] = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(snake_case__ ) ] return common_inputs def __a ( self : Optional[int] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ : List[Any] = tokenizer.num_special_tokens_to_add(snake_case__ ) UpperCAmelCase__ : Any = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ : List[str] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase__ : List[str] = dict(tokenizer(snake_case__ , return_tensors=snake_case__ ) ) return common_inputs def __a ( self : Optional[int] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) elif self.task == "causal-lm": UpperCAmelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) else: UpperCAmelCase__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) return common_inputs def __a ( self : Optional[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : List[str] = super()._flatten_past_key_values_(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: UpperCAmelCase__ : List[str] = super(snake_case__ , self )._flatten_past_key_values_( snake_case__ , snake_case__ , snake_case__ , snake_case__ )
360
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md""" _lowerCAmelCase : Dict = uuida().hex _lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]: '''simple docstring''' if token is None: UpperCAmelCase__ : Optional[Any] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Tuple = whoami(snake_case )["name"] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case ) UpperCAmelCase__ : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() ) UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None UpperCAmelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : Dict = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : str = old_diffusers_cache UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser() UpperCAmelCase__ : Any = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Any = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : List[str] = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: UpperCAmelCase__ : int = weights_name.split("." ) UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Optional[int] = ".".join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *, snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase__ : List[Any] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , ) try: # 2. Load model file as usual UpperCAmelCase__ : Dict = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
298
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _lowerCAmelCase : int = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Optional[Any] )-> Tuple: '''simple docstring''' if os.path.exists(snake_case ): if os.path.exists(os.path.join(snake_case , "config.json" ) ) and os.path.isfile( os.path.join(snake_case , "config.json" ) ): os.remove(os.path.join(snake_case , "config.json" ) ) if os.path.exists(os.path.join(snake_case , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(snake_case , "pytorch_model.bin" ) ): os.remove(os.path.join(snake_case , "pytorch_model.bin" ) ) else: os.makedirs(snake_case ) model.save_pretrained(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Optional[Any]=False )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Any = 2 if unlogit: UpperCAmelCase__ : Tuple = torch.pow(snake_case , snake_case ) UpperCAmelCase__ : List[Any] = p * torch.log(snake_case ) UpperCAmelCase__ : List[Any] = 0 return -plogp.sum(dim=-1 ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> int: '''simple docstring''' logger.info("lv, h >\t" + "\t".join(f'{x + 1}' for x in range(len(snake_case ) ) ) ) for row in range(len(snake_case ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + "\t".join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + "\t".join(f'{x:d}' for x in tensor[row].cpu().data ) ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : List[Any] , snake_case : str , snake_case : Dict=True , snake_case : str=True , snake_case : Dict=None , snake_case : Tuple=False )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase__ : Dict = torch.zeros(snake_case , snake_case ).to(args.device ) UpperCAmelCase__ : Dict = torch.zeros(snake_case , snake_case ).to(args.device ) if head_mask is None: UpperCAmelCase__ : List[Any] = torch.ones(snake_case , snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Dict = 0.0 UpperCAmelCase__ : List[str] = 0.0 for step, inputs in enumerate(tqdm(snake_case , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase__ : Union[str, Any] = tuple(t.to(args.device ) for t in inputs ) (UpperCAmelCase__ ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase__ : str = model(snake_case , labels=snake_case , head_mask=snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase__ : Union[str, Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(snake_case ): UpperCAmelCase__ : List[Any] = entropy(attn.detach() , snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase__ : int = 2 UpperCAmelCase__ : str = torch.pow(torch.pow(snake_case , snake_case ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-2_0 if not args.dont_normalize_global_importance: UpperCAmelCase__ : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(snake_case ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(snake_case ) logger.info("Head ranked by importance scores" ) UpperCAmelCase__ : Union[str, Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase__ : Dict = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase__ : Any = head_ranks.view_as(snake_case ) print_ad_tensor(snake_case ) return attn_entropy, head_importance, total_loss def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Tuple , snake_case : List[Any] )-> Dict: '''simple docstring''' UpperCAmelCase__ : Optional[int] = compute_heads_importance(snake_case , snake_case , snake_case , compute_entropy=snake_case ) UpperCAmelCase__ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , snake_case , original_score * args.masking_threshold ) UpperCAmelCase__ : List[str] = torch.ones_like(snake_case ) UpperCAmelCase__ : List[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase__ : int = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase__ : Optional[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase__ : Optional[Any] = float("Inf" ) UpperCAmelCase__ : Dict = head_importance.view(-1 ).sort()[1] if len(snake_case ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads UpperCAmelCase__ : Any = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase__ : int = new_head_mask.view(-1 ) UpperCAmelCase__ : int = 0.0 UpperCAmelCase__ : List[Any] = new_head_mask.view_as(snake_case ) UpperCAmelCase__ : List[Any] = new_head_mask.clone().detach() print_ad_tensor(snake_case ) # Compute metric and head importance again UpperCAmelCase__ : Union[str, Any] = compute_heads_importance( snake_case , snake_case , snake_case , compute_entropy=snake_case , head_mask=snake_case ) UpperCAmelCase__ : Any = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , snake_case , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(snake_case ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Dict = datetime.now() UpperCAmelCase__ : Optional[int] = compute_heads_importance( snake_case , snake_case , snake_case , compute_entropy=snake_case , compute_importance=snake_case , head_mask=snake_case ) UpperCAmelCase__ : List[Any] = 1 / loss UpperCAmelCase__ : List[Any] = datetime.now() - before_time UpperCAmelCase__ : Optional[Any] = sum(p.numel() for p in model.parameters() ) UpperCAmelCase__ : Any = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(snake_case , snake_case ): UpperCAmelCase__ : int = [ v, ] assert sum(len(snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(snake_case ) UpperCAmelCase__ : Any = sum(p.numel() for p in model.parameters() ) UpperCAmelCase__ : Dict = datetime.now() UpperCAmelCase__ : str = compute_heads_importance( snake_case , snake_case , snake_case , compute_entropy=snake_case , compute_importance=snake_case , head_mask=snake_case , actually_pruned=snake_case , ) UpperCAmelCase__ : str = 1 / loss UpperCAmelCase__ : Any = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , snake_case , snake_case , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , snake_case , snake_case ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(snake_case , args.output_dir ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=snake_case , type=snake_case , required=snake_case , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=snake_case , type=snake_case , required=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=snake_case , type=snake_case , required=snake_case , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=snake_case , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=snake_case , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=snake_case , type=snake_case , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=snake_case , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=snake_case , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=snake_case , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=snake_case , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=snake_case , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=snake_case , help="Batch size." ) parser.add_argument("--seed" , type=snake_case , default=42 ) parser.add_argument("--local_rank" , type=snake_case , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=snake_case , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=snake_case , default="" , help="Can be used for distant debugging." ) UpperCAmelCase__ : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase__ : Optional[int] = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) UpperCAmelCase__ : Dict = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase__ : List[Any] = torch.device("cuda" , args.local_rank ) UpperCAmelCase__ : Optional[int] = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase__ : Union[str, Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase__ : str = nn.parallel.DistributedDataParallel( snake_case , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=snake_case ) elif args.n_gpu > 1: UpperCAmelCase__ : int = nn.DataParallel(snake_case ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=snake_case ) torch.save(snake_case , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , snake_case ) # Prepare dataset UpperCAmelCase__ : Any = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase__ : Any = (torch.from_numpy(snake_case ),) UpperCAmelCase__ : Any = TensorDataset(*snake_case ) UpperCAmelCase__ : Dict = RandomSampler(snake_case ) UpperCAmelCase__ : List[str] = DataLoader(snake_case , sampler=snake_case , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(snake_case , snake_case , snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase__ : int = mask_heads(snake_case , snake_case , snake_case ) prune_heads(snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
361
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy() UpperCAmelCase__ : List[Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
298
0
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
362
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : str , snake_case : Optional[int] , snake_case : List[Any] , snake_case : List[Any] )-> int: '''simple docstring''' with open(snake_case ) as metadata_file: UpperCAmelCase__ : List[Any] = json.load(snake_case ) UpperCAmelCase__ : List[Any] = LukeConfig(use_entity_aware_attention=snake_case , **metadata["model_config"] ) # Load in the weights from the checkpoint_path UpperCAmelCase__ : Dict = torch.load(snake_case , map_location="cpu" )["module"] # Load the entity vocab file UpperCAmelCase__ : Dict = load_original_entity_vocab(snake_case ) # add an entry for [MASK2] UpperCAmelCase__ : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks UpperCAmelCase__ : Optional[int] = AddedToken("<ent>" , lstrip=snake_case , rstrip=snake_case ) UpperCAmelCase__ : Any = AddedToken("<ent2>" , lstrip=snake_case , rstrip=snake_case ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(snake_case ) with open(os.path.join(snake_case , "tokenizer_config.json" ) , "r" ) as f: UpperCAmelCase__ : Any = json.load(snake_case ) UpperCAmelCase__ : Optional[Any] = "MLukeTokenizer" with open(os.path.join(snake_case , "tokenizer_config.json" ) , "w" ) as f: json.dump(snake_case , snake_case ) with open(os.path.join(snake_case , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(snake_case , snake_case ) UpperCAmelCase__ : Tuple = MLukeTokenizer.from_pretrained(snake_case ) # Initialize the embeddings of the special tokens UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(["@"] )[0] UpperCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(["#"] )[0] UpperCAmelCase__ : List[Any] = state_dict["embeddings.word_embeddings.weight"] UpperCAmelCase__ : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) UpperCAmelCase__ : Tuple = word_emb[enta_init_index].unsqueeze(0 ) UpperCAmelCase__ : Optional[int] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCAmelCase__ : List[Any] = state_dict[bias_name] UpperCAmelCase__ : List[str] = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCAmelCase__ : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCAmelCase__ : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCAmelCase__ : Union[str, Any] = f'encoder.layer.{layer_index}.attention.self.' UpperCAmelCase__ : List[str] = state_dict[prefix + matrix_name] UpperCAmelCase__ : Optional[int] = state_dict[prefix + matrix_name] UpperCAmelCase__ : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCAmelCase__ : Optional[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] UpperCAmelCase__ : Union[str, Any] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) UpperCAmelCase__ : Dict = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCAmelCase__ : List[Any] = state_dict["entity_predictions.bias"] UpperCAmelCase__ : Optional[int] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) UpperCAmelCase__ : Tuple = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCAmelCase__ : List[str] = LukeForMaskedLM(config=snake_case ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) UpperCAmelCase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): UpperCAmelCase__ : Optional[Any] = state_dict[key] else: UpperCAmelCase__ : Tuple = state_dict[key] UpperCAmelCase__ : Dict = model.load_state_dict(snake_case , strict=snake_case ) if set(snake_case ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(snake_case ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCAmelCase__ : List[Any] = MLukeTokenizer.from_pretrained(snake_case , task="entity_classification" ) UpperCAmelCase__ : Any = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." UpperCAmelCase__ : List[Any] = (0, 9) UpperCAmelCase__ : Optional[int] = tokenizer(snake_case , entity_spans=[span] , return_tensors="pt" ) UpperCAmelCase__ : Dict = model(**snake_case ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase__ : Tuple = torch.Size((1, 33, 768) ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase__ : Tuple = torch.Size((1, 1, 768) ) UpperCAmelCase__ : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCAmelCase__ : Any = MLukeTokenizer.from_pretrained(snake_case ) UpperCAmelCase__ : Any = "Tokyo is the capital of <mask>." UpperCAmelCase__ : str = (24, 30) UpperCAmelCase__ : Any = tokenizer(snake_case , entity_spans=[span] , return_tensors="pt" ) UpperCAmelCase__ : List[str] = model(**snake_case ) UpperCAmelCase__ : Tuple = encoding["input_ids"][0].tolist() UpperCAmelCase__ : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) UpperCAmelCase__ : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(snake_case ) UpperCAmelCase__ : Optional[Any] = outputs.entity_logits[0][0].argmax().item() UpperCAmelCase__ : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(snake_case ) ) model.save_pretrained(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ["[MASK]", "[PAD]", "[UNK]"] UpperCAmelCase__ : Union[str, Any] = [json.loads(snake_case ) for line in open(snake_case )] UpperCAmelCase__ : List[str] = {} for entry in data: UpperCAmelCase__ : List[Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCAmelCase__ : str = entity_id break UpperCAmelCase__ : Optional[Any] = f'{language}:{entity_name}' UpperCAmelCase__ : Optional[int] = entity_id return new_mapping if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _lowerCAmelCase : Any = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
363
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = list(range(snake_case ) ) # Find permutation while factorials: UpperCAmelCase__ : str = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
0
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : List[Any] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : str = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] UpperCAmelCase__ : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] UpperCAmelCase__ : Any = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} UpperCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Any , **snake_case__ : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def __a ( self : str , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "adapt act apte" UpperCAmelCase__ : Dict = "adapt act apte" return input_text, output_text def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ : Optional[int] = "adapt act apte" UpperCAmelCase__ : Optional[int] = ["adapt", "act", "ap@@", "te"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase__ : Optional[int] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] UpperCAmelCase__ : Any = "I am a small frog." UpperCAmelCase__ : str = tok([src_text] , padding=snake_case__ , truncation=snake_case__ )["input_ids"] UpperCAmelCase__ : Optional[int] = tok.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) UpperCAmelCase__ : List[str] = "I am a small frog ." UpperCAmelCase__ : Optional[Any] = "." UpperCAmelCase__ : Optional[Any] = tok(snake_case__ )["input_ids"] UpperCAmelCase__ : List[Any] = tok(snake_case__ )["input_ids"] assert encoded[-1] == encoded_dot[0]
