code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> List[str]:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 384
UpperCAmelCase__ : Any = 7
if "tiny" in model_name:
UpperCAmelCase__ : List[str] = 96
UpperCAmelCase__ : List[Any] = (2, 2, 6, 2)
UpperCAmelCase__ : List[str] = (3, 6, 12, 24)
elif "small" in model_name:
UpperCAmelCase__ : List[Any] = 96
UpperCAmelCase__ : str = (2, 2, 18, 2)
UpperCAmelCase__ : int = (3, 6, 12, 24)
elif "base" in model_name:
UpperCAmelCase__ : List[str] = 128
UpperCAmelCase__ : Any = (2, 2, 18, 2)
UpperCAmelCase__ : str = (4, 8, 16, 32)
UpperCAmelCase__ : Optional[int] = 12
UpperCAmelCase__ : Dict = 512
elif "large" in model_name:
UpperCAmelCase__ : int = 192
UpperCAmelCase__ : str = (2, 2, 18, 2)
UpperCAmelCase__ : Union[str, Any] = (6, 12, 24, 48)
UpperCAmelCase__ : Dict = 12
UpperCAmelCase__ : List[Any] = 768
# set label information
UpperCAmelCase__ : Optional[Any] = 150
UpperCAmelCase__ : Tuple = '''huggingface/label-files'''
UpperCAmelCase__ : Dict = '''ade20k-id2label.json'''
UpperCAmelCase__ : Optional[int] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase__ : Optional[int] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
UpperCAmelCase__ : Tuple = {v: k for k, v in idalabel.items()}
UpperCAmelCase__ : Tuple = SwinConfig(
embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , num_heads=UpperCamelCase__ , window_size=UpperCamelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] , )
UpperCAmelCase__ : Dict = UperNetConfig(
backbone_config=UpperCamelCase__ , auxiliary_in_channels=UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , )
return config
def SCREAMING_SNAKE_CASE__ ( snake_case : Dict )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = []
# fmt: off
# stem
rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') )
rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') )
if i < 3:
rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') )
rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : Any )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = dct.pop(UpperCamelCase__ )
UpperCAmelCase__ : List[Any] = val
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Optional[int] )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase__ : str = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase__ : Union[str, Any] = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' )
UpperCAmelCase__ : Optional[Any] = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase__ : Any = in_proj_weight[:dim, :]
UpperCAmelCase__ : Optional[Any] = in_proj_bias[: dim]
UpperCAmelCase__ : Optional[Any] = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase__ : str = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase__ : List[Any] = in_proj_weight[
-dim :, :
]
UpperCAmelCase__ : Union[str, Any] = in_proj_bias[-dim :]
# fmt: on
def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> List[Any]:
'''simple docstring'''
UpperCAmelCase__ : str = x.shape
UpperCAmelCase__ : Union[str, Any] = x.reshape(UpperCamelCase__ , 4 , in_channel // 4 )
UpperCAmelCase__ : List[str] = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ )
return x
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> int:
'''simple docstring'''
UpperCAmelCase__ : List[str] = x.shape
UpperCAmelCase__ : Any = x.reshape(UpperCamelCase__ , in_channel // 4 , 4 )
UpperCAmelCase__ : Tuple = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ )
return x
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = x.shape[0]
UpperCAmelCase__ : Tuple = x.reshape(4 , in_channel // 4 )
UpperCAmelCase__ : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(UpperCamelCase__ )
return x
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> int:
'''simple docstring'''
UpperCAmelCase__ : str = x.shape[0]
UpperCAmelCase__ : List[Any] = x.reshape(in_channel // 4 , 4 )
UpperCAmelCase__ : Optional[Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(UpperCamelCase__ )
return x
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Union[str, Any] )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = {
'''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''',
'''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''',
'''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''',
'''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''',
}
UpperCAmelCase__ : int = model_name_to_url[model_name]
UpperCAmelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="cpu" , file_name=UpperCamelCase__ )[
'''state_dict'''
]
for name, param in state_dict.items():
print(UpperCamelCase__ , param.shape )
UpperCAmelCase__ : Optional[int] = get_upernet_config(UpperCamelCase__ )
UpperCAmelCase__ : List[str] = UperNetForSemanticSegmentation(UpperCamelCase__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
UpperCAmelCase__ : Union[str, Any] = state_dict.pop(UpperCamelCase__ )
if "bn" in key:
UpperCAmelCase__ : Optional[Any] = key.replace("bn" , "batch_norm" )
UpperCAmelCase__ : List[Any] = val
# rename keys
UpperCAmelCase__ : Optional[int] = create_rename_keys(UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_q_k_v(UpperCamelCase__ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
UpperCAmelCase__ : Optional[Any] = reverse_correct_unfold_reduction_order(UpperCamelCase__ )
if "norm" in key:
UpperCAmelCase__ : Tuple = reverse_correct_unfold_norm_order(UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ )
# verify on image
UpperCAmelCase__ : int = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
UpperCAmelCase__ : Dict = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("RGB" )
UpperCAmelCase__ : Optional[int] = SegformerImageProcessor()
UpperCAmelCase__ : List[Any] = processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values
with torch.no_grad():
UpperCAmelCase__ : Union[str, Any] = model(UpperCamelCase__ )
UpperCAmelCase__ : List[Any] = outputs.logits
print(logits.shape )
print("First values of logits:" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
UpperCAmelCase__ : Optional[int] = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] )
elif model_name == "upernet-swin-small":
UpperCAmelCase__ : str = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] )
elif model_name == "upernet-swin-base":
UpperCAmelCase__ : Union[str, Any] = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] )
elif model_name == "upernet-swin-large":
UpperCAmelCase__ : List[Any] = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase__ , atol=1E-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCamelCase__ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-swin-tiny""",
type=str,
choices=[F"""upernet-swin-{size}""" for size in ["""tiny""", """small""", """base""", """large"""]],
help="""Name of the Swin + UperNet model you\'d like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_lowerCAmelCase : int = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 352
|
"""simple docstring"""
import functools
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int:
'''simple docstring'''
UpperCAmelCase__ : List[str] = len(snake_case )
UpperCAmelCase__ : str = len(snake_case )
@functools.cache
def min_distance(snake_case : int , snake_case : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
"""simple docstring"""
import torch
from transformers import AutoModel
class lowerCAmelCase__ ( torch.nn.Module ):
def __init__( self : str , snake_case__ : List[str]="sayef/fsner-bert-base-uncased" ):
'''simple docstring'''
super(snake_case__ , self ).__init__()
UpperCAmelCase__ : int = AutoModel.from_pretrained(snake_case__ , return_dict=snake_case__ )
UpperCAmelCase__ : str = torch.nn.CosineSimilarity(3 , 1e-08 )
UpperCAmelCase__ : Optional[Any] = torch.nn.Softmax(dim=1 )
def __a ( self : Optional[Any] , **snake_case__ : Optional[Any] ):
'''simple docstring'''
return self.bert(**snake_case__ ).last_hidden_state
def __a ( self : Any , snake_case__ : Any ):
'''simple docstring'''
return token_embeddings.sum(2 , keepdim=snake_case__ )
def __a ( self : List[Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : str=1 ):
'''simple docstring'''
return self.softmax(T * self.cos(snake_case__ , snake_case__ ) )
def __a ( self : List[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : int = W_supports["sizes"].tolist()
UpperCAmelCase__ : str = W_supports["start_token_id"].item()
UpperCAmelCase__ : Dict = W_supports["end_token_id"].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCAmelCase__ : str = self.BERT(**snake_case__ )
UpperCAmelCase__ : Tuple = self.BERT(**snake_case__ )
UpperCAmelCase__ : int = None
UpperCAmelCase__ : Optional[int] = None
UpperCAmelCase__ : Tuple = W_supports["input_ids"] == start_token_id
UpperCAmelCase__ : List[Any] = W_supports["input_ids"] == end_token_id
for i, size in enumerate(snake_case__ ):
if i == 0:
UpperCAmelCase__ : str = 0
else:
UpperCAmelCase__ : Any = support_sizes[i - 1]
UpperCAmelCase__ : Dict = S[s : s + size][start_token_masks[s : s + size]]
UpperCAmelCase__ : Dict = S[s : s + size][end_token_masks[s : s + size]]
UpperCAmelCase__ : Optional[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCAmelCase__ : List[str] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCAmelCase__ : List[str] = torch.vstack((p_starts, p_start) )
UpperCAmelCase__ : str = torch.vstack((p_ends, p_end) )
else:
UpperCAmelCase__ : List[str] = p_start
UpperCAmelCase__ : List[Any] = p_end
return p_starts, p_ends
| 353
|
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class lowerCAmelCase__ ( __magic_name__ ):
def __a ( self : List[Any] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" )
UpperCAmelCase__ : Tuple = input_file.read()
UpperCAmelCase__ : Tuple = regexp.search(snake_case__ )
return match
def __a ( self : List[str] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL )
UpperCAmelCase__ : Dict = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase__ : int = regexp.finditer(snake_case__ )
UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = Path("./datasets" )
UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(snake_case__ ) ):
raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = Path("./datasets" )
UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_print_statements(str(snake_case__ ) ):
raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
| 298
| 0
|
"""simple docstring"""
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = {
"repo_name": ["test_repo1", "test_repo2", "test_repo3"],
"path": ["test_1.py", "test_2.py", "unit_test.py"],
"content": ["a " * 20, "a " * 30, "b " * 7],
}
UpperCAmelCase__ : int = Dataset.from_dict(_lowerCAmelCase )
return dataset
class lowerCAmelCase__ ( lowerCamelCase__ ):
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = get_dataset()
UpperCAmelCase__ : Any = make_duplicate_clusters(snake_case__ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = get_dataset()
UpperCAmelCase__ : List[str] = deduplicate_dataset(snake_case__ )
self.assertEqual(len(snake_case__ ) , 2 )
print(snake_case__ )
self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 )
self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , snake_case__ )
| 354
|
"""simple docstring"""
import numpy as np
import datasets
_lowerCAmelCase : Optional[int] = """
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
"""
_lowerCAmelCase : Tuple = """\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
"""
_lowerCAmelCase : Optional[int] = """
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{'mahalanobis': array([0.5])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __a ( self : Any ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ):
'''simple docstring'''
# convert to numpy arrays
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ )
UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T )
try:
UpperCAmelCase__ : str = np.linalg.inv(snake_case__ )
except np.linalg.LinAlgError:
UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ )
UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ )
UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 298
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"
),
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''xlm-roberta'''
def __init__( self : str , snake_case__ : int=3_0_5_2_2 , snake_case__ : str=7_6_8 , snake_case__ : str=1_2 , snake_case__ : Optional[Any]=1_2 , snake_case__ : List[str]=3_0_7_2 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : str=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : str=5_1_2 , snake_case__ : List[str]=2 , snake_case__ : List[str]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : int=1 , snake_case__ : Dict=0 , snake_case__ : Optional[int]=2 , snake_case__ : Optional[Any]="absolute" , snake_case__ : Optional[Any]=True , snake_case__ : Dict=None , **snake_case__ : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
UpperCAmelCase__ : Any = vocab_size
UpperCAmelCase__ : List[Any] = hidden_size
UpperCAmelCase__ : Optional[Any] = num_hidden_layers
UpperCAmelCase__ : str = num_attention_heads
UpperCAmelCase__ : List[str] = hidden_act
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Any = hidden_dropout_prob
UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase__ : List[str] = max_position_embeddings
UpperCAmelCase__ : Tuple = type_vocab_size
UpperCAmelCase__ : Union[str, Any] = initializer_range
UpperCAmelCase__ : Union[str, Any] = layer_norm_eps
UpperCAmelCase__ : str = position_embedding_type
UpperCAmelCase__ : Tuple = use_cache
UpperCAmelCase__ : Dict = classifier_dropout
class lowerCAmelCase__ ( __magic_name__ ):
@property
def __a ( self : int ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase__ : str = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase__ : int = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 355
|
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =IFPipeline
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''}
def __a ( self : Dict ):
'''simple docstring'''
return self._get_dummy_components()
def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ):
'''simple docstring'''
if str(snake_case__ ).startswith("mps" ):
UpperCAmelCase__ : str = torch.manual_seed(snake_case__ )
else:
UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
UpperCAmelCase__ : Tuple = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __a ( self : Tuple ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def __a ( self : Tuple ):
'''simple docstring'''
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __a ( self : Dict ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __a ( self : int ):
'''simple docstring'''
self._test_save_load_local()
def __a ( self : Any ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __a ( self : Optional[Any] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : str ):
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self : Tuple ):
'''simple docstring'''
# if
UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa )
UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("cuda" )
UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCAmelCase__ : Tuple = None
UpperCAmelCase__ : List[Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : List[Any] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : str = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Tuple = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : str = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Optional[Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : int = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : int = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : int = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Tuple = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : List[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Any:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 298
| 0
|
"""simple docstring"""
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : Union[str, Any] , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 3
UpperCAmelCase__ : Optional[int] = 2_5_0
UpperCAmelCase__ : Union[str, Any] = ids_tensor((batch_size, length) , lowercase_ )
UpperCAmelCase__ : Dict = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length
return input_ids, scores
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Dict = self._get_tensors(5 )
UpperCAmelCase__ : Any = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=1_0 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self._get_tensors(9 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
UpperCAmelCase__ , UpperCAmelCase__ : int = self._get_tensors(1_0 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = MaxLengthCriteria(max_length=1_0 )
UpperCAmelCase__ , UpperCAmelCase__ : str = self._get_tensors(5 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self._get_tensors(9 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._get_tensors(1_0 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self._get_tensors(5 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
UpperCAmelCase__ , UpperCAmelCase__ : int = self._get_tensors(9 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self._get_tensors(1_0 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
UpperCAmelCase__ : int = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 1_0 )
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._get_tensors(5 )
UpperCAmelCase__ : List[str] = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
UpperCAmelCase__ : int = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
def __a ( self : List[str] ):
'''simple docstring'''
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 )
with self.assertWarns(lowercase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 )
UpperCAmelCase__ : Tuple = validate_stopping_criteria(StoppingCriteriaList() , 1_1 )
self.assertEqual(len(lowercase_ ) , 1 )
| 356
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Optional[int] = {
"""vocab_file""": """vocab.txt""",
"""merges_file""": """bpe.codes""",
}
_lowerCAmelCase : List[Any] = {
"""vocab_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""",
},
"""merges_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""",
},
}
_lowerCAmelCase : int = {
"""vinai/phobert-base""": 256,
"""vinai/phobert-large""": 256,
}
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = set()
UpperCAmelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase__ : Dict = char
UpperCAmelCase__ : Tuple = set(snake_case )
return pairs
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ):
'''simple docstring'''
super().__init__(
bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase__ : Dict = vocab_file
UpperCAmelCase__ : Tuple = merges_file
UpperCAmelCase__ : List[Any] = {}
UpperCAmelCase__ : Dict = 0
UpperCAmelCase__ : int = 1
UpperCAmelCase__ : Dict = 2
UpperCAmelCase__ : Dict = 3
self.add_from_file(snake_case__ )
UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
with open(snake_case__ , encoding="utf-8" ) as merges_handle:
UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1]
UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges]
UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Dict = {}
def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
UpperCAmelCase__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ )
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1]
def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __a ( self : List[str] ):
'''simple docstring'''
return len(self.encoder )
def __a ( self : Any ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __a ( self : Dict , snake_case__ : Tuple ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
UpperCAmelCase__ : Any = get_pairs(snake_case__ )
if not pairs:
return token
while True:
UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram
UpperCAmelCase__ : Optional[Any] = []