364
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> int: '''simple docstring''' if n == 1 or not isinstance(snake_case , snake_case ): return 0 elif n == 2: return 1 else: UpperCAmelCase__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Any = 2 while digits < n: index += 1 UpperCAmelCase__ : int = len(str(fibonacci(snake_case ) ) ) return index def SCREAMING_SNAKE_CASE__ ( snake_case : int = 1000 )-> int: '''simple docstring''' return fibonacci_digits_index(snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
365
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : int = "mock-s3-bucket" UpperCAmelCase__ : Any = f's3://{mock_bucket}' UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case ) assert dataset_path.startswith("s3://" ) is False UpperCAmelCase__ : str = "./local/path" UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is True UpperCAmelCase__ : str = fsspec.filesystem("file" ) UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case ) UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCAmelCase__ : int = compressed_file_paths[protocol] UpperCAmelCase__ : Any = "dataset.jsonl" UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case ) UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
298
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''ctrl''' SCREAMING_SNAKE_CASE_ =['''past_key_values'''] SCREAMING_SNAKE_CASE_ ={ '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , snake_case__ : Optional[int]=2_4_6_5_3_4 , snake_case__ : str=2_5_6 , snake_case__ : Optional[Any]=1_2_8_0 , snake_case__ : List[Any]=8_1_9_2 , snake_case__ : List[str]=4_8 , snake_case__ : Any=1_6 , snake_case__ : Optional[int]=0.1 , snake_case__ : str=0.1 , snake_case__ : Optional[int]=1e-6 , snake_case__ : str=0.02 , snake_case__ : Any=True , **snake_case__ : Tuple , ): '''simple docstring''' UpperCAmelCase__ : List[str] = vocab_size UpperCAmelCase__ : Tuple = n_positions UpperCAmelCase__ : List[Any] = n_embd UpperCAmelCase__ : List[str] = n_layer UpperCAmelCase__ : Tuple = n_head UpperCAmelCase__ : Dict = dff UpperCAmelCase__ : Optional[Any] = resid_pdrop UpperCAmelCase__ : int = embd_pdrop UpperCAmelCase__ : int = layer_norm_epsilon UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Dict = use_cache super().__init__(**snake_case__ )
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase__ ( unittest.TestCase , __magic_name__ ): def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase__ : Dict = load_tool("text-classification" , remote=snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(snake_case__ , "positive" ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(snake_case__ , "positive" ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(snake_case__ , "positive" ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(snake_case__ , "positive" )
367
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger() @dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =field(default_factory=__magic_name__ ) SCREAMING_SNAKE_CASE_ =field(default_factory=__magic_name__ ) def __a ( self : int , snake_case__ : Optional[int] , snake_case__ : Tensor , snake_case__ : Tensor ): '''simple docstring''' UpperCAmelCase__ : int = len(list(m.modules() ) ) == 1 or isinstance(snake_case__ , nn.Convad ) or isinstance(snake_case__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case__ ) def __call__( self : Union[str, Any] , snake_case__ : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case__ ) [x.remove() for x in self.handles] return self @property def __a ( self : Dict ): '''simple docstring''' return list(filter(lambda snake_case__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =0 SCREAMING_SNAKE_CASE_ =field(default_factory=__magic_name__ ) SCREAMING_SNAKE_CASE_ =field(default_factory=__magic_name__ ) def __call__( self : Union[str, Any] , snake_case__ : Tensor ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Tracker(self.dest )(snake_case__ ).parametrized UpperCAmelCase__ : List[str] = Tracker(self.src )(snake_case__ ).parametrized UpperCAmelCase__ : Tuple = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.src_skip , snake_case__ ) ) UpperCAmelCase__ : Optional[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.dest_skip , snake_case__ ) ) if len(snake_case__ ) != len(snake_case__ ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case__ )} operations while' f' destination module has {len(snake_case__ )}.' ) for dest_m, src_m in zip(snake_case__ , snake_case__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : ResNetConfig , snake_case : Path , snake_case : bool = True )-> int: '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): UpperCAmelCase__ : Any = timm.create_model(snake_case , pretrained=snake_case ).eval() UpperCAmelCase__ : Any = ResNetForImageClassification(snake_case ).eval() UpperCAmelCase__ : Any = ModuleTransfer(src=snake_case , dest=snake_case ) UpperCAmelCase__ : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(snake_case ) assert torch.allclose(from_model(snake_case ) , our_model(snake_case ).logits ), "The model logits don't match the original one." UpperCAmelCase__ : Tuple = f'resnet{"-".join(name.split("resnet" ) )}' print(snake_case ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=snake_case , ) # we can use the convnext one UpperCAmelCase__ : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=snake_case , ) print(f'Pushed {checkpoint_name}' ) def SCREAMING_SNAKE_CASE__ ( snake_case : Path , snake_case : str = None , snake_case : bool = True )-> Any: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = "imagenet-1k-id2label.json" UpperCAmelCase__ : Union[str, Any] = 1000 UpperCAmelCase__ : List[Any] = (1, num_labels) UpperCAmelCase__ : Optional[int] = "huggingface/label-files" UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : str = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ : Optional[Any] = {int(snake_case ): v for k, v in idalabel.items()} UpperCAmelCase__ : Dict = idalabel UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase__ : Optional[Any] = partial(snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) UpperCAmelCase__ : int = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(snake_case , names_to_config[model_name] , snake_case , snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case , snake_case , snake_case , snake_case ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() _lowerCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
369
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Tuple , snake_case__ : List[str]=7 , snake_case__ : List[str]=3 , snake_case__ : List[str]=3_0 , snake_case__ : Any=4_0_0 , snake_case__ : str=True , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=[0.5, 0.5, 0.5] , snake_case__ : List[str]=[0.5, 0.5, 0.5] , snake_case__ : int=True , snake_case__ : Optional[Any]=1 / 2_5_5 , snake_case__ : Optional[Any]=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : str = min_resolution UpperCAmelCase__ : Union[str, Any] = max_resolution UpperCAmelCase__ : Optional[Any] = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : List[str] = do_normalize UpperCAmelCase__ : List[Any] = image_mean UpperCAmelCase__ : List[Any] = image_std UpperCAmelCase__ : List[str] = do_rescale UpperCAmelCase__ : Dict = rescale_factor UpperCAmelCase__ : Dict = do_pad def __a ( self : Tuple ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : int = image_inputs[0] if isinstance(snake_case__ , Image.Image ): UpperCAmelCase__ : List[Any] = image.size else: UpperCAmelCase__ : Optional[Any] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size["shortest_edge"] * h / w ) UpperCAmelCase__ : Tuple = self.size["shortest_edge"] elif w > h: UpperCAmelCase__ : Optional[int] = self.size["shortest_edge"] UpperCAmelCase__ : Any = int(self.size["shortest_edge"] * w / h ) else: UpperCAmelCase__ : Union[str, Any] = self.size["shortest_edge"] UpperCAmelCase__ : Tuple = self.size["shortest_edge"] else: UpperCAmelCase__ : List[str] = [] for image in image_inputs: UpperCAmelCase__ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : str = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] UpperCAmelCase__ : List[str] = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =DeformableDetrImageProcessor if is_vision_available() else None def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = DeformableDetrImageProcessingTester(self ) @property def __a ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "do_rescale" ) ) self.assertTrue(hasattr(snake_case__ , "do_pad" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=snake_case__ ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) UpperCAmelCase__ : Tuple = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : str = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCAmelCase__ : Optional[Any] = json.loads(f.read() ) UpperCAmelCase__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them UpperCAmelCase__ : Optional[Any] = DeformableDetrImageProcessor() UpperCAmelCase__ : Tuple = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="pt" ) # verify pixel values UpperCAmelCase__ : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) UpperCAmelCase__ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5887.9600, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes UpperCAmelCase__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd UpperCAmelCase__ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify orig_size UpperCAmelCase__ : Tuple = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size UpperCAmelCase__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCAmelCase__ : List[str] = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} UpperCAmelCase__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCAmelCase__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) UpperCAmelCase__ : List[Any] = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="pt" ) # verify pixel values UpperCAmelCase__ : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) UpperCAmelCase__ : List[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Optional[int] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) UpperCAmelCase__ : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd UpperCAmelCase__ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels UpperCAmelCase__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify masks UpperCAmelCase__ : List[Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , snake_case__ ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
370
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
0
"""simple docstring""" import os from pathlib import Path def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : Dict , snake_case : List[str] )-> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCAmelCase__ : Optional[Any] = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } UpperCAmelCase__ : int = f'{src_lang}-{tgt_lang}' UpperCAmelCase__ : List[Any] = f'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(snake_case , exist_ok=snake_case ) UpperCAmelCase__ : List[Any] = os.path.join(snake_case , "README.md" ) print(f'Generating {path}' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(snake_case ) # make sure we are under the root of the project _lowerCAmelCase : int = Path(__file__).resolve().parent.parent.parent _lowerCAmelCase : Any = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowerCAmelCase : Tuple = model_name.split("""-""") _lowerCAmelCase : Dict = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
371
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
298
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def a__ ( lowerCAmelCase__ ) -> List[str]: for param in module.parameters(): UpperCAmelCase__ : List[str] = False def a__ ( ) -> Optional[Any]: UpperCAmelCase__ : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase__ : Union[str, Any] = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Dict = plt.imshow(lowerCAmelCase__ ) fig.axes.get_xaxis().set_visible(lowerCAmelCase__ ) fig.axes.get_yaxis().set_visible(lowerCAmelCase__ ) plt.show() def a__ ( ) -> Dict: UpperCAmelCase__ : List[str] = datetime.now() UpperCAmelCase__ : Optional[int] = current_time.strftime('''%H:%M:%S''' ) return timestamp
299
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
1
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCamelCase__ = datasets.logging.get_logger(__name__) UpperCamelCase__ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' UpperCamelCase__ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' UpperCamelCase__ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="dummy_doc" ) -> Optional[int]: UpperCAmelCase__ : Any = {doc: key_lines} UpperCAmelCase__ : Dict = {doc: sys_lines} UpperCAmelCase__ : Tuple = {} UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 0 UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ , UpperCAmelCase__ : int = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : Union[str, Any] = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : str = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ : str = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase__ , UpperCAmelCase__ : Dict = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase__ : Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Dict = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( '''Number of resulting singleton clusters in the key ''' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ '''files, respectively''' ) return doc_coref_infos def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: UpperCAmelCase__ : Optional[int] = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : Tuple = 0 for name, metric in metrics: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: UpperCAmelCase__ : Union[str, Any] = (conll / 3) * 1_00 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'''conll_score''': conll} ) return output_scores def a__ ( lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Tuple = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: UpperCAmelCase__ : Optional[int] = line.split()[5] if not parse_col == "-": UpperCAmelCase__ : str = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowercase_ ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def lowercase_ ( self : str , _A : Union[str, Any] , _A : Dict , _A : str=True , _A : int=False , _A : str=False , _A : Union[str, Any]=False ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: UpperCAmelCase__ : List[Any] = util.check_gold_parse_annotation(_A ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase__ : str = evaluate( key_lines=_A , sys_lines=_A , metrics=_A , NP_only=_A , remove_nested=_A , keep_singletons=_A , min_span=_A , ) return score
299
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase__ = get_tests_dir('''fixtures''') UpperCamelCase__ = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') UpperCamelCase__ = get_tests_dir('''fixtures/dummy-config.json''') class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 0 def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase__ : int = AutoFeatureExtractor.from_pretrained(_A ).to_dict() config_dict.pop('''feature_extractor_type''' ) UpperCAmelCase__ : List[Any] = WavaVecaFeatureExtractor(**_A ) # save in new folder model_config.save_pretrained(_A ) config.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained(_A ) # make sure private variable is not incorrectly saved UpperCAmelCase__ : Union[str, Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : int ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : int = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = AutoFeatureExtractor.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): UpperCAmelCase__ : str = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Any = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_A ) UpperCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) UpperCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(_A , trust_remote_code=_A ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoFeatureExtractor.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoFeatureExtractor.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : int = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : List[Any] ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = True try: AutoConfig.register('''custom''' , _A ) AutoFeatureExtractor.register(_A , _A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : int = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(_A , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
299
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
1