UpperCAmelCase__ : Tuple = 0
while i < len(snake_case__ ):
try:
UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase__ : Dict = j
if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase__ : Dict = tuple(snake_case__ )
UpperCAmelCase__ : List[Any] = new_word
if len(snake_case__ ) == 1:
break
else:
UpperCAmelCase__ : Dict = get_pairs(snake_case__ )
UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ )
UpperCAmelCase__ : Optional[int] = word[:-4]
UpperCAmelCase__ : Union[str, Any] = word
return word
def __a ( self : List[Any] , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = []
UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ )
for token in words:
split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) )
return split_tokens
def __a ( self : Dict , snake_case__ : List[str] ):
'''simple docstring'''
return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) )
def __a ( self : List[Any] , snake_case__ : Any ):
'''simple docstring'''
return self.decoder.get(snake_case__ , self.unk_token )
def __a ( self : str , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip()
return out_string
def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCAmelCase__ : Tuple = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : str = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ):
copyfile(self.merges_file , snake_case__ )
return out_vocab_file, out_merge_file
def __a ( self : List[Any] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
try:
with open(snake_case__ , "r" , encoding="utf-8" ) as fd:
self.add_from_file(snake_case__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' )
return
UpperCAmelCase__ : Dict = f.readlines()
for lineTmp in lines:
UpperCAmelCase__ : Optional[int] = lineTmp.strip()
UpperCAmelCase__ : Tuple = line.rfind(" " )
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" )
UpperCAmelCase__ : Any = line[:idx]
UpperCAmelCase__ : str = len(self.encoder )
| 298
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : Dict = {
'''configuration_time_series_transformer''': [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TimeSeriesTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Tuple = [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TimeSeriesTransformerForPrediction''',
'''TimeSeriesTransformerModel''',
'''TimeSeriesTransformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
_lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 357
|
"""simple docstring"""
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowerCAmelCase__ :
SCREAMING_SNAKE_CASE_ =42
# setable values
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =None
@classmethod
def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ):
'''simple docstring'''
return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ )
@dataclass
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =42
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ):
SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers]
SCREAMING_SNAKE_CASE_ =42
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return True
@register_to_config
def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = dtype
def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ):
'''simple docstring'''
if common is None:
UpperCAmelCase__ : Any = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype )
UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , )
def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ):
'''simple docstring'''
return sample
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=snake_case__ , timesteps=snake_case__ , )
def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ):
'''simple docstring'''
UpperCAmelCase__ : int = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
UpperCAmelCase__ : Union[str, Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) )
elif variance_type == "fixed_large":
UpperCAmelCase__ : List[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
UpperCAmelCase__ : List[str] = variance
UpperCAmelCase__ : Optional[Any] = state.common.betas[t]
UpperCAmelCase__ : Any = (predicted_variance + 1) / 2
UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log
return variance
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = timestep
if key is None:
UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 )
else:
UpperCAmelCase__ : int = None
# 1. compute alphas, betas
UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase__ : List[Any] = model_output
elif self.config.prediction_type == "v_prediction":
UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '
" for the FlaxDDPMScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 )
UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ )
def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 298
| 0
|
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
_lowerCAmelCase : Tuple = '''
Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.
In March 2021, Hugging Face raised $40 million in a Series B funding round.[3]
On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]
'''
class lowerCAmelCase__ ( unittest.TestCase , a_ ):
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = load_tool("text-question-answering" )
self.tool.setup()
UpperCAmelCase__ : Optional[Any] = load_tool("text-question-answering" , remote=lowercase_ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = self.tool(lowercase_ , "What did Hugging Face do in April 2021?" )
self.assertEqual(lowercase_ , "launched the BigScience Research Workshop" )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.remote_tool(lowercase_ , "What did Hugging Face do in April 2021?" )
self.assertEqual(lowercase_ , "launched the BigScience Research Workshop" )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : int = self.tool(text=lowercase_ , question="What did Hugging Face do in April 2021?" )
self.assertEqual(lowercase_ , "launched the BigScience Research Workshop" )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.remote_tool(text=lowercase_ , question="What did Hugging Face do in April 2021?" )
self.assertEqual(lowercase_ , "launched the BigScience Research Workshop" )
| 358
|
"""simple docstring"""
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class lowerCAmelCase__ :
def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ):
'''simple docstring'''
UpperCAmelCase__ : str = parent
UpperCAmelCase__ : Tuple = batch_size
UpperCAmelCase__ : Dict = seq_length
UpperCAmelCase__ : Union[str, Any] = act_dim
UpperCAmelCase__ : Dict = state_dim
UpperCAmelCase__ : Optional[Any] = hidden_size
UpperCAmelCase__ : List[str] = max_length
UpperCAmelCase__ : int = is_training
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 )
UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) )
UpperCAmelCase__ : Optional[int] = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def __a ( self : int ):
'''simple docstring'''
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ =()
SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
SCREAMING_SNAKE_CASE_ =False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = DecisionTransformerModelTester(self )
UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : List[str] ):
'''simple docstring'''
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase__ : str = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform
UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Optional[int] = model.config
torch.manual_seed(0 )
UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset()
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ )
UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
UpperCAmelCase__ : Union[str, Any] = state
UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 )
for step in range(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model(
states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ),
1.0,
False,
{},
)
UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1]
UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 )
UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward
UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
UpperCAmelCase__ : Tuple = torch.cat(
[timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
| 298
| 0
|
"""simple docstring"""
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
_lowerCAmelCase : Any = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : int = os.getenv("SM_HP_MP_PARAMETERS" , "{}" )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
UpperCAmelCase__ : List[str] = json.loads(_lowercase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
UpperCAmelCase__ : Dict = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
UpperCAmelCase__ : Any = json.loads(_lowercase )
if not mpi_options.get("sagemaker_mpi_enabled" , _lowercase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec("smdistributed" ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =field(
default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , )
def __a ( self : List[Any] ):
'''simple docstring'''
super().__post_init__()
warnings.warn(
"`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use "
"`TrainingArguments` instead." , __A , )
@cached_property
def __a ( self : Tuple ):
'''simple docstring'''
logger.info("PyTorch: setting up devices" )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
"torch.distributed process group is initialized, but local_rank == -1. "
"In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" )
if self.no_cuda:
UpperCAmelCase__ : Union[str, Any] = torch.device("cpu" )
UpperCAmelCase__ : int = 0
elif is_sagemaker_model_parallel_available():
UpperCAmelCase__ : Optional[Any] = smp.local_rank()
UpperCAmelCase__ : Any = torch.device("cuda" , __A )
UpperCAmelCase__ : Union[str, Any] = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta )
UpperCAmelCase__ : Tuple = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) )
UpperCAmelCase__ : Optional[int] = torch.device("cuda" , self.local_rank )
UpperCAmelCase__ : Dict = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
UpperCAmelCase__ : Tuple = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
UpperCAmelCase__ : str = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta )
UpperCAmelCase__ : List[str] = torch.device("cuda" , self.local_rank )
UpperCAmelCase__ : int = 1
if device.type == "cuda":
torch.cuda.set_device(__A )
return device
@property
def __a ( self : Optional[int] ):
'''simple docstring'''
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def __a ( self : str ):
'''simple docstring'''
return not is_sagemaker_model_parallel_available()
@property
def __a ( self : int ):
'''simple docstring'''
return False
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : Tuple = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 298
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = {
"""task_specific_params""": {
"""summarization""": {"""length_penalty""": 1.0, """max_length""": 1_2_8, """min_length""": 1_2, """num_beams""": 4},
"""summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_4_2, """min_length""": 5_6, """num_beams""": 4},
"""summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 6_2, """min_length""": 1_1, """num_beams""": 6},
}
}
UpperCAmelCase__ : Optional[Any] = {
"""task_specific_params.summarization.length_penalty""": 1.0,
"""task_specific_params.summarization.max_length""": 1_2_8,
"""task_specific_params.summarization.min_length""": 1_2,
"""task_specific_params.summarization.num_beams""": 4,
"""task_specific_params.summarization_cnn.length_penalty""": 2.0,
"""task_specific_params.summarization_cnn.max_length""": 1_4_2,
"""task_specific_params.summarization_cnn.min_length""": 5_6,
"""task_specific_params.summarization_cnn.num_beams""": 4,
"""task_specific_params.summarization_xsum.length_penalty""": 1.0,
"""task_specific_params.summarization_xsum.max_length""": 6_2,
"""task_specific_params.summarization_xsum.min_length""": 1_1,
"""task_specific_params.summarization_xsum.num_beams""": 6,
}
self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : str = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , x.transpose() ) )
UpperCAmelCase__ : List[Any] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = np.random.randn(3 , 4 )
UpperCAmelCase__ : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) )
UpperCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase__ : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = np.random.randn(3 , 4 )
UpperCAmelCase__ : Dict = tf.constant(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) )
UpperCAmelCase__ : List[Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase__ : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = np.random.randn(3 , 4 )
UpperCAmelCase__ : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE ) ) ) )
UpperCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 )
UpperCAmelCase__ : int = jnp.array(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : str = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) )
UpperCAmelCase__ : Any = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) , np.reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) ) )
@require_torch
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : int = np.random.randn(3 , 4 )
UpperCAmelCase__ : str = torch.tensor(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) )
UpperCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 )
UpperCAmelCase__ : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ).numpy() ) )
@require_tf
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : int = np.random.randn(3 , 4 )
UpperCAmelCase__ : Union[str, Any] = tf.constant(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) )
UpperCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase__ : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ).numpy() ) )
@require_flax
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 )
UpperCAmelCase__ : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) )
UpperCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase__ : List[str] = jnp.array(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) ) ) )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.squeeze(_SCREAMING_SNAKE_CASE ) ) )
UpperCAmelCase__ : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) )
@require_torch
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = np.random.randn(1 , 3 , 4 )
UpperCAmelCase__ : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) )
UpperCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase__ : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) )
@require_tf
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = np.random.randn(1 , 3 , 4 )
UpperCAmelCase__ : Dict = tf.constant(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) )
UpperCAmelCase__ : Dict = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase__ : List[str] = tf.constant(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) )
@require_flax
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = np.random.randn(1 , 3 , 4 )
UpperCAmelCase__ : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE ) ) ) )
UpperCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase__ : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Dict = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) )
@require_torch
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = np.random.randn(3 , 4 )
UpperCAmelCase__ : str = torch.tensor(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) )
@require_tf
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = np.random.randn(3 , 4 )
UpperCAmelCase__ : List[str] = tf.constant(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) )
@require_flax
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = np.random.randn(3 , 4 )
UpperCAmelCase__ : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE )
self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
| 360
|
"""simple docstring"""
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
_lowerCAmelCase : Optional[int] = get_logger(__name__)
_lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md"""
_lowerCAmelCase : Dict = uuida().hex
_lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f'; torch/{_torch_version}'
if is_flax_available():
ua += f'; jax/{_jax_version}'
ua += f'; flax/{_flax_version}'
if is_onnx_available():
ua += f'; onnxruntime/{_onnxruntime_version}'
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(snake_case , snake_case ):
ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() )
elif isinstance(snake_case , snake_case ):
ua += "; " + user_agent
return ua
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]:
'''simple docstring'''
if token is None:
UpperCAmelCase__ : Optional[Any] = HfFolder.get_token()
if organization is None:
UpperCAmelCase__ : Tuple = whoami(snake_case )["name"]
return f'{username}/{model_id}'
else:
return f'{organization}/{model_id}'
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]:
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"Modelcard rendering is based on Jinja templates."
" Please make sure to have `jinja` installed before using `create_model_card`."
" To install it, please run `pip install Jinja2`." )
if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]:
return
UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None
UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case )
UpperCAmelCase__ : Tuple = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None
) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , )
UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" )
model_card.save(snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple:
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() )
UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case )
if search is None:
return None
UpperCAmelCase__ : Dict = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
_lowerCAmelCase : Dict = os.path.expanduser(
os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface"""))
)
_lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""")
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None:
'''simple docstring'''
if new_cache_dir is None:
UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE
if old_cache_dir is None:
UpperCAmelCase__ : str = old_diffusers_cache
UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser()
UpperCAmelCase__ : Any = Path(snake_case ).expanduser()
for old_blob_path in old_cache_dir.glob("**/blobs/*" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case )
new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
os.replace(snake_case , snake_case )
try:
os.symlink(snake_case , snake_case )
except OSError:
logger.warning(
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
_lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""")
if not os.path.isfile(cache_version_file):
_lowerCAmelCase : Any = 0
else:
with open(cache_version_file) as f:
try:
_lowerCAmelCase : List[str] = int(f.read())
except ValueError:
_lowerCAmelCase : Optional[int] = 0
if cache_version < 1:
_lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"""The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """
"""existing cached models. This is a one-time operation, you can interrupt it or run it """
"""later by calling `diffusers.utils.hub_utils.move_cache()`."""
)
try:
move_cache()
except Exception as e:
_lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__))
logger.error(
F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
"""file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """
"""message and we will do our best to help."""
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, """w""") as f:
f.write("""1""")
except Exception:
logger.warning(
F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
"""the directory exists and can be written to."""