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = '''▁''' UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = BigBirdTokenizer lowerCAmelCase__ = BigBirdTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : List[str] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : List[Any] = self.tokenizer_class(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''<s>''' UpperCAmelCase__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_A ) , 1_004 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_rust_tokenizer() UpperCAmelCase__ : str = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Optional[int] = tokenizer.tokenize(_A ) UpperCAmelCase__ : str = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : str = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : str = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = tokenizer.encode(_A ) UpperCAmelCase__ : Tuple = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = BigBirdTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : Any = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Tuple = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowercase_ ( self : str ): '''simple docstring''' return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''Hello World!''' UpperCAmelCase__ : List[Any] = [65, 18_536, 2_260, 101, 66] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase__ : Optional[int] = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def lowercase_ ( self : Tuple ): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase__ : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase__ : Tuple = ''' '''.join(_A ) UpperCAmelCase__ : List[str] = self.big_tokenizer.encode_plus(_A , return_tensors='''pt''' , return_token_type_ids=_A ) UpperCAmelCase__ : int = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_A ) UpperCAmelCase__ : List[str] = BigBirdConfig(attention_type='''original_full''' ) UpperCAmelCase__ : Union[str, Any] = BigBirdModel(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) UpperCAmelCase__ : Optional[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = {'''input_ids''': [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
299
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase__ = random.Random() if is_torch_available(): import torch def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[Any]: if rng is None: UpperCAmelCase__ : List[str] = global_rng UpperCAmelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Any , _A : List[str] , _A : int=7 , _A : Dict=400 , _A : Tuple=2_000 , _A : Optional[int]=1 , _A : List[Any]=0.0 , _A : Any=16_000 , _A : int=True , _A : str=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = min_seq_length UpperCAmelCase__ : str = max_seq_length UpperCAmelCase__ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase__ : Optional[Any] = feature_size UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : Tuple = return_attention_mask UpperCAmelCase__ : str = do_normalize def lowercase_ ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : int , _A : Optional[Any]=False , _A : Any=False ): '''simple docstring''' def _flatten(_A : Union[str, Any] ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : Dict = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ASTFeatureExtractor def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = ASTFeatureExtractionTester(self ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase__ : List[Any] = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase__ : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Optional[Any] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : Optional[int] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase__ : Any = np.asarray(_A ) UpperCAmelCase__ : int = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[str] = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Any = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase__ : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : int , _A : List[Any] ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase__ : Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase__ : Optional[Any] = self._load_datasamples(1 ) UpperCAmelCase__ : Optional[int] = ASTFeatureExtractor() UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
299
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
1
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '''▁''' UpperCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} UpperCamelCase__ = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } UpperCamelCase__ = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } UpperCamelCase__ = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } UpperCamelCase__ = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = ["input_ids"] lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = RESOURCE_FILES_NAMES def __init__( self : int , _A : int , _A : Any=None , _A : Dict=False , _A : Optional[int]="utf8" , _A : List[str]="[UNK]" , _A : Optional[Any]="[SEP]" , _A : Union[str, Any]="[PAD]" , _A : Optional[Any]="[CLS]" , _A : Optional[int]="[MASK]" , _A : Optional[Dict[str, Any]] = None , **_A : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , vocab_file=_A , encoding=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) UpperCAmelCase__ : Tuple = do_lower_case UpperCAmelCase__ : Tuple = sentencepiece_model_ckpt UpperCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase__ : int = self.load_vocab(filepath=_A ) else: UpperCAmelCase__ : Union[str, Any] = {self.sp_model.id_to_piece(_A ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase__ : List[Any] = {v: k for k, v in self.vocab.items()} def lowercase_ ( self : int , _A : List[str] ): '''simple docstring''' if text is None: return None UpperCAmelCase__ : Any = self.tokenize(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = '''''', [] for i, ch in enumerate(_A ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase__ : int = self.SP_CHAR_MAPPING.get(_A ) else: UpperCAmelCase__ : Dict = unicodedata.normalize('''NFKC''' , _A ) if self.is_whitespace(_A ): continue normalized_text += ch char_mapping.extend([i] * len(_A ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase__ : Dict = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase__ : Optional[Any] = token[1:] UpperCAmelCase__ : int = text[offset:].index(_A ) + offset UpperCAmelCase__ : Tuple = start + len(_A ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase__ : Any = end return token_mapping @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return len(self.vocab ) def lowercase_ ( self : int ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.__dict__.copy() UpperCAmelCase__ : List[Any] = None return state def __setstate__( self : Optional[int] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowercase_ ( self : Tuple , _A : Optional[int] ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(_A , _A ) for c in text) ) def lowercase_ ( self : Any , _A : List[str] , _A : Optional[int]=False , _A : str=64 , _A : List[Any]=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase__ : Tuple = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase__ : List[Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase__ : Dict = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase__ : Optional[int] = self.sp_model.EncodeAsPieces(_A ) else: UpperCAmelCase__ : Dict = self.sp_model.SampleEncodeAsPieces(_A , _A , _A ) UpperCAmelCase__ : Tuple = [] for pi, piece in enumerate(_A ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_A ) and pi != 0: new_pieces.append(_A ) continue else: continue UpperCAmelCase__ : List[Any] = 0 for i, chunk in enumerate(_A ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_A ) or self.is_punct(_A ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_A ) UpperCAmelCase__ : str = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase__ : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase__ : Optional[Any] = i if len(_A ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowercase_ ( self : str , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def lowercase_ ( self : Any , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.convert_ids_to_tokens(_A ) UpperCAmelCase__ : int = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def lowercase_ ( self : Tuple , _A : Optional[int] ): '''simple docstring''' return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def lowercase_ ( self : List[str] , _A : str ): '''simple docstring''' return self.reverse_vocab.get(_A , self.unk_token ) def lowercase_ ( self : Any , _A : Optional[Any] , _A : str=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowercase_ ( self : Tuple , _A : Union[str, Any] , _A : Optional[Any]=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowercase_ ( self : int , _A : Any , _A : Tuple=None , _A : Optional[int]=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def lowercase_ ( self : int , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(_A ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_A ) + 1) + [1] * (len(_A ) + 3) def lowercase_ ( self : Dict , _A : Tuple ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def lowercase_ ( self : Union[str, Any] , _A : Tuple ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowercase_ ( self : List[Any] , _A : Any ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def lowercase_ ( self : List[Any] , _A : str ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_A ) == 1: UpperCAmelCase__ : Optional[Any] = unicodedata.category(_A ) if cat == "Zs": return True return False def lowercase_ ( self : Dict , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = {} with io.open(_A , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(_A ): UpperCAmelCase__ : Optional[Any] = line.rstrip('''\n''' ) UpperCAmelCase__ : int = int(_A ) return token_to_idx def lowercase_ ( self : int , _A : str , _A : Optional[str] = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 if os.path.isdir(_A ): UpperCAmelCase__ : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase__ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase__ : str = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase__ : List[str] = os.path.join(_A , '''sentencepiece.bpe.model''' ) with open(_A , '''wb''' ) as fi: UpperCAmelCase__ : int = self.sp_model.serialized_model_proto() fi.write(_A ) return (vocab_file,)
299
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } UpperCamelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } UpperCamelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } UpperCamelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } UpperCamelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } UpperCamelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } UpperCamelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } UpperCamelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Tuple = value elif weight_type == "weight_v": UpperCAmelCase__ : List[Any] = value elif weight_type == "bias": UpperCAmelCase__ : int = value elif weight_type == "running_mean": UpperCAmelCase__ : int = value elif weight_type == "running_var": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = [] if task == "s2t": UpperCAmelCase__ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : List[Any] = MAPPING_S2T UpperCAmelCase__ : int = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Tuple = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = '''running_mean''' elif "running_var" in name: UpperCAmelCase__ : List[Any] = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = '''num_batches_tracked''' else: UpperCAmelCase__ : Union[str, Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Any = int(items[0] ) UpperCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: if config_path is not None: UpperCAmelCase__ : Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : str = config.max_text_positions UpperCAmelCase__ : List[str] = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : int = 6_00 UpperCAmelCase__ : Union[str, Any] = config.max_speech_positions UpperCAmelCase__ : Optional[Any] = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : Optional[Any] = config.max_speech_positions UpperCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: UpperCAmelCase__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase__ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Any = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
299
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCamelCase__ = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: UpperCamelCase__ = json.load(f) @require_torch class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int , _A : Dict ): '''simple docstring''' return FSMTTokenizer.from_pretrained(_A ) def lowercase_ ( self : Tuple , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : int = FSMTForConditionalGeneration.from_pretrained(_A ).to(_A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 2_6.0], ['''ru-en''', 2_2.0], ['''en-de''', 2_2.0], ['''de-en''', 2_9.0], ] ) @slow def lowercase_ ( self : Dict , _A : Optional[int] , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = f"""facebook/wmt19-{pair}""" UpperCAmelCase__ : List[Any] = self.get_tokenizer(_A ) UpperCAmelCase__ : List[str] = self.get_model(_A ) UpperCAmelCase__ : List[Any] = bleu_data[pair]['''src'''] UpperCAmelCase__ : Optional[int] = bleu_data[pair]['''tgt'''] UpperCAmelCase__ : Union[str, Any] = tokenizer(_A , return_tensors='''pt''' , truncation=_A , padding='''longest''' ).to(_A ) UpperCAmelCase__ : Optional[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase__ : Any = tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) UpperCAmelCase__ : List[str] = calculate_bleu(_A , _A ) print(_A ) self.assertGreaterEqual(scores['''bleu'''] , _A )
299
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase__ = random.Random() if is_torch_available(): import torch def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[Any]: if rng is None: UpperCAmelCase__ : List[str] = global_rng UpperCAmelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Any , _A : List[str] , _A : int=7 , _A : Dict=400 , _A : Tuple=2_000 , _A : Optional[int]=1 , _A : List[Any]=0.0 , _A : Any=16_000 , _A : int=True , _A : str=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = min_seq_length UpperCAmelCase__ : str = max_seq_length UpperCAmelCase__ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase__ : Optional[Any] = feature_size UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : Tuple = return_attention_mask UpperCAmelCase__ : str = do_normalize def lowercase_ ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : int , _A : Optional[Any]=False , _A : Any=False ): '''simple docstring''' def _flatten(_A : Union[str, Any] ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : Dict = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ASTFeatureExtractor def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = ASTFeatureExtractionTester(self ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase__ : List[Any] = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase__ : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Optional[Any] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : Optional[int] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase__ : Any = np.asarray(_A ) UpperCAmelCase__ : int = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[str] = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Any = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase__ : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : int , _A : List[Any] ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase__ : Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase__ : Optional[Any] = self._load_datasamples(1 ) UpperCAmelCase__ : Optional[int] = ASTFeatureExtractor() UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
299
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
299
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TOKENIZER_MAPPING.values() UpperCAmelCase__ : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) UpperCAmelCase__ : Any = '''Hello, world. How are you?''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : Any ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = False class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: for attribute in key.split('''.''' ): UpperCAmelCase__ : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Optional[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : str = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Dict = value elif weight_type == "weight_g": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCAmelCase__ : int = value elif weight_type == "bias": UpperCAmelCase__ : Union[str, Any] = value else: UpperCAmelCase__ : Any = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Optional[Any] = fairseq_model.state_dict() UpperCAmelCase__ : str = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase__ : Tuple = None for name, value in fairseq_dict.items(): UpperCAmelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : List[Any] = True elif name.split('''.''' )[0] == "proj": UpperCAmelCase__ : Optional[Any] = fairseq_model.proj UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase__ : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase__ : int = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : int = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : str = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Tuple = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' else: UpperCAmelCase__ : int = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : List[Any] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : List[str] = name.split('''.''' ) UpperCAmelCase__ : Optional[int] = int(items[0] ) UpperCAmelCase__ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ , UpperCAmelCase__ : int = emb.weight.shape UpperCAmelCase__ : List[str] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) UpperCAmelCase__ : Dict = emb.weight.data return lin_layer def a__ ( lowerCAmelCase__ ) -> Optional[Any]: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase__ : Optional[Any] = f.readlines() UpperCAmelCase__ : str = [line.split(''' ''' )[0] for line in lines] UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) UpperCAmelCase__ : int = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(lowerCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Any: UpperCAmelCase__ : List[str] = WavaVecaConfig.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = SpeechaTextaConfig.from_pretrained( lowerCAmelCase__ , vocab_size=lowerCAmelCase__ , decoder_layers=lowerCAmelCase__ , do_stable_layer_norm=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase__ : Dict = WavaVecaModel(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = recursively_load_weights_wavaveca(model.encoder , lowerCAmelCase__ ) UpperCAmelCase__ : str = SpeechaTextaForCausalLM(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : Any = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCAmelCase__ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) UpperCAmelCase__ : Optional[Any] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase__ : Union[str, Any] = SpeechEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) UpperCAmelCase__ : Dict = False # add projection layer UpperCAmelCase__ : str = nn.Parameter(projection_layer.weight ) UpperCAmelCase__ : Dict = nn.Parameter(projection_layer.bias ) UpperCAmelCase__ : Optional[Any] = create_vocab_dict(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = SpeechaTextaTokenizer(os.path.join(lowerCAmelCase__ , '''vocab.json''' ) ) tokenizer.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = hf_wavavec.config.to_dict() UpperCAmelCase__ : Union[str, Any] = tokenizer.pad_token_id UpperCAmelCase__ : Optional[Any] = tokenizer.bos_token_id UpperCAmelCase__ : Tuple = tokenizer.eos_token_id UpperCAmelCase__ : Optional[Any] = '''speech_to_text_2''' UpperCAmelCase__ : Union[str, Any] = '''wav2vec2''' UpperCAmelCase__ : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) feature_extractor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0_2_2_4, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') UpperCamelCase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