)
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str:
'''simple docstring'''
if variant is not None:
UpperCAmelCase__ : int = weights_name.split("." )
UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:]
UpperCAmelCase__ : Optional[int] = ".".join(snake_case )
return weights_name
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *,
snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : List[str] = str(snake_case )
if os.path.isfile(snake_case ):
return pretrained_model_name_or_path
elif os.path.isdir(snake_case ):
if os.path.isfile(os.path.join(snake_case , snake_case ) ):
# Load from a PyTorch checkpoint
UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(snake_case , snake_case , snake_case ) ):
UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case )
return model_file
else:
raise EnvironmentError(
f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" )
):
try:
UpperCAmelCase__ : List[Any] = hf_hub_download(
snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
warnings.warn(
f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , )
return model_file
except: # noqa: E722
warnings.warn(
f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , )
try:
# 2. Load model file as usual
UpperCAmelCase__ : Dict = hf_hub_download(
snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
"login`." )
except RevisionNotFoundError:
raise EnvironmentError(
f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '
"this model name. Check the model page at "
f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' )
except EntryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' )
except HTTPError as err:
raise EnvironmentError(
f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' )
except ValueError:
raise EnvironmentError(
f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'
f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'
f' directory containing a file named {weights_name} or'
" \nCheckout your internet connection or see how to run the library in"
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." )
except EnvironmentError:
raise EnvironmentError(
f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '
f'containing a file named {weights_name}' )
| 298
| 0
|
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
_lowerCAmelCase : str = """\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"""
class lowerCAmelCase__ ( unittest.TestCase , __magic_name__ ):
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = load_tool("text-question-answering" )
self.tool.setup()
UpperCAmelCase__ : Optional[Any] = load_tool("text-question-answering" , remote=lowerCamelCase_ )
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.tool(lowerCamelCase_ , "What did Hugging Face do in April 2021?" )
self.assertEqual(lowerCamelCase_ , "launched the BigScience Research Workshop" )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.remote_tool(lowerCamelCase_ , "What did Hugging Face do in April 2021?" )
self.assertEqual(lowerCamelCase_ , "launched the BigScience Research Workshop" )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.tool(text=lowerCamelCase_ , question="What did Hugging Face do in April 2021?" )
self.assertEqual(lowerCamelCase_ , "launched the BigScience Research Workshop" )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = self.remote_tool(text=lowerCamelCase_ , question="What did Hugging Face do in April 2021?" )
self.assertEqual(lowerCamelCase_ , "launched the BigScience Research Workshop" )
| 361
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss
UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy()
UpperCAmelCase__ : List[Any] = -21.22_8168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
| 298
| 0
|
"""simple docstring"""
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 0
@slow
def __a ( self : Any ):
'''simple docstring'''
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(snake_case__ ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
self.assertIsInstance(snake_case__ , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(snake_case__ ) , 0 )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 1_2 )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 2_0 )
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
# Check that tokenizer_type ≠ model_type
UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ , config=snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 1_2 )
def __a ( self : Tuple ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(snake_case__ , "vocab.txt" ) )
UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="bert" , use_fast=snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json" , os.path.join(snake_case__ , "vocab.json" ) )
shutil.copy("./tests/fixtures/merges.txt" , os.path.join(snake_case__ , "merges.txt" ) )
UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="gpt2" , use_fast=snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
@require_tokenizers
def __a ( self : List[Any] ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(snake_case__ , "vocab.txt" ) )
UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="bert" )
self.assertIsInstance(snake_case__ , snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json" , os.path.join(snake_case__ , "vocab.json" ) )
shutil.copy("./tests/fixtures/merges.txt" , os.path.join(snake_case__ , "merges.txt" ) )
UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ , tokenizer_type="gpt2" )
self.assertIsInstance(snake_case__ , snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
with pytest.raises(snake_case__ ):
AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" )
@require_tokenizers
def __a ( self : Union[str, Any] ):
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
UpperCAmelCase__ : Any = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
if isinstance(snake_case__ , snake_case__ ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , snake_case__ )
else:
self.assertEqual(tokenizer.do_lower_case , snake_case__ )
self.assertEqual(tokenizer.model_max_length , 5_1_2 )
@require_tokenizers
def __a ( self : Optional[int] ):
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
snake_case__ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ):
UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" )
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = TOKENIZER_MAPPING.values()
UpperCAmelCase__ : Any = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(snake_case__ )
@require_tokenizers
def __a ( self : Any ):
'''simple docstring'''
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=snake_case__ ) , snake_case__ )
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , snake_case__ )
@require_tokenizers
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : str = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=snake_case__ )
UpperCAmelCase__ : Tuple = '''Hello, world. How are you?'''
UpperCAmelCase__ : Optional[int] = tokenizer.tokenize(snake_case__ )
self.assertEqual("[UNK]" , tokens[0] )
UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=snake_case__ )
UpperCAmelCase__ : int = tokenizer.tokenize(snake_case__ )
self.assertEqual("[UNK]" , tokens[0] )
@require_tokenizers
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" )
self.assertEqual(type(snake_case__ ) , snake_case__ )
self.assertEqual(tokenizer.model_max_length , 5_1_2 )
self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 )
self.assertEqual(tokenizer.unk_token , "[UNK]" )
self.assertEqual(tokenizer.padding_side , "right" )
self.assertEqual(tokenizer.truncation_side , "right" )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 1_2 )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("ctrl" )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(snake_case__ , snake_case__ )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = get_tokenizer_config("bert-base-cased" )
UpperCAmelCase__ : Dict = config.pop("_commit_hash" , snake_case__ )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(snake_case__ , {"do_lower_case": False} )
# This model does not have a tokenizer_config so we get back an empty dict.
UpperCAmelCase__ : List[str] = get_tokenizer_config(snake_case__ )
self.assertDictEqual(snake_case__ , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCAmelCase__ : Optional[Any] = get_tokenizer_config(snake_case__ )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["tokenizer_class"] , "BertTokenizer" )
def __a ( self : Dict ):
'''simple docstring'''
try:
AutoConfig.register("custom" , snake_case__ )
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
UpperCAmelCase__ : Optional[Any] = CustomTokenizer.from_pretrained(snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def __a ( self : Optional[int] ):
'''simple docstring'''
try:
AutoConfig.register("custom" , snake_case__ )
# Can register in two steps
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
snake_case__ , slow_tokenizer_class=snake_case__ , fast_tokenizer_class=snake_case__ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(snake_case__ ):
AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ : Optional[int] = BertTokenizerFast.from_pretrained(snake_case__ )
bert_tokenizer.save_pretrained(snake_case__ )
UpperCAmelCase__ : List[str] = CustomTokenizerFast.from_pretrained(snake_case__ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(snake_case__ , use_fast=snake_case__ )
self.assertIsInstance(snake_case__ , snake_case__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def __a ( self : Dict ):
'''simple docstring'''
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ )
UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(snake_case__ )
UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(snake_case__ , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" )
@require_tokenizers
def __a ( self : Dict ):
'''simple docstring'''
class lowerCAmelCase__ ( lowerCamelCase__ ):
SCREAMING_SNAKE_CASE_ =False
class lowerCAmelCase__ ( lowerCamelCase__ ):
SCREAMING_SNAKE_CASE_ =NewTokenizer
SCREAMING_SNAKE_CASE_ =False
try:
AutoConfig.register("custom" , snake_case__ )
AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ )
AutoTokenizer.register(snake_case__ , fast_tokenizer_class=snake_case__ )
# If remote code is not set, the default is to use local
UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertFalse(tokenizer.special_attribute_present )
UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertFalse(tokenizer.special_attribute_present )
UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
self.assertTrue(tokenizer.special_attribute_present )
UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=snake_case__ , use_fast=snake_case__ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
with self.assertRaisesRegex(
snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ):
UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("bert-base" )
def __a ( self : List[str] ):
'''simple docstring'''
with self.assertRaisesRegex(
snake_case__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case__ , revision="aaaaaa" )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
with RequestCounter() as counter:
UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 362
|
"""simple docstring"""
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = parent
UpperCAmelCase__ : int = batch_size
UpperCAmelCase__ : int = seq_length
UpperCAmelCase__ : List[str] = is_training
UpperCAmelCase__ : Union[str, Any] = use_input_mask
UpperCAmelCase__ : Optional[Any] = use_token_type_ids
UpperCAmelCase__ : Any = use_labels
UpperCAmelCase__ : List[Any] = vocab_size
UpperCAmelCase__ : Any = embedding_size
UpperCAmelCase__ : List[str] = hidden_size
UpperCAmelCase__ : List[Any] = num_hidden_layers
UpperCAmelCase__ : int = num_hidden_groups
UpperCAmelCase__ : Union[str, Any] = num_attention_heads
UpperCAmelCase__ : List[str] = intermediate_size
UpperCAmelCase__ : Optional[Any] = hidden_act
UpperCAmelCase__ : List[Any] = hidden_dropout_prob
UpperCAmelCase__ : Tuple = attention_probs_dropout_prob
UpperCAmelCase__ : str = max_position_embeddings
UpperCAmelCase__ : Any = type_vocab_size
UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = initializer_range
UpperCAmelCase__ : Tuple = num_labels
UpperCAmelCase__ : List[str] = num_choices
UpperCAmelCase__ : Union[str, Any] = scope
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : Optional[int] = None
UpperCAmelCase__ : Any = None
if self.use_labels:
UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self : Any ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : str = AlbertModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[int] = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_labels
UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : str = self.num_labels
UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_choices
UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Tuple = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[Any] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': AlbertModel,
'''fill-mask''': AlbertForMaskedLM,
'''question-answering''': AlbertForQuestionAnswering,
'''text-classification''': AlbertForSequenceClassification,
'''token-classification''': AlbertForTokenClassification,
'''zero-shot''': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =True
def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if model_class in get_values(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ )
UpperCAmelCase__ : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case__ )
return inputs_dict
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Dict = AlbertModelTester(self )
UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case__ )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase__ : Dict = type
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" )
UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , snake_case__ )
UpperCAmelCase__ : Union[str, Any] = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
| 298
| 0
|
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
_lowerCAmelCase : Tuple = '''\
@inproceedings{snover-etal-2006-study,
title = "A Study of Translation Edit Rate with Targeted Human Annotation",
author = "Snover, Matthew and
Dorr, Bonnie and
Schwartz, Rich and
Micciulla, Linnea and
Makhoul, John",
booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",
month = aug # " 8-12",
year = "2006",
address = "Cambridge, Massachusetts, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2006.amta-papers.25",
pages = "223--231",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
_lowerCAmelCase : List[str] = '''\
TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a
hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu
(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found
here: https://github.com/jhclark/tercom.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.