299
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> float: UpperCAmelCase__ : Tuple = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
299
1
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=10_24 , lowerCAmelCase__=10_24 , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : int = SeqaSeqDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , type_path='''train''' , **lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = tok.pad_token_id def get_lens(lowerCAmelCase__ ): UpperCAmelCase__ : Dict = tqdm( DataLoader(lowerCAmelCase__ , batch_size=5_12 , num_workers=8 , shuffle=lowerCAmelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase__ : Dict = [] for batch in dl: UpperCAmelCase__ : int = batch['''input_ids'''].ne(lowerCAmelCase__ ).sum(1 ).tolist() UpperCAmelCase__ : List[str] = batch['''labels'''].ne(lowerCAmelCase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCAmelCase__ , lowerCAmelCase__ ): max_lens.append(max(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: max_lens.extend(lowerCAmelCase__ ) return max_lens UpperCAmelCase__ : List[Any] = get_lens(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = SeqaSeqDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , type_path='''val''' , **lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = get_lens(lowerCAmelCase__ ) pickle_save(lowerCAmelCase__ , train_ds.len_file ) pickle_save(lowerCAmelCase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
299
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
1
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Dict = args.pruning_method UpperCAmelCase__ : List[Any] = args.threshold UpperCAmelCase__ : Any = args.model_name_or_path.rstrip('''/''' ) UpperCAmelCase__ : int = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) UpperCAmelCase__ : Optional[Any] = torch.load(os.path.join(lowerCAmelCase__ , '''pytorch_model.bin''' ) ) UpperCAmelCase__ : Optional[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: UpperCAmelCase__ : Optional[Any] = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: UpperCAmelCase__ : Optional[int] = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: UpperCAmelCase__ : List[Any] = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": UpperCAmelCase__ : str = MagnitudeBinarizer.apply(inputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue UpperCAmelCase__ : Dict = name[:-6] UpperCAmelCase__ : Union[str, Any] = model[F"""{prefix_}mask_scores"""] UpperCAmelCase__ : str = TopKBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue UpperCAmelCase__ : int = name[:-6] UpperCAmelCase__ : List[Any] = model[F"""{prefix_}mask_scores"""] UpperCAmelCase__ : Optional[int] = ThresholdBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : str = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue UpperCAmelCase__ : Dict = name[:-6] UpperCAmelCase__ : Optional[Any] = model[F"""{prefix_}mask_scores"""] UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = -0.1, 1.1 UpperCAmelCase__ : List[str] = torch.sigmoid(lowerCAmelCase__ ) UpperCAmelCase__ : str = s * (r - l) + l UpperCAmelCase__ : Optional[int] = s_bar.clamp(min=0.0 , max=1.0 ) UpperCAmelCase__ : Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: UpperCAmelCase__ : Any = os.path.join( os.path.dirname(lowerCAmelCase__ ) , F"""bertarized_{os.path.basename(lowerCAmelCase__ )}""" ) if not os.path.isdir(lowerCAmelCase__ ): shutil.copytree(lowerCAmelCase__ , lowerCAmelCase__ ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) UpperCamelCase__ = parser.parse_args() main(args)
299
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[float, list[float]]: UpperCAmelCase__ : Optional[Any] = list(range(len(lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Optional[Any] = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : float = 0 UpperCAmelCase__ : list[float] = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ : List[str] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
299
1
'''simple docstring''' import string def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Any = '''''' for i in sequence: UpperCAmelCase__ : List[Any] = ord(lowerCAmelCase__ ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : List[Any] = string.ascii_letters UpperCAmelCase__ : Tuple = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase__ )] if c in letters else c for c in sequence ) def a__ ( ) -> None: from timeit import timeit print('''Running performance benchmarks...''' ) UpperCAmelCase__ : Dict = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F"""> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowerCAmelCase__ )} seconds""" ) print(F"""> atbash(): {timeit("atbash(printable)" , setup=lowerCAmelCase__ )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
299
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Tuple , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[str] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_A : Any , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Any , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[int] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : str , **_A : List[str] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'swin2sr' lowerCAmelCase__ = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[Any] , _A : Optional[int]=64 , _A : Optional[int]=1 , _A : Any=3 , _A : str=180 , _A : List[Any]=[6, 6, 6, 6, 6, 6] , _A : str=[6, 6, 6, 6, 6, 6] , _A : Optional[int]=8 , _A : Any=2.0 , _A : int=True , _A : Tuple=0.0 , _A : Dict=0.0 , _A : List[str]=0.1 , _A : Optional[int]="gelu" , _A : int=False , _A : Tuple=0.0_2 , _A : int=1e-5 , _A : List[Any]=2 , _A : str=1.0 , _A : int="1conv" , _A : Any="pixelshuffle" , **_A : Any , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Union[str, Any] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Tuple = embed_dim UpperCAmelCase__ : Union[str, Any] = depths UpperCAmelCase__ : Optional[int] = len(_A ) UpperCAmelCase__ : Any = num_heads UpperCAmelCase__ : Union[str, Any] = window_size UpperCAmelCase__ : List[str] = mlp_ratio UpperCAmelCase__ : Any = qkv_bias UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = drop_path_rate UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : Optional[Any] = use_absolute_embeddings UpperCAmelCase__ : str = layer_norm_eps UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : List[Any] = upscale UpperCAmelCase__ : Union[str, Any] = img_range UpperCAmelCase__ : Union[str, Any] = resi_connection UpperCAmelCase__ : str = upsampler
299
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = ['pixel_values'] def __init__( self : str , _A : bool = True , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : Dict[str, int] = None , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[Any] , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : Optional[int] = size if size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase__ : Optional[int] = get_size_dict(_A ) UpperCAmelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase__ : Any = get_size_dict(_A , default_to_square=_A , param_name='''crop_size''' ) UpperCAmelCase__ : List[Any] = do_resize UpperCAmelCase__ : Union[str, Any] = do_rescale UpperCAmelCase__ : Any = do_normalize UpperCAmelCase__ : Tuple = do_center_crop UpperCAmelCase__ : Dict = crop_size UpperCAmelCase__ : Optional[Any] = size UpperCAmelCase__ : Optional[Any] = resample UpperCAmelCase__ : Tuple = rescale_factor UpperCAmelCase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase__ : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase_ ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = get_size_dict(_A ) if "shortest_edge" in size: UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(_A , size=size['''shortest_edge'''] , default_to_square=_A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase__ : Optional[Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ): '''simple docstring''' UpperCAmelCase__ : Any = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def lowercase_ ( self : Union[str, Any] , _A : np.ndarray , _A : float , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def lowercase_ ( self : int , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def lowercase_ ( self : Union[str, Any] , _A : ImageInput , _A : Optional[bool] = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : int = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_A : Dict , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : List[str] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : List[str] = get_size_dict(_A , param_name='''crop_size''' , default_to_square=_A ) UpperCAmelCase__ : str = resample if resample is not None else self.resample UpperCAmelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : str = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Dict = image_std if image_std is not None else self.image_std UpperCAmelCase__ : Optional[int] = size if size is not None else self.size UpperCAmelCase__ : Tuple = get_size_dict(_A ) if not is_batched(_A ): UpperCAmelCase__ : Any = [images] if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: UpperCAmelCase__ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: UpperCAmelCase__ : Tuple = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: UpperCAmelCase__ : List[Any] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: UpperCAmelCase__ : Any = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] UpperCAmelCase__ : Union[str, Any] = [to_channel_dimension_format(_A , _A ) for image in images] UpperCAmelCase__ : int = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
299
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCamelCase_ ( __a ): def __get__( self : str , _A : Tuple , _A : List[str]=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase__ : Union[str, Any] = '''__cached_''' + self.fget.__name__ UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if cached is None: UpperCAmelCase__ : Dict = self.fget(_A ) setattr(_A , _A , _A ) return cached def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: if is_torch_fx_proxy(lowerCAmelCase__ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> Any: return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> int: return _is_numpy(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.device ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch_device(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import torch if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) else: return False return isinstance(lowerCAmelCase__ , torch.dtype ) def a__ ( lowerCAmelCase__ ) -> Optional[int]: return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> List[Any]: import tensorflow as tf return isinstance(lowerCAmelCase__ , tf.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(lowerCAmelCase__ ) return type(lowerCAmelCase__ ) == tf.Tensor def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase__ , jnp.ndarray ) def a__ ( lowerCAmelCase__ ) -> List[Any]: return False if not is_flax_available() else _is_jax(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return [to_py_obj(lowerCAmelCase__ ) for o in obj] elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ).tolist() elif isinstance(lowerCAmelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return np.array(lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ) else: return obj class lowerCamelCase_ ( __a ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) UpperCAmelCase__ : Dict = getattr(self , class_fields[0].name ) UpperCAmelCase__ : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): UpperCAmelCase__ : List[Any] = first_field.items() UpperCAmelCase__ : Optional[int] = True else: try: UpperCAmelCase__ : Optional[int] = iter(_A ) UpperCAmelCase__ : Optional[int] = True except TypeError: UpperCAmelCase__ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase__ : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase__ : List[str] = element[1] elif first_field is not None: UpperCAmelCase__ : Optional[Any] = first_field else: for field in class_fields: UpperCAmelCase__ : Optional[int] = getattr(self , field.name ) if v is not None: UpperCAmelCase__ : str = v def __delitem__( self : Union[str, Any] , *_A : Any , **_A : str ): '''simple docstring''' raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Any , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Dict , **_A : List[Any] ): '''simple docstring''' raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : List[str] , _A : Any ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , _A : Union[str, Any] , _A : str ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : Any , _A : Optional[int] , _A : List[str] ): '''simple docstring''' super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class lowerCamelCase_ ( __a , __a ): @classmethod def lowercase_ ( cls : Optional[Any] , _A : Optional[Any] ): '''simple docstring''' raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'longest' lowerCAmelCase__ = 'max_length' lowerCAmelCase__ = 'do_not_pad' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'pt' lowerCAmelCase__ = 'tf' lowerCAmelCase__ = 'np' lowerCAmelCase__ = 'jax' class lowerCamelCase_ : def __init__( self : List[Any] , _A : List[ContextManager] ): '''simple docstring''' UpperCAmelCase__ : str = context_managers UpperCAmelCase__ : int = ExitStack() def __enter__( self : str ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Dict , *_A : List[Any] , **_A : str ): '''simple docstring''' self.stack.__exit__(*_A , **_A ) def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : int = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Dict = model_class.__name__ UpperCAmelCase__ : Union[str, Any] = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = "" , lowerCAmelCase__ = "." ) -> Any: def _flatten_dict(lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__="." ): for k, v in d.items(): UpperCAmelCase__ : int = str(lowerCAmelCase__ ) + delimiter + str(lowerCAmelCase__ ) if parent_key else k if v and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): yield from flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , delimiter=lowerCAmelCase__ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) @contextmanager def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = False ) -> int: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.T if axes is None else array.permute(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.transpose(lowerCAmelCase__ , perm=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for transpose: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if is_numpy_array(lowerCAmelCase__ ): return np.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.reshape(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for reshape: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.expand_dims(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.unsqueeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ ) -> int: if is_numpy_array(lowerCAmelCase__ ): return np.size(lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.numel() elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.size(lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key, value in auto_map.items(): if isinstance(lowerCAmelCase__ , (tuple, list) ): UpperCAmelCase__ : int = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase__ : str = F"""{repo_id}--{value}""" return auto_map def a__ ( lowerCAmelCase__ ) -> Tuple: for base_class in inspect.getmro(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = base_class.__module__ UpperCAmelCase__ : Optional[int] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