'''
_lowerCAmelCase : List[Any] = '''
Produces TER scores alongside the number of edits and reference length.
Args:
predictions (list of str): The system stream (a sequence of segments).
references (list of list of str): A list of one or more reference streams (each a sequence of segments).
normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.
support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,
as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.
Only applies if `normalized = True`. Defaults to `False`.
case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.
Returns:
\'score\' (float): TER score (num_edits / sum_ref_lengths * 100)
\'num_edits\' (int): The cumulative number of edits
\'ref_length\' (float): The cumulative average reference length
Examples:
Example 1:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}
Example 2:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... case_sensitive=True)
>>> print(results)
{\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}
Example 3:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... normalized=True,
... case_sensitive=True)
>>> print(results)
{\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}
Example 4:
>>> predictions = ["does this sentence match??",
... "what about this sentence?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}
Example 5:
>>> predictions = ["does this sentence match??",
... "what about this sentence?",
... "What did the TER metric user say to the developer?"]
>>> references = [["does this sentence match", "does this sentence match!?!"],
... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],
... ["Your jokes are...", "...TERrible"]]
>>> ter = datasets.load_metric("ter")
>>> results = ter.compute(predictions=predictions,
... references=references,
... ignore_punct=True,
... case_sensitive=False)
>>> print(results)
{\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __a ( self : List[Any] ):
'''simple docstring'''
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[
"https://github.com/jhclark/tercom",
] , )
def __a ( self : Dict , snake_case__ : str , snake_case__ : Dict , snake_case__ : str = False , snake_case__ : Any = False , snake_case__ : List[Any] = False , snake_case__ : List[Any] = False , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = len(references[0] )
if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
UpperCAmelCase__ : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )]
UpperCAmelCase__ : Union[str, Any] = TER(
normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , )
UpperCAmelCase__ : Optional[Any] = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 363
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any:
'''simple docstring'''
UpperCAmelCase__ : List[str] = [1]
for i in range(2 , snake_case ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCAmelCase__ : Union[str, Any] = []
UpperCAmelCase__ : str = list(range(snake_case ) )
# Find permutation
while factorials:
UpperCAmelCase__ : str = factorials.pop()
UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCAmelCase : str = {
"""configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""]
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Any = ["""RemBertTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : str = ["""RemBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Any = [
"""REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RemBertForCausalLM""",
"""RemBertForMaskedLM""",
"""RemBertForMultipleChoice""",
"""RemBertForQuestionAnswering""",
"""RemBertForSequenceClassification""",
"""RemBertForTokenClassification""",
"""RemBertLayer""",
"""RemBertModel""",
"""RemBertPreTrainedModel""",
"""load_tf_weights_in_rembert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : List[str] = [
"""TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRemBertForCausalLM""",
"""TFRemBertForMaskedLM""",
"""TFRemBertForMultipleChoice""",
"""TFRemBertForQuestionAnswering""",
"""TFRemBertForSequenceClassification""",
"""TFRemBertForTokenClassification""",
"""TFRemBertLayer""",
"""TFRemBertModel""",
"""TFRemBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 364
|
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
_lowerCAmelCase : Union[str, Any] = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ):
'''simple docstring'''
UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0}
UpperCAmelCase__ : List[str] = parent
UpperCAmelCase__ : List[str] = batch_size
UpperCAmelCase__ : Optional[Any] = num_channels
UpperCAmelCase__ : Any = image_size
UpperCAmelCase__ : int = min_resolution
UpperCAmelCase__ : Tuple = max_resolution
UpperCAmelCase__ : Optional[int] = size
UpperCAmelCase__ : Optional[int] = do_normalize
UpperCAmelCase__ : str = do_convert_rgb
UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def __a ( self : str ):
'''simple docstring'''
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : int = PixaStructImageProcessingTester(self )
@property
def __a ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image()
UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
UpperCAmelCase__ : Dict = 2_0_4_8
UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def __a ( self : List[Any] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : List[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : str = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : List[Any] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
UpperCAmelCase__ : Optional[int] = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ : List[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
UpperCAmelCase__ : Optional[Any] = "Hello"
UpperCAmelCase__ : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : Dict = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : Dict ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , np.ndarray )
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : Dict = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : List[str] = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : Optional[int] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , torch.Tensor )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : str = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 )
UpperCAmelCase__ : Optional[int] = 3
@property
def __a ( self : int ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) )
def __a ( self : int ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : Dict = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 298
| 0
|
"""simple docstring"""
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("""Googling.....""")
_lowerCAmelCase : Optional[int] = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:])
_lowerCAmelCase : Optional[Any] = requests.get(url, headers={"""UserAgent""": UserAgent().random})
# res.raise_for_status()
with open("""project1a.html""", """wb""") as out_file: # only for knowing the class
for data in res.iter_content(10_000):
out_file.write(data)
_lowerCAmelCase : Tuple = BeautifulSoup(res.text, """html.parser""")
_lowerCAmelCase : Union[str, Any] = list(soup.select(""".eZt8xd"""))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("""href"""))
else:
webbrowser.open(F"""https://google.com{link.get("href")}""")
| 365
|
"""simple docstring"""
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any:
'''simple docstring'''
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : int = "mock-s3-bucket"
UpperCAmelCase__ : Any = f's3://{mock_bucket}'
UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case )
assert dataset_path.startswith("s3://" ) is False
UpperCAmelCase__ : str = "./local/path"
UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case )
assert dataset_path == new_dataset_path
def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case )
assert is_remote is True
UpperCAmelCase__ : str = fsspec.filesystem("file" )
UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case )
assert is_remote is False
@pytest.mark.parametrize("compression_fs_class" , snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file}
UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol]
if input_path is None:
UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, '
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(snake_case )
UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case )
assert isinstance(snake_case , snake_case )
UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case )
UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )]
assert fs.glob("*" ) == [expected_filename]
with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize("protocol" , ["zip", "gzip"] )
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path}
UpperCAmelCase__ : int = compressed_file_paths[protocol]
UpperCAmelCase__ : Any = "dataset.jsonl"
UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}'
UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case )
assert fs.isfile(snake_case )
assert not fs.isfile("non_existing_" + member_file_path )
@pytest.mark.integration
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case )
UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case )
assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"]
assert hffs.isdir("data" )
assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" )
with open(snake_case ) as f:
assert hffs.open("data/text_data.txt" , "r" ).read() == f.read()
def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : Tuple = "bz2"
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(snake_case , snake_case , clobber=snake_case )
with pytest.warns(snake_case ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(snake_case ) == 1
assert (
str(warning_info[0].message )
== f'A filesystem protocol was already set for {protocol} and will be overwritten.'
)
| 298
| 0
|
"""simple docstring"""
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[Any] , snake_case : Optional[int] )-> str:
UpperCAmelCase__ : List[str] = OmegaConf.load(lowerCAmelCase__ )
UpperCAmelCase__ : Optional[int] = torch.load(lowerCAmelCase__ , map_location="cpu" )["""model"""]
UpperCAmelCase__ : List[str] = list(state_dict.keys() )
# extract state_dict for VQVAE
UpperCAmelCase__ : Dict = {}
UpperCAmelCase__ : Dict = """first_stage_model."""
for key in keys:
if key.startswith(lowerCAmelCase__ ):
UpperCAmelCase__ : List[Any] = state_dict[key]
# extract state_dict for UNetLDM
UpperCAmelCase__ : List[str] = {}
UpperCAmelCase__ : List[str] = """model.diffusion_model."""
for key in keys:
if key.startswith(lowerCAmelCase__ ):
UpperCAmelCase__ : Optional[int] = state_dict[key]
UpperCAmelCase__ : Dict = config.model.params.first_stage_config.params
UpperCAmelCase__ : List[Any] = config.model.params.unet_config.params
UpperCAmelCase__ : Optional[int] = VQModel(**lowerCAmelCase__ ).eval()
vqvae.load_state_dict(lowerCAmelCase__ )
UpperCAmelCase__ : Tuple = UNetLDMModel(**lowerCAmelCase__ ).eval()
unet.load_state_dict(lowerCAmelCase__ )
UpperCAmelCase__ : Optional[Any] = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowerCAmelCase__ , )
UpperCAmelCase__ : Union[str, Any] = LDMPipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
pipeline.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
_lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("""--checkpoint_path""", type=str, required=True)
parser.add_argument("""--config_path""", type=str, required=True)
parser.add_argument("""--output_path""", type=str, required=True)
_lowerCAmelCase : List[Any] = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 366
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : List[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''megatron-bert'''
def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase__ : str = vocab_size
UpperCAmelCase__ : str = hidden_size
UpperCAmelCase__ : List[str] = num_hidden_layers
UpperCAmelCase__ : Optional[int] = num_attention_heads
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Tuple = hidden_dropout_prob
UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : Any = max_position_embeddings
UpperCAmelCase__ : Dict = type_vocab_size
UpperCAmelCase__ : Optional[int] = initializer_range
UpperCAmelCase__ : int = layer_norm_eps
UpperCAmelCase__ : Optional[Any] = position_embedding_type
UpperCAmelCase__ : Any = use_cache
| 298
| 0
|
"""simple docstring"""
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCAmelCase__ :
def __init__( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=1_3 , snake_case__ : Tuple=3_0 , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=3 , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Tuple=3_2 , snake_case__ : Dict=5 , snake_case__ : int=4 , snake_case__ : List[Any]=3_7 , snake_case__ : List[str]="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : str=1_0 , snake_case__ : List[str]=0.02 , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=2 , ):
'''simple docstring'''
UpperCAmelCase__ : Any = parent
UpperCAmelCase__ : Optional[int] = batch_size
UpperCAmelCase__ : Union[str, Any] = image_size
UpperCAmelCase__ : Tuple = patch_size
UpperCAmelCase__ : Optional[int] = num_channels
UpperCAmelCase__ : Any = is_training
UpperCAmelCase__ : List[str] = use_labels
UpperCAmelCase__ : str = hidden_size
UpperCAmelCase__ : Optional[Any] = num_hidden_layers
UpperCAmelCase__ : List[str] = num_attention_heads
UpperCAmelCase__ : List[Any] = intermediate_size
UpperCAmelCase__ : Dict = hidden_act
UpperCAmelCase__ : int = hidden_dropout_prob
UpperCAmelCase__ : Dict = attention_probs_dropout_prob
UpperCAmelCase__ : List[str] = type_sequence_label_size
UpperCAmelCase__ : Optional[Any] = initializer_range
UpperCAmelCase__ : Dict = scope
UpperCAmelCase__ : List[str] = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ : Optional[Any] = (image_size // patch_size) ** 2
UpperCAmelCase__ : Tuple = num_patches + 1
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : Optional[int] = None
if self.use_labels:
UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : List[str] = self.get_config()
return config, pixel_values, labels
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __a ( self : Dict , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = ViTModel(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
UpperCAmelCase__ : str = model(UpperCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = ViTForMaskedImageModeling(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
UpperCAmelCase__ : Tuple = model(UpperCamelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ : Tuple = 1
UpperCAmelCase__ : List[Any] = ViTForMaskedImageModeling(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : List[Any] = model(UpperCamelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.type_sequence_label_size
UpperCAmelCase__ : str = ViTForImageClassification(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
UpperCAmelCase__ : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase__ : Dict = 1
UpperCAmelCase__ : List[str] = ViTForImageClassification(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Optional[int] = model(UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
(
UpperCAmelCase__
) : Optional[Any] = config_and_inputs
UpperCAmelCase__ : List[str] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =True
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = ViTModelTester(self )
UpperCAmelCase__ : Any = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=3_7 )
def __a ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def __a ( self : int ):
'''simple docstring'''
pass
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : List[str] = model_class(UpperCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : str = model_class(UpperCamelCase__ )
UpperCAmelCase__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase__ : int = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCamelCase__ )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ )
@slow
def __a ( self : List[Any] ):
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : str = ViTModel.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : Optional[Any] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(UpperCamelCase__ )
UpperCAmelCase__ : Optional[int] = self.default_image_processor
UpperCAmelCase__ : List[str] = prepare_img()
UpperCAmelCase__ : Union[str, Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : str = model(**UpperCamelCase__ )
# verify the logits
UpperCAmelCase__ : Dict = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , UpperCamelCase__ )
UpperCAmelCase__ : List[str] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
@slow
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : str = ViTModel.from_pretrained("facebook/dino-vits8" ).to(UpperCamelCase__ )
UpperCAmelCase__ : Dict = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=4_8_0 )