299
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'vit_mae' def __init__( self : str , _A : Dict=768 , _A : List[str]=12 , _A : Optional[int]=12 , _A : Optional[int]=3_072 , _A : Optional[Any]="gelu" , _A : Tuple=0.0 , _A : Tuple=0.0 , _A : Optional[Any]=0.0_2 , _A : Optional[Any]=1e-12 , _A : Union[str, Any]=224 , _A : str=16 , _A : Dict=3 , _A : List[Any]=True , _A : Optional[int]=16 , _A : Any=512 , _A : str=8 , _A : int=2_048 , _A : Optional[Any]=0.7_5 , _A : int=False , **_A : int , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : Tuple = hidden_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Union[str, Any] = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : str = image_size UpperCAmelCase__ : str = patch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : Union[str, Any] = qkv_bias UpperCAmelCase__ : Union[str, Any] = decoder_num_attention_heads UpperCAmelCase__ : int = decoder_hidden_size UpperCAmelCase__ : int = decoder_num_hidden_layers UpperCAmelCase__ : Dict = decoder_intermediate_size UpperCAmelCase__ : int = mask_ratio UpperCAmelCase__ : Tuple = norm_pix_loss
299
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'trajectory_transformer' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , _A : Any=100 , _A : List[Any]=5 , _A : Dict=1 , _A : List[Any]=1 , _A : Optional[int]=249 , _A : str=6 , _A : Any=17 , _A : Dict=25 , _A : int=4 , _A : Any=4 , _A : List[Any]=128 , _A : str=0.1 , _A : List[Any]=0.1 , _A : str=0.1 , _A : List[str]=0.0_0_0_6 , _A : Union[str, Any]=512 , _A : Dict=0.0_2 , _A : Dict=1e-12 , _A : List[str]=1 , _A : int=True , _A : int=1 , _A : Dict=50_256 , _A : str=50_256 , **_A : str , ): '''simple docstring''' UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : List[str] = action_weight UpperCAmelCase__ : str = reward_weight UpperCAmelCase__ : Any = value_weight UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Tuple = block_size UpperCAmelCase__ : int = action_dim UpperCAmelCase__ : Optional[Any] = observation_dim UpperCAmelCase__ : List[str] = transition_dim UpperCAmelCase__ : Dict = learning_rate UpperCAmelCase__ : Dict = n_layer UpperCAmelCase__ : Union[str, Any] = n_head UpperCAmelCase__ : str = n_embd UpperCAmelCase__ : int = embd_pdrop UpperCAmelCase__ : Dict = attn_pdrop UpperCAmelCase__ : int = resid_pdrop UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Tuple = layer_norm_eps UpperCAmelCase__ : Dict = kaiming_initializer_range UpperCAmelCase__ : Optional[Any] = use_cache super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A )
299
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : int , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = floats_list((3, 1_000) ) UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : str = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Optional[int] = processor(text=_A ) UpperCAmelCase__ : List[str] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Dict , _A : Optional[int]=(2, 10, 16) , _A : List[str]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : List[Any] = processor.decode(_A ) UpperCAmelCase__ : List[Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : str = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : Dict = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : Optional[int] = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : Optional[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[int] = self._get_dummy_logits() UpperCAmelCase__ : List[str] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : str = -2_0.0 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : Optional[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : List[str] = os.listdir(_A ) UpperCAmelCase__ : Any = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : int = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : List[str] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : List[str] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : int = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : str = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : List[Any] = iter(_A ) UpperCAmelCase__ : Optional[Any] = next(_A ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : int = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : int = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
299
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = CpmAntTokenizer lowerCAmelCase__ = False def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : Any = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] UpperCAmelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) UpperCAmelCase__ : Union[str, Any] = '''今天天气真好!''' UpperCAmelCase__ : int = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] UpperCAmelCase__ : Any = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = '''今天天气真好!''' UpperCAmelCase__ : int = [tokenizer.bos_token] + tokens UpperCAmelCase__ : str = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) UpperCAmelCase__ : Optional[Any] = tokenizer.decode(_A ) self.assertEqual(_A , _A )
299
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCamelCase_ ( __a ): lowerCAmelCase__ = ['image_processor', 'feature_extractor'] lowerCAmelCase__ = 'TvltImageProcessor' lowerCAmelCase__ = 'TvltFeatureExtractor' def __init__( self : Optional[Any] , _A : List[str] , _A : int ): '''simple docstring''' super().__init__(image_processor=_A , feature_extractor=_A ) UpperCAmelCase__ : Union[str, Any] = image_processor UpperCAmelCase__ : List[Any] = feature_extractor def __call__( self : Optional[Any] , _A : int=None , _A : Optional[int]=None , _A : Union[str, Any]=None , _A : Tuple=None , _A : List[str]=False , _A : Union[str, Any]=False , *_A : Optional[Any] , **_A : int , ): '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) UpperCAmelCase__ : Union[str, Any] = None if images is not None: UpperCAmelCase__ : str = self.image_processor(_A , mask_pixel=_A , *_A , **_A ) if images_mixed is not None: UpperCAmelCase__ : Tuple = self.image_processor(_A , is_mixed=_A , *_A , **_A ) if audio is not None: UpperCAmelCase__ : Dict = self.feature_extractor( _A , *_A , sampling_rate=_A , mask_audio=_A , **_A ) UpperCAmelCase__ : Optional[int] = {} if audio is not None: output_dict.update(_A ) if images is not None: output_dict.update(_A ) if images_mixed_dict is not None: output_dict.update(_A ) return output_dict @property def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor.model_input_names UpperCAmelCase__ : Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
299
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'efficientformer' def __init__( self : List[Any] , _A : List[int] = [3, 2, 6, 4] , _A : List[int] = [48, 96, 224, 448] , _A : List[bool] = [True, True, True, True] , _A : int = 448 , _A : int = 32 , _A : int = 4 , _A : int = 7 , _A : int = 5 , _A : int = 8 , _A : int = 4 , _A : float = 0.0 , _A : int = 16 , _A : int = 3 , _A : int = 3 , _A : int = 3 , _A : int = 2 , _A : int = 1 , _A : float = 0.0 , _A : int = 1 , _A : bool = True , _A : bool = True , _A : float = 1e-5 , _A : str = "gelu" , _A : float = 0.0_2 , _A : float = 1e-12 , _A : int = 224 , _A : float = 1e-05 , **_A : Tuple , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : List[Any] = hidden_sizes UpperCAmelCase__ : str = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : str = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = patch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : int = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Tuple = downsamples UpperCAmelCase__ : Dict = dim UpperCAmelCase__ : Any = key_dim UpperCAmelCase__ : Optional[int] = attention_ratio UpperCAmelCase__ : Tuple = resolution UpperCAmelCase__ : Union[str, Any] = pool_size UpperCAmelCase__ : Optional[int] = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : str = drop_path_rate UpperCAmelCase__ : List[str] = num_metaad_blocks UpperCAmelCase__ : Optional[Any] = distillation UpperCAmelCase__ : Any = use_layer_scale UpperCAmelCase__ : Any = layer_scale_init_value UpperCAmelCase__ : List[str] = image_size UpperCAmelCase__ : int = batch_norm_eps
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def a__ ( lowerCAmelCase__ ) -> List[Any]: # vision encoder if "img_encoder.pos_embed" in name: UpperCAmelCase__ : Any = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: UpperCAmelCase__ : Optional[int] = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: UpperCAmelCase__ : Optional[int] = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: UpperCAmelCase__ : Any = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: UpperCAmelCase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: UpperCAmelCase__ : Union[str, Any] = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: UpperCAmelCase__ : int = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: UpperCAmelCase__ : Dict = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: UpperCAmelCase__ : Any = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: UpperCAmelCase__ : Optional[int] = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: UpperCAmelCase__ : Any = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: UpperCAmelCase__ : str = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: UpperCAmelCase__ : List[str] = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: UpperCAmelCase__ : str = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: UpperCAmelCase__ : Dict = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: UpperCAmelCase__ : Optional[Any] = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: UpperCAmelCase__ : str = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: UpperCAmelCase__ : Optional[int] = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: UpperCAmelCase__ : Dict = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: UpperCAmelCase__ : Dict = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: UpperCAmelCase__ : Tuple = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: UpperCAmelCase__ : Dict = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: UpperCAmelCase__ : str = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: UpperCAmelCase__ : Union[str, Any] = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ : Optional[Any] = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase__ : Optional[int] = key.split('''.''' ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = int(key_split[2] ), int(key_split[4] ) UpperCAmelCase__ : Optional[Any] = config.vision_config.hidden_size if "weight" in key: UpperCAmelCase__ : List[str] = val[:dim, :] UpperCAmelCase__ : str = val[dim : dim * 2, :] UpperCAmelCase__ : Optional[int] = val[-dim:, :] else: UpperCAmelCase__ : List[str] = val[:dim] UpperCAmelCase__ : str = val[dim : dim * 2] UpperCAmelCase__ : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase__ : Optional[int] = key.split('''.''' ) UpperCAmelCase__ : List[str] = int(key_split[3] ) UpperCAmelCase__ : Optional[Any] = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ : List[str] = val[:dim, :] UpperCAmelCase__ : List[str] = val[ dim : dim * 2, : ] UpperCAmelCase__ : Optional[int] = val[-dim:, :] else: UpperCAmelCase__ : Optional[Any] = val[:dim] UpperCAmelCase__ : str = val[dim : dim * 2] UpperCAmelCase__ : Dict = val[-dim:] else: UpperCAmelCase__ : Optional[Any] = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): UpperCAmelCase__ : str = val.squeeze_() else: UpperCAmelCase__ : Any = val return orig_state_dict def a__ ( ) -> List[Any]: UpperCAmelCase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase__ : Union[str, Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="groupvit-gcc-yfcc" , lowerCAmelCase__=False ) -> List[Any]: UpperCAmelCase__ : Union[str, Any] = GroupViTConfig() UpperCAmelCase__ : Dict = GroupViTModel(lowerCAmelCase__ ).eval() UpperCAmelCase__ : Optional[Any] = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''model'''] UpperCAmelCase__ : Optional[Any] = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result UpperCAmelCase__ : str = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) UpperCAmelCase__ : Union[str, Any] = prepare_img() UpperCAmelCase__ : Optional[int] = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''pt''' ) with torch.no_grad(): UpperCAmelCase__ : int = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": UpperCAmelCase__ : Dict = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": UpperCAmelCase__ : List[str] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1E-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print('''Successfully saved processor and model to''' , lowerCAmelCase__ ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ , organization='''nielsr''' ) model.push_to_hub(lowerCAmelCase__ , organization='''nielsr''' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) UpperCamelCase__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
299
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLNetTokenizer lowerCAmelCase__ = XLNetTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Optional[int] = XLNetTokenizer(_A , keep_accents=_A ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''<s>''' UpperCAmelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(_A ) , 1_006 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLNetTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] ) UpperCAmelCase__ : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual(_A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCAmelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = XLNetTokenizer(_A , do_lower_case=_A ) UpperCAmelCase__ : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = XLNetTokenizer(_A , do_lower_case=_A ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) UpperCAmelCase__ : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) UpperCAmelCase__ : Dict = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) UpperCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_A ) UpperCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = {'''input_ids''': [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
299
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
1
'''simple docstring''' import itertools import math def a__ ( lowerCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( ) -> Optional[Any]: UpperCAmelCase__ : Union[str, Any] = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def a__ ( lowerCAmelCase__ = 1_00_01 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase__ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
299
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
1
'''simple docstring''' from __future__ import annotations from typing import Any def a__ ( lowerCAmelCase__ ) -> int: if not postfix_notation: return 0 UpperCAmelCase__ : List[str] = {'''+''', '''-''', '''*''', '''/'''} UpperCAmelCase__ : list[Any] = [] for token in postfix_notation: if token in operations: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowerCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase_ : def __init__( self : Tuple , _A : str , _A : List[str]=13 , _A : Union[str, Any]=30 , _A : str=2 , _A : Dict=3 , _A : str=True , _A : Dict=True , _A : List[str]=32 , _A : Optional[Any]=5 , _A : Union[str, Any]=4 , _A : int=37 , _A : List[str]="gelu" , _A : Optional[int]=0.1 , _A : Union[str, Any]=0.1 , _A : Dict=10 , _A : List[str]=0.0_2 , _A : Any=None , _A : Union[str, Any]=2 , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : str = image_size UpperCAmelCase__ : str = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : Tuple = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Any = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : List[str] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : int = num_patches + 1 def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Optional[int] ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase_ ( self : Any , _A : Any , _A : Optional[Any] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ViTModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Any = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : List[Any] , _A : Optional[int] , _A : Dict , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : str = ViTForMaskedImageModeling(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[str] = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : Dict = ViTForMaskedImageModeling(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : str = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self : int , _A : Any , _A : Union[str, Any] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : str = self.type_sequence_label_size UpperCAmelCase__ : List[str] = ViTForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : str = 1 UpperCAmelCase__ : List[Any] = ViTForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ViTModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def lowercase_ ( self : int ): '''simple docstring''' pass def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_A ) UpperCAmelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Any = [*signature.parameters.keys()] UpperCAmelCase__ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def lowercase_ ( self : List[str] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Union[str, Any] = ViTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> str: UpperCAmelCase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Dict ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(_A ) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : Optional[int] = prepare_img() UpperCAmelCase__ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Any = model(**_A ) # verify the logits UpperCAmelCase__ : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(_A ) UpperCAmelCase__ : Union[str, Any] = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480 ) UpperCAmelCase__ : List[str] = prepare_img() UpperCAmelCase__ : List[str] = image_processor(images=_A , return_tensors='''pt''' ) UpperCAmelCase__ : str = inputs.pixel_values.to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(_A , interpolate_pos_encoding=_A ) # verify the logits UpperCAmelCase__ : Dict = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(_A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : int = image_processor(images=_A , return_tensors='''pt''' ) UpperCAmelCase__ : Any = inputs.pixel_values.to(_A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase__ : str = model(_A )
299
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase_ : lowerCAmelCase__ = None lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = None lowerCAmelCase__ = 1 lowerCAmelCase__ = None lowerCAmelCase__ = False lowerCAmelCase__ = None lowerCAmelCase__ = None def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(_A ) for k, v in self.__dict__.items()} )
299
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = TypeVar('''DatasetType''', Dataset, IterableDataset) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "first_exhausted" , ) -> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(lowerCAmelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCAmelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase__ ).__name__}.""" ) if i == 0: UpperCAmelCase__ , UpperCAmelCase__ : str = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , info=lowerCAmelCase__ , split=lowerCAmelCase__ , stopping_strategy=lowerCAmelCase__ ) else: return _interleave_iterable_datasets( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , info=lowerCAmelCase__ , split=lowerCAmelCase__ , stopping_strategy=lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , ) -> DatasetType: if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(lowerCAmelCase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCAmelCase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase__ ).__name__}.""" ) if i == 0: UpperCAmelCase__ , UpperCAmelCase__ : str = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCAmelCase__ , info=lowerCAmelCase__ , split=lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: return _concatenate_iterable_datasets(lowerCAmelCase__ , info=lowerCAmelCase__ , split=lowerCAmelCase__ , axis=lowerCAmelCase__ )
299
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } UpperCamelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } UpperCamelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } UpperCamelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } UpperCamelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } UpperCamelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } UpperCamelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } UpperCamelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Tuple = value elif weight_type == "weight_v": UpperCAmelCase__ : List[Any] = value elif weight_type == "bias": UpperCAmelCase__ : int = value elif weight_type == "running_mean": UpperCAmelCase__ : int = value elif weight_type == "running_var": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = [] if task == "s2t": UpperCAmelCase__ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : List[Any] = MAPPING_S2T UpperCAmelCase__ : int = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Tuple = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = '''running_mean''' elif "running_var" in name: UpperCAmelCase__ : List[Any] = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = '''num_batches_tracked''' else: UpperCAmelCase__ : Union[str, Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Any = int(items[0] ) UpperCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: if config_path is not None: UpperCAmelCase__ : Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : str = config.max_text_positions UpperCAmelCase__ : List[str] = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : int = 6_00 UpperCAmelCase__ : Union[str, Any] = config.max_speech_positions UpperCAmelCase__ : Optional[Any] = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : Optional[Any] = config.max_speech_positions UpperCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: UpperCAmelCase__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase__ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Any = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'torchsde'] def __init__( self : List[Any] , *_A : List[str] , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[Any] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def lowercase_ ( cls : int , *_A : Tuple , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''] )
299
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): UpperCAmelCase__ : Tuple = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): UpperCAmelCase__ : Any = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase__ : Optional[int] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] UpperCAmelCase__ : Optional[Any] = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(lowerCAmelCase__ )-1}""" ) if "norm" in key: UpperCAmelCase__ : Optional[int] = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase__ : str = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] UpperCAmelCase__ : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(lowerCAmelCase__ )-1}""" ) if "layer_norm1" in key: UpperCAmelCase__ : Tuple = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: UpperCAmelCase__ : Union[str, Any] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase__ : Tuple = key[key.find('''block''' ) + len('''block''' )] UpperCAmelCase__ : Tuple = key.replace(F"""block{idx}""" , F"""block.{int(lowerCAmelCase__ )-1}""" ) if "attn.q" in key: UpperCAmelCase__ : Union[str, Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: UpperCAmelCase__ : str = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: UpperCAmelCase__ : int = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: UpperCAmelCase__ : str = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: UpperCAmelCase__ : Tuple = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: UpperCAmelCase__ : Union[str, Any] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: UpperCAmelCase__ : Tuple = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) UpperCAmelCase__ : Dict = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase__ : Tuple = key[key.find('''linear_c''' ) + len('''linear_c''' )] UpperCAmelCase__ : List[Any] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(lowerCAmelCase__ )-1}""" ) if "bot_conv" in key: UpperCAmelCase__ : Tuple = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: UpperCAmelCase__ : int = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: UpperCAmelCase__ : Union[str, Any] = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: UpperCAmelCase__ : Optional[Any] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: UpperCAmelCase__ : Dict = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: UpperCAmelCase__ : Tuple = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: UpperCAmelCase__ : Tuple = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): UpperCAmelCase__ : Optional[int] = key.replace('''module.last_layer_depth''' , '''head.head''' ) UpperCAmelCase__ : Any = value return new_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) UpperCAmelCase__ : Dict = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict UpperCAmelCase__ : List[str] = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase__ : int = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase__ : Dict = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase__ : Any = kv_bias[config.hidden_sizes[i] :] def a__ ( ) -> List[Any]: UpperCAmelCase__ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase__ : Tuple = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=None ) -> int: UpperCAmelCase__ : Any = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) UpperCAmelCase__ : str = GLPNImageProcessor() # prepare image UpperCAmelCase__ : Optional[Any] = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict UpperCAmelCase__ : Tuple = torch.load(lowerCAmelCase__ , map_location=torch.device('''cpu''' ) ) # rename keys UpperCAmelCase__ : Any = rename_keys(lowerCAmelCase__ ) # key and value matrices need special treatment read_in_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # create HuggingFace model and load state dict UpperCAmelCase__ : Tuple = GLPNForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # forward pass UpperCAmelCase__ : str = model(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCAmelCase__ : Any = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: UpperCAmelCase__ : Dict = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCAmelCase__ : List[Any] = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) UpperCamelCase__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
299
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase__ = random.Random() if is_torch_available(): import torch def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[Any]: if rng is None: UpperCAmelCase__ : List[str] = global_rng UpperCAmelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Any , _A : List[str] , _A : int=7 , _A : Dict=400 , _A : Tuple=2_000 , _A : Optional[int]=1 , _A : List[Any]=0.0 , _A : Any=16_000 , _A : int=True , _A : str=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = min_seq_length UpperCAmelCase__ : str = max_seq_length UpperCAmelCase__ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase__ : Optional[Any] = feature_size UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : Tuple = return_attention_mask UpperCAmelCase__ : str = do_normalize def lowercase_ ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : int , _A : Optional[Any]=False , _A : Any=False ): '''simple docstring''' def _flatten(_A : Union[str, Any] ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : Dict = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ASTFeatureExtractor def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = ASTFeatureExtractionTester(self ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase__ : List[Any] = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase__ : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Optional[Any] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : Optional[int] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase__ : Any = np.asarray(_A ) UpperCAmelCase__ : int = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[str] = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Any = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase__ : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : int , _A : List[Any] ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase__ : Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase__ : Optional[Any] = self._load_datasamples(1 ) UpperCAmelCase__ : Optional[int] = ASTFeatureExtractor() UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
299
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase_ : def __init__( self : str , _A : Tuple , _A : str=2 , _A : Optional[Any]=True , _A : Any=False , _A : Optional[Any]=10 , _A : List[str]=3 , _A : Dict=32 * 4 , _A : int=32 * 6 , _A : int=4 , _A : List[str]=32 , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : str = use_auxiliary_loss UpperCAmelCase__ : List[str] = num_queries UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : Optional[Any] = min_size UpperCAmelCase__ : int = max_size UpperCAmelCase__ : List[str] = num_labels UpperCAmelCase__ : str = mask_feature_size def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _A ) UpperCAmelCase__ : Union[str, Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_A ) UpperCAmelCase__ : Dict = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_A ) > 0.5 ).float() UpperCAmelCase__ : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=_A ) > 0.5).long() UpperCAmelCase__ : List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase__ : int = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase_ ( self : Optional[int] , _A : int , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = output.encoder_hidden_states UpperCAmelCase__ : str = output.pixel_decoder_hidden_states UpperCAmelCase__ : Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , config.decoder_config.decoder_layers ) def lowercase_ ( self : List[Any] , _A : Optional[Any] , _A : Optional[Any] , _A : Dict , _A : List[Any]=False ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase__ : Tuple = MaskFormerModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : int = model(pixel_values=_A , pixel_mask=_A ) UpperCAmelCase__ : Union[str, Any] = model(_A , output_hidden_states=_A ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_A , _A ) def lowercase_ ( self : str , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : int = MaskFormerForInstanceSegmentation(config=_A ) model.to(_A ) model.eval() def comm_check_on_output(_A : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase__ : Dict = model(pixel_values=_A , pixel_mask=_A ) UpperCAmelCase__ : Tuple = model(_A ) comm_check_on_output(_A ) UpperCAmelCase__ : Union[str, Any] = model( pixel_values=_A , pixel_mask=_A , mask_labels=_A , class_labels=_A ) comm_check_on_output(_A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowerCAmelCase__ = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = MaskFormerModelTester(self ) UpperCAmelCase__ : str = ConfigTester(self , config_class=_A , has_text_modality=_A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_A , **_A , output_hidden_states=_A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_A ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def lowercase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def lowercase_ ( self : str ): '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def lowercase_ ( self : Dict ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase_ ( self : str ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_A ) UpperCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Dict = [*signature.parameters.keys()] UpperCAmelCase__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCAmelCase__ : Any = MaskFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = (self.model_tester.min_size,) * 2 UpperCAmelCase__ : List[str] = { '''pixel_values''': torch.randn((2, 3, *size) , device=_A ), '''mask_labels''': torch.randn((2, 10, *size) , device=_A ), '''class_labels''': torch.zeros(2 , 10 , device=_A ).long(), } UpperCAmelCase__ : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_A ) UpperCAmelCase__ : Tuple = model(**_A ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_A , **_A , output_hidden_states=_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(_A ).to(_A ) UpperCAmelCase__ : Dict = model(**_A , output_attentions=_A ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase__ : Any = self.all_model_classes[1] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ : Optional[Any] = model_class(_A ) model.to(_A ) model.train() UpperCAmelCase__ : Any = model(_A , mask_labels=_A , class_labels=_A ).loss loss.backward() def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.all_model_classes[1] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ : int = True UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Optional[Any] = model_class(_A ) model.to(_A ) model.train() UpperCAmelCase__ : Any = model(_A , mask_labels=_A , class_labels=_A ) UpperCAmelCase__ : int = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase__ : int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCAmelCase__ : Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase__ : Any = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCamelCase__ = 1e-4 def a__ ( ) -> Tuple: UpperCAmelCase__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : List[str] ): '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_A ) UpperCAmelCase__ : List[str] = self.default_image_processor UpperCAmelCase__ : Tuple = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(_A , return_tensors='''pt''' ).to(_A ) UpperCAmelCase__ : Optional[int] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(_A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(_A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) UpperCAmelCase__ : List[Any] = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(_A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _A , atol=_A ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_A ) .eval() ) UpperCAmelCase__ : str = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Dict = image_processor(_A , return_tensors='''pt''' ).to(_A ) UpperCAmelCase__ : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**_A ) # masks_queries_logits UpperCAmelCase__ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase__ : Union[str, Any] = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] UpperCAmelCase__ : int = torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _A , atol=_A ) ) # class_queries_logits UpperCAmelCase__ : List[str] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase__ : int = torch.tensor( [ [1.65_12e00, -5.25_72e00, -3.35_19e00], [3.61_69e-02, -5.90_25e00, -2.93_13e00], [1.07_66e-04, -7.76_30e00, -5.12_63e00], ] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=_A ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_A ) .eval() ) UpperCAmelCase__ : List[Any] = self.default_image_processor UpperCAmelCase__ : Tuple = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(_A , return_tensors='''pt''' ).to(_A ) UpperCAmelCase__ : Dict = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**_A ) # masks_queries_logits UpperCAmelCase__ : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase__ : int = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] UpperCAmelCase__ : List[str] = torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _A , atol=_A ) ) # class_queries_logits UpperCAmelCase__ : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase__ : Optional[int] = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=_A ) ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_A ) .eval() ) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : int = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) UpperCAmelCase__ : Union[str, Any] = inputs['''pixel_values'''].to(_A ) UpperCAmelCase__ : Any = [el.to(_A ) for el in inputs['''mask_labels''']] UpperCAmelCase__ : Any = [el.to(_A ) for el in inputs['''class_labels''']] with torch.no_grad(): UpperCAmelCase__ : int = model(**_A ) self.assertTrue(outputs.loss is not None )
299
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TOKENIZER_MAPPING.values() UpperCAmelCase__ : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) UpperCAmelCase__ : Any = '''Hello, world. How are you?''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : Any ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = False class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) UpperCamelCase__ = '''pytorch_model.bin''' UpperCamelCase__ = '''pytorch_model.bin.index.json''' UpperCamelCase__ = '''adapter_config.json''' UpperCamelCase__ = '''adapter_model.bin''' UpperCamelCase__ = '''adapter_model.safetensors''' UpperCamelCase__ = '''tf_model.h5''' UpperCamelCase__ = '''tf_model.h5.index.json''' UpperCamelCase__ = '''model.ckpt''' UpperCamelCase__ = '''flax_model.msgpack''' UpperCamelCase__ = '''flax_model.msgpack.index.json''' UpperCamelCase__ = '''model.safetensors''' UpperCamelCase__ = '''model.safetensors.index.json''' UpperCamelCase__ = '''config.json''' UpperCamelCase__ = '''preprocessor_config.json''' UpperCamelCase__ = FEATURE_EXTRACTOR_NAME UpperCamelCase__ = '''generation_config.json''' UpperCamelCase__ = '''modelcard.json''' UpperCamelCase__ = '''▁''' UpperCamelCase__ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility UpperCamelCase__ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. UpperCamelCase__ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] UpperCamelCase__ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def a__ ( lowerCAmelCase__ ) -> Tuple: if version.parse(lowerCAmelCase__ ) < version.parse(lowerCAmelCase__ ): if "dev" in min_version: UpperCAmelCase__ : Union[str, Any] = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: UpperCAmelCase__ : int = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
299
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> float: UpperCAmelCase__ : Tuple = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
299
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): def __init__( self : Optional[int] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
299
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[float, list[float]]: UpperCAmelCase__ : Optional[Any] = list(range(len(lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Optional[Any] = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : float = 0 UpperCAmelCase__ : list[float] = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ : List[str] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
299
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase__ = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Tuple , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[str] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_A : Any , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Any , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[int] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : str , **_A : List[str] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = KandinskyVaaControlnetImgaImgPipeline lowerCAmelCase__ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCAmelCase__ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCAmelCase__ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCAmelCase__ = False @property def lowercase_ ( self : List[str] ): '''simple docstring''' return 32 @property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def lowercase_ ( self : List[str] ): '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self : int ): '''simple docstring''' return 100 @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : str = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase__ : List[Any] = UNetaDConditionModel(**_A ) return model @property def lowercase_ ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase_ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.dummy_unet UpperCAmelCase__ : Optional[Any] = self.dummy_movq UpperCAmelCase__ : List[str] = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase__ : Union[str, Any] = DDIMScheduler(**_A ) UpperCAmelCase__ : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : str , _A : List[str] , _A : Dict=0 ): '''simple docstring''' UpperCAmelCase__ : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image UpperCAmelCase__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Tuple = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((256, 256) ) # create hint UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): UpperCAmelCase__ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase__ : int = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase__ : Tuple = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = '''cpu''' UpperCAmelCase__ : List[str] = self.get_dummy_components() UpperCAmelCase__ : int = self.pipeline_class(**_A ) UpperCAmelCase__ : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : List[str] = pipe(**self.get_dummy_inputs(_A ) ) UpperCAmelCase__ : Dict = output.images UpperCAmelCase__ : int = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] UpperCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : str = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) UpperCAmelCase__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase__ : Optional[Any] = init_image.resize((512, 512) ) UpperCAmelCase__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) UpperCAmelCase__ : str = torch.from_numpy(np.array(_A ) ).float() / 2_5_5.0 UpperCAmelCase__ : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase__ : List[str] = '''A robot, 4k photo''' UpperCAmelCase__ : Tuple = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) UpperCAmelCase__ : Optional[int] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) UpperCAmelCase__ : Any = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = pipe_prior( _A , image=_A , strength=0.8_5 , generator=_A , negative_prompt='''''' , ).to_tuple() UpperCAmelCase__ : str = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , hint=_A , generator=_A , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_A , _A )
299
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
1
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCamelCase_ ( unittest.TestCase , __a ): def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = load_tool('''text-to-speech''' ) self.tool.setup() def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = self.tool('''hey''' ) UpperCAmelCase__ : Dict = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def lowercase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = self.tool('''hey''' ) UpperCAmelCase__ : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
299
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCamelCase_ ( __a ): def __get__( self : str , _A : Tuple , _A : List[str]=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase__ : Union[str, Any] = '''__cached_''' + self.fget.__name__ UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if cached is None: UpperCAmelCase__ : Dict = self.fget(_A ) setattr(_A , _A , _A ) return cached def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: if is_torch_fx_proxy(lowerCAmelCase__ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> Any: return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> int: return _is_numpy(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.device ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch_device(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import torch if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) else: return False return isinstance(lowerCAmelCase__ , torch.dtype ) def a__ ( lowerCAmelCase__ ) -> Optional[int]: return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> List[Any]: import tensorflow as tf return isinstance(lowerCAmelCase__ , tf.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(lowerCAmelCase__ ) return type(lowerCAmelCase__ ) == tf.Tensor def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase__ , jnp.ndarray ) def a__ ( lowerCAmelCase__ ) -> List[Any]: return False if not is_flax_available() else _is_jax(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return [to_py_obj(lowerCAmelCase__ ) for o in obj] elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ).tolist() elif isinstance(lowerCAmelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return np.array(lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ) else: return obj class lowerCamelCase_ ( __a ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) UpperCAmelCase__ : Dict = getattr(self , class_fields[0].name ) UpperCAmelCase__ : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): UpperCAmelCase__ : List[Any] = first_field.items() UpperCAmelCase__ : Optional[int] = True else: try: UpperCAmelCase__ : Optional[int] = iter(_A ) UpperCAmelCase__ : Optional[int] = True except TypeError: UpperCAmelCase__ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase__ : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase__ : List[str] = element[1] elif first_field is not None: UpperCAmelCase__ : Optional[Any] = first_field else: for field in class_fields: UpperCAmelCase__ : Optional[int] = getattr(self , field.name ) if v is not None: UpperCAmelCase__ : str = v def __delitem__( self : Union[str, Any] , *_A : Any , **_A : str ): '''simple docstring''' raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Any , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Dict , **_A : List[Any] ): '''simple docstring''' raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : List[str] , _A : Any ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , _A : Union[str, Any] , _A : str ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : Any , _A : Optional[int] , _A : List[str] ): '''simple docstring''' super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class lowerCamelCase_ ( __a , __a ): @classmethod def lowercase_ ( cls : Optional[Any] , _A : Optional[Any] ): '''simple docstring''' raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'longest' lowerCAmelCase__ = 'max_length' lowerCAmelCase__ = 'do_not_pad' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'pt' lowerCAmelCase__ = 'tf' lowerCAmelCase__ = 'np' lowerCAmelCase__ = 'jax' class lowerCamelCase_ : def __init__( self : List[Any] , _A : List[ContextManager] ): '''simple docstring''' UpperCAmelCase__ : str = context_managers UpperCAmelCase__ : int = ExitStack() def __enter__( self : str ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Dict , *_A : List[Any] , **_A : str ): '''simple docstring''' self.stack.__exit__(*_A , **_A ) def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : int = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Dict = model_class.__name__ UpperCAmelCase__ : Union[str, Any] = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = "" , lowerCAmelCase__ = "." ) -> Any: def _flatten_dict(lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__="." ): for k, v in d.items(): UpperCAmelCase__ : int = str(lowerCAmelCase__ ) + delimiter + str(lowerCAmelCase__ ) if parent_key else k if v and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): yield from flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , delimiter=lowerCAmelCase__ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) @contextmanager def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = False ) -> int: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.T if axes is None else array.permute(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.transpose(lowerCAmelCase__ , perm=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for transpose: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if is_numpy_array(lowerCAmelCase__ ): return np.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.reshape(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for reshape: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.expand_dims(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.unsqueeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ ) -> int: if is_numpy_array(lowerCAmelCase__ ): return np.size(lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.numel() elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.size(lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key, value in auto_map.items(): if isinstance(lowerCAmelCase__ , (tuple, list) ): UpperCAmelCase__ : int = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase__ : str = F"""{repo_id}--{value}""" return auto_map def a__ ( lowerCAmelCase__ ) -> Tuple: for base_class in inspect.getmro(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = base_class.__module__ UpperCAmelCase__ : Optional[int] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
299
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase__ = '''pt''' elif is_tf_available(): UpperCamelCase__ = '''tf''' else: UpperCamelCase__ = '''jax''' class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ByTaTokenizer lowerCAmelCase__ = False def lowercase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : Optional[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self : List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def lowercase_ ( self : Tuple , **_A : Optional[int] ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Any , _A : List[Any] , _A : Dict=False , _A : Dict=20 , _A : Optional[Any]=5 ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [] for i in range(len(_A ) ): try: UpperCAmelCase__ : str = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase__ : str = list(filter(lambda _A : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) UpperCAmelCase__ : List[Any] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: UpperCAmelCase__ : List[str] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: UpperCAmelCase__ : Any = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase__ : int = [t[0] for t in toks] # Ensure consistency UpperCAmelCase__ : str = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: UpperCAmelCase__ : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: UpperCAmelCase__ : Optional[int] = ''' ''' + output_txt UpperCAmelCase__ : List[Any] = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.ta_base_tokenizer UpperCAmelCase__ : List[str] = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) UpperCAmelCase__ : Dict = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = self.ta_base_tokenizer UpperCAmelCase__ : Dict = '''Unicode €.''' UpperCAmelCase__ : Optional[int] = tokenizer(_A ) UpperCAmelCase__ : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding UpperCAmelCase__ : str = tokenizer.decode(_A ) self.assertEqual(_A , '''Unicode €.</s>''' ) UpperCAmelCase__ : int = tokenizer('''e è é ê ë''' ) UpperCAmelCase__ : Any = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding UpperCAmelCase__ : Optional[Any] = tokenizer.decode(_A ) self.assertEqual(_A , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = self.ta_base_tokenizer UpperCAmelCase__ : List[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCAmelCase__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on UpperCAmelCase__ : Optional[int] = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": UpperCAmelCase__ : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase__ : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.ta_base_tokenizer UpperCAmelCase__ : Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase__ : Tuple = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.ta_base_tokenizer UpperCAmelCase__ : Dict = [ '''Summary of the text.''', '''Another summary.''', ] UpperCAmelCase__ : str = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.ta_base_tokenizer UpperCAmelCase__ : int = ['''A long paragraph for summarization. </s>'''] UpperCAmelCase__ : Any = ['''Summary of the text. </s>'''] # fmt: off UpperCAmelCase__ : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] UpperCAmelCase__ : List[str] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on UpperCAmelCase__ : int = tokenizer(_A , text_target=_A ) self.assertEqual(_A , batch['''input_ids'''][0] ) self.assertEqual(_A , batch['''labels'''][0] ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase__ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase__ : Dict = tempfile.mkdtemp() UpperCAmelCase__ : int = ''' He is very happy, UNwant\u00E9d,running''' UpperCAmelCase__ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer.__class__.from_pretrained(_A ) UpperCAmelCase__ : List[str] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) UpperCAmelCase__ : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase__ : str = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) UpperCAmelCase__ : str = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) UpperCAmelCase__ : Any = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer.__class__.from_pretrained(_A ) UpperCAmelCase__ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase__ : Any = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase__ : str = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: UpperCAmelCase__ : Optional[Any] = json.load(_A ) UpperCAmelCase__ : Union[str, Any] = [f"""<extra_id_{i}>""" for i in range(125 )] UpperCAmelCase__ : str = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCAmelCase__ : List[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase__ : Any = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase__ : Any = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] UpperCAmelCase__ : Tuple = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained(_A ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass def lowercase_ ( self : int ): '''simple docstring''' pass def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase__ : Optional[int] = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] UpperCAmelCase__ : str = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase__ : int = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens( _A , skip_special_tokens=_A ) for attr in attributes_list: setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , attr + '''_id''' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '''_id''' ) , _A ) setattr(_A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [] ) setattr(_A , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(_A , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
299
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
1
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCamelCase__ = '''http://www.mocksite.com/file1.txt''' UpperCamelCase__ = '''"text": ["foo", "foo"]''' UpperCamelCase__ = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class lowerCamelCase_ : lowerCAmelCase__ = 2_0_0 lowerCAmelCase__ = {'Content-Length': '100'} lowerCAmelCase__ = {} def lowercase_ ( self : List[str] , **_A : Optional[int] ): '''simple docstring''' return [bytes(_A , '''utf-8''' )] def a__ ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: import requests monkeypatch.setattr(lowerCAmelCase__ , '''request''' , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = URL if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : int = url elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Optional[Any] = [url] elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : int = {'''train''': url} UpperCAmelCase__ : Tuple = '''dummy''' UpperCAmelCase__ : Optional[Any] = '''downloads''' UpperCAmelCase__ : Dict = tmp_path UpperCAmelCase__ : List[str] = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , use_etag=lowerCAmelCase__ , ) UpperCAmelCase__ : Optional[Any] = DownloadManager(dataset_name=lowerCAmelCase__ , download_config=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = dl_manager.download(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : int = [downloaded_paths] UpperCAmelCase__ : str = [urls] elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): assert "train" in downloaded_paths.keys() UpperCAmelCase__ : Optional[Any] = downloaded_paths.values() UpperCAmelCase__ : Tuple = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase__ , lowerCAmelCase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCAmelCase__ : Any = Path(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCAmelCase__ : List[Any] = downloaded_path.read_text() assert content == CONTENT UpperCAmelCase__ : Optional[int] = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() UpperCAmelCase__ : int = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: UpperCAmelCase__ : str = str(lowerCAmelCase__ ) if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : int = filename elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Union[str, Any] = [filename] elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Dict = {'''train''': filename} UpperCAmelCase__ : Dict = '''dummy''' UpperCAmelCase__ : str = xz_file.parent UpperCAmelCase__ : Tuple = '''extracted''' UpperCAmelCase__ : Dict = DownloadConfig( cache_dir=lowerCAmelCase__ , use_etag=lowerCAmelCase__ , ) UpperCAmelCase__ : Optional[Any] = DownloadManager(dataset_name=lowerCAmelCase__ , download_config=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = dl_manager.extract(lowerCAmelCase__ ) UpperCAmelCase__ : Any = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : List[str] = [extracted_paths] UpperCAmelCase__ : str = [paths] elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): assert "train" in extracted_paths.keys() UpperCAmelCase__ : List[str] = extracted_paths.values() UpperCAmelCase__ : List[str] = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase__ , lowerCAmelCase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCAmelCase__ : Dict = Path(lowerCAmelCase__ ) UpperCAmelCase__ : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase__ , etag=lowerCAmelCase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCAmelCase__ : Optional[int] = extracted_path.read_text() UpperCAmelCase__ : Any = text_file.read_text() assert extracted_file_content == expected_file_content def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(lowerCAmelCase__ , start=1 ): UpperCAmelCase__ : List[Any] = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : str = request.getfixturevalue(lowerCAmelCase__ ) UpperCAmelCase__ : int = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase__ ) , start=1 ): _test_jsonl(lowerCAmelCase__ , lowerCAmelCase__ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : str = request.getfixturevalue(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase__ ) , start=1 ): _test_jsonl(lowerCAmelCase__ , lowerCAmelCase__ ) assert num_tar == 1 assert num_jsonl == 2 def a__ ( lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase__ ) , start=1 ): assert os.path.basename(lowerCAmelCase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
299
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : int , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = floats_list((3, 1_000) ) UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : str = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Optional[int] = processor(text=_A ) UpperCAmelCase__ : List[str] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Dict , _A : Optional[int]=(2, 10, 16) , _A : List[str]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : List[Any] = processor.decode(_A ) UpperCAmelCase__ : List[Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : str = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : Dict = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : Optional[int] = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : Optional[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[int] = self._get_dummy_logits() UpperCAmelCase__ : List[str] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : str = -2_0.0 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : Optional[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : List[str] = os.listdir(_A ) UpperCAmelCase__ : Any = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : int = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : List[str] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : List[str] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : int = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : str = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : List[Any] = iter(_A ) UpperCAmelCase__ : Optional[Any] = next(_A ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : int = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : int = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
299
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : int , _A : int , _A : List[Any]=3 , _A : List[str]=32 , _A : Tuple=3 , _A : str=10 , _A : Union[str, Any]=[10, 20, 30, 40] , _A : Optional[Any]=[1, 1, 2, 1] , _A : Any=True , _A : Any=True , _A : Optional[Any]="relu" , _A : Dict=3 , _A : int=None , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : List[Any] = image_size UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : Dict = embeddings_size UpperCAmelCase__ : Any = hidden_sizes UpperCAmelCase__ : Any = depths UpperCAmelCase__ : Tuple = is_training UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : Any = num_labels UpperCAmelCase__ : Dict = scope UpperCAmelCase__ : str = len(_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = self.get_config() return config, pixel_values def lowercase_ ( self : List[str] ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase_ ( self : Optional[Any] , _A : Dict , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = FlaxRegNetModel(config=_A ) UpperCAmelCase__ : Union[str, Any] = model(_A ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self : List[Any] , _A : List[Any] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : Dict = FlaxRegNetForImageClassification(config=_A ) UpperCAmelCase__ : Optional[int] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = config_and_inputs UpperCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = FlaxRegNetModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A ) def lowercase_ ( self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : Dict ): '''simple docstring''' return def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowercase_ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' pass def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class(_A ) UpperCAmelCase__ : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def lowercase_ ( self : str ): '''simple docstring''' def check_hidden_states_output(_A : Tuple , _A : List[str] , _A : Any ): UpperCAmelCase__ : List[str] = model_class(_A ) UpperCAmelCase__ : List[str] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : str = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : List[Any] = True check_hidden_states_output(_A , _A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(_A , _A ) UpperCAmelCase__ : Dict = model_class(_A ) @jax.jit def model_jitted(_A : str , **_A : Tuple ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase__ : Any = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase__ : Optional[Any] = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase__ : Optional[int] = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : str = image_processor(images=_A , return_tensors='''np''' ) UpperCAmelCase__ : str = model(**_A ) # verify the logits UpperCAmelCase__ : Any = (1, 1_000) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase__ : Tuple = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
299
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
1
'''simple docstring''' from typing import Any class lowerCamelCase_ : def __init__( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = data UpperCAmelCase__ : List[Any] = None class lowerCamelCase_ : def __init__( self : int ): '''simple docstring''' UpperCAmelCase__ : int = None def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.head while temp is not None: print(temp.data , end=''' ''' ) UpperCAmelCase__ : int = temp.next print() def lowercase_ ( self : int , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) UpperCAmelCase__ : int = self.head UpperCAmelCase__ : List[Any] = new_node def lowercase_ ( self : List[str] , _A : List[str] , _A : Union[str, Any] ): '''simple docstring''' if node_data_a == node_data_a: return else: UpperCAmelCase__ : Any = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase__ : Optional[int] = node_a.next UpperCAmelCase__ : Tuple = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase__ : int = node_a.next if node_a is None or node_a is None: return UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
299
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Optional[int] = [1] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 0, 0 UpperCAmelCase__ : int = ugly_nums[ia] * 2 UpperCAmelCase__ : Dict = ugly_nums[ia] * 3 UpperCAmelCase__ : Tuple = ugly_nums[ia] * 5 for _ in range(1 , lowerCAmelCase__ ): UpperCAmelCase__ : Dict = min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ugly_nums.append(lowerCAmelCase__ ) if next_num == next_a: ia += 1 UpperCAmelCase__ : Dict = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase__ : Any = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase__ : int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(2_0_0) = }""")
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase__ : List[Any] = [randint(-10_00 , 10_00 ) for i in range(10 )] UpperCAmelCase__ : Any = randint(-50_00 , 50_00 ) return (arr, r) UpperCamelCase__ = make_dataset() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, ...]: for triplet in permutations(lowerCAmelCase__ , 3 ): if sum(lowerCAmelCase__ ) == target: return tuple(sorted(lowerCAmelCase__ ) ) return (0, 0, 0) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase__ : Any = len(lowerCAmelCase__ ) for i in range(n - 1 ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase__ : List[Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase__ : Optional[Any] = ''' triplet_sum1(*dataset) ''' UpperCAmelCase__ : str = ''' triplet_sum2(*dataset) ''' UpperCAmelCase__ : Any = repeat(setup=lowerCAmelCase__ , stmt=lowerCAmelCase__ , repeat=5 , number=1_00_00 ) UpperCAmelCase__ : Optional[Any] = repeat(setup=lowerCAmelCase__ , stmt=lowerCAmelCase__ , repeat=5 , number=1_00_00 ) return (min(lowerCAmelCase__ ), min(lowerCAmelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase__ = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
299
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'trocr' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Union[str, Any] , _A : Dict=50_265 , _A : Any=1_024 , _A : List[Any]=12 , _A : Any=16 , _A : Optional[Any]=4_096 , _A : Tuple="gelu" , _A : Dict=512 , _A : str=0.1 , _A : Tuple=0.0 , _A : Union[str, Any]=0.0 , _A : Union[str, Any]=2 , _A : Tuple=0.0_2 , _A : Dict=0.0 , _A : Tuple=True , _A : Any=False , _A : int=True , _A : Optional[Any]=True , _A : Optional[Any]=1 , _A : str=0 , _A : List[Any]=2 , **_A : Any , ): '''simple docstring''' UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : Any = d_model UpperCAmelCase__ : Optional[int] = decoder_layers UpperCAmelCase__ : Dict = decoder_attention_heads UpperCAmelCase__ : str = decoder_ffn_dim UpperCAmelCase__ : Tuple = activation_function UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : int = dropout UpperCAmelCase__ : List[str] = attention_dropout UpperCAmelCase__ : int = activation_dropout UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : Optional[int] = decoder_layerdrop UpperCAmelCase__ : Tuple = use_cache UpperCAmelCase__ : int = scale_embedding UpperCAmelCase__ : Dict = use_learned_position_embeddings UpperCAmelCase__ : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
299
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
1
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ = 1_00_00_00 ) -> int: UpperCAmelCase__ : Optional[int] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowerCAmelCase__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
299
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
1
'''simple docstring''' import argparse import json from tqdm import tqdm def a__ ( ) -> List[Any]: UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=lowerCAmelCase__ , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=lowerCAmelCase__ , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=lowerCAmelCase__ , help='''where to store parsed gold_data_path file''' , ) UpperCAmelCase__ : Optional[int] = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: UpperCAmelCase__ : Dict = json.load(lowerCAmelCase__ ) for dpr_record in tqdm(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = dpr_record['''question'''] UpperCAmelCase__ : str = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(lowerCAmelCase__ ) + '''\n''' ) if __name__ == "__main__": main()
299
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
1
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCamelCase__ = { '''E''': 12.70, '''T''': 9.06, '''A''': 8.17, '''O''': 7.51, '''I''': 6.97, '''N''': 6.75, '''S''': 6.33, '''H''': 6.09, '''R''': 5.99, '''D''': 4.25, '''L''': 4.03, '''C''': 2.78, '''U''': 2.76, '''M''': 2.41, '''W''': 2.36, '''F''': 2.23, '''G''': 2.02, '''Y''': 1.97, '''P''': 1.93, '''B''': 1.29, '''V''': 0.98, '''K''': 0.77, '''J''': 0.15, '''X''': 0.15, '''Q''': 0.10, '''Z''': 0.07, } UpperCamelCase__ = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' UpperCamelCase__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def a__ ( lowerCAmelCase__ ) -> dict[str, int]: UpperCAmelCase__ : Union[str, Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def a__ ( lowerCAmelCase__ ) -> str: return x[0] def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[Any] = get_letter_count(lowerCAmelCase__ ) UpperCAmelCase__ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase__ ) UpperCAmelCase__ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = ''''''.join(freq_to_letter[freq] ) UpperCAmelCase__ : Tuple = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : int = get_frequency_order(lowerCAmelCase__ ) UpperCAmelCase__ : Any = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
1