UpperCAmelCase__ : str = prepare_img()
UpperCAmelCase__ : Optional[Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" )
UpperCAmelCase__ : Tuple = inputs.pixel_values.to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Tuple = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ )
# verify the logits
UpperCAmelCase__ : List[Any] = torch.Size((1, 3_6_0_1, 3_8_4) )
self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ )
UpperCAmelCase__ : Any = torch.tensor(
[[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" )
UpperCAmelCase__ : List[str] = self.default_image_processor
UpperCAmelCase__ : Optional[Any] = prepare_img()
UpperCAmelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="pt" )
UpperCAmelCase__ : Tuple = inputs.pixel_values.to(UpperCamelCase__ )
# forward pass to make sure inference works in fp16
with torch.no_grad():
UpperCAmelCase__ : Dict = model(UpperCamelCase__ )
| 367
|
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class lowerCAmelCase__ ( datasets.BeamBasedBuilder ):
def __a ( self : Dict ):
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , )
def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )]
def __a ( self : Any , snake_case__ : str , snake_case__ : str ):
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(snake_case__ )
class lowerCAmelCase__ ( datasets.BeamBasedBuilder ):
def __a ( self : Any ):
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ):
'''simple docstring'''
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} )
]
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ):
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Dict:
'''simple docstring'''
return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )]
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )]
class lowerCAmelCase__ ( __magic_name__ ):
@require_beam
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Any = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase__ : Tuple = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def __a ( self : Dict ):
'''simple docstring'''
import apache_beam as beam
UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet
UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock:
UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase__ : Dict = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def __a ( self : str ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) )
UpperCAmelCase__ : Tuple = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
| 298
| 0
|
"""simple docstring"""
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = torch.nn.Linear(1_0 , 1_0 )
UpperCAmelCase__ : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 )
UpperCAmelCase__ : Optional[int] = Accelerator()
UpperCAmelCase__ : Optional[int] = accelerator.prepare(snake_case__ )
try:
pickle.loads(pickle.dumps(snake_case__ ) )
except Exception as e:
self.fail(f'Accelerated optimizer pickling failed with {e}' )
AcceleratorState._reset_state()
| 368
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =XLMTokenizer
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ : Optional[int] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(snake_case__ ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(snake_case__ ) )
def __a ( self : Union[str, Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = "lower newer"
UpperCAmelCase__ : Optional[Any] = "lower newer"
return input_text, output_text
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ : List[Any] = "lower"
UpperCAmelCase__ : Any = ["low", "er</w>"]
UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"]
UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" )
UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 298
| 0
|
import unittest
from transformers import DonutProcessor
_lowerCAmelCase : Optional[int] = """naver-clova-ix/donut-base"""
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = DonutProcessor.from_pretrained(UpperCamelCase__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = {
"name": "John Doe",
"age": "99",
"city": "Atlanta",
"state": "GA",
"zip": "30301",
"phone": "123-4567",
"nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}],
}
UpperCAmelCase__ : List[str] = (
"<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>"
"<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>"
"<s_nicknames><s_nickname>Johnny</s_nickname>"
"<sep/><s_nickname>JD</s_nickname></s_nicknames>"
)
UpperCAmelCase__ : int = self.processor.tokenajson(UpperCamelCase__ )
self.assertDictEqual(UpperCamelCase__ , UpperCamelCase__ )
| 369
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ):
'''simple docstring'''
UpperCAmelCase__ : Any = "bilinear"
UpperCAmelCase__ : Any = max_size
UpperCAmelCase__ : Any = short_edge_length
def __call__( self : Dict , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = []
for img in imgs:
UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2]
# later: provide list and randomly choose index for resize
UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ )
if h < w:
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w
else:
UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size
if max(snake_case__ , snake_case__ ) > self.max_size:
UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ )
UpperCAmelCase__ : List[str] = newh * scale
UpperCAmelCase__ : int = neww * scale
UpperCAmelCase__ : List[Any] = int(neww + 0.5 )
UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 )
if img.dtype == np.uinta:
UpperCAmelCase__ : Any = Image.fromarray(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ )
else:
UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
UpperCAmelCase__ : Tuple = nn.functional.interpolate(
snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 )
img_augs.append(snake_case__ )
return img_augs
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
UpperCAmelCase__ : Any = cfg.INPUT.FORMAT
UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY
UpperCAmelCase__ : str = cfg.PAD_VALUE
UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST
UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE
UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std
def __a ( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) )
UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images]
UpperCAmelCase__ : int = [
nn.functional.pad(
snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(snake_case__ , snake_case__ )
]
return torch.stack(snake_case__ ), torch.tensor(snake_case__ )
def __call__( self : str , snake_case__ : int , snake_case__ : int=False ):
'''simple docstring'''
with torch.no_grad():
if not isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ : Dict = [images]
if single_image:
assert len(snake_case__ ) == 1
for i in range(len(snake_case__ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] )
UpperCAmelCase__ : Tuple = self.aug(snake_case__ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images]
# now pad them to do the following operations
UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]:
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int:
'''simple docstring'''
assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!"
UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case )
tensor[:, 1].clamp_(min=0 , max=snake_case )
tensor[:, 2].clamp_(min=0 , max=snake_case )
tensor[:, 3].clamp_(min=0 , max=snake_case )
| 298
| 0
|
"""simple docstring"""
import sys
from collections import defaultdict
class lowerCAmelCase__ :
def __init__( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = []
def __a ( self : List[Any] , snake_case__ : List[Any] ):
'''simple docstring'''
return self.node_position[vertex]
def __a ( self : List[Any] , snake_case__ : List[Any] , snake_case__ : str ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = pos
def __a ( self : Dict , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : int ):
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
UpperCAmelCase__ : List[str] = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
UpperCAmelCase__ : Optional[Any] = 2 * start + 1
else:
UpperCAmelCase__ : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = heap[smallest_child], positions[smallest_child]
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = (
heap[start],
positions[start],
)
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = temp, tempa
UpperCAmelCase__ : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , _lowercase )
self.top_to_bottom(_lowercase , _lowercase , _lowercase , _lowercase )
def __a ( self : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : int = position[index]
while index != 0:
UpperCAmelCase__ : Optional[int] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
UpperCAmelCase__ : Any = heap[parent]
UpperCAmelCase__ : Tuple = position[parent]
self.set_position(position[parent] , _lowercase )
else:
UpperCAmelCase__ : List[Any] = val
UpperCAmelCase__ : Tuple = temp
self.set_position(_lowercase , _lowercase )
break
UpperCAmelCase__ : List[Any] = parent
else:
UpperCAmelCase__ : List[str] = val
UpperCAmelCase__ : Tuple = temp
self.set_position(_lowercase , 0 )
def __a ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = len(_lowercase ) // 2 - 1
for i in range(_lowercase , -1 , -1 ):
self.top_to_bottom(_lowercase , _lowercase , len(_lowercase ) , _lowercase )
def __a ( self : Tuple , snake_case__ : Any , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = positions[0]
UpperCAmelCase__ : int = sys.maxsize
self.top_to_bottom(_lowercase , 0 , len(_lowercase ) , _lowercase )
return temp
def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = Heap()
UpperCAmelCase__ : Any = [0] * len(snake_case_ )
UpperCAmelCase__ : Tuple = [-1] * len(snake_case_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
UpperCAmelCase__ : List[Any] = [] # Heap of Distance of vertices from their neighboring vertex
UpperCAmelCase__ : Dict = []
for vertex in range(len(snake_case_ ) ):
distance_tv.append(sys.maxsize )
positions.append(snake_case_ )
heap.node_position.append(snake_case_ )
UpperCAmelCase__ : List[Any] = []
UpperCAmelCase__ : Dict = 1
UpperCAmelCase__ : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
UpperCAmelCase__ : Dict = 0
UpperCAmelCase__ : List[str] = distance
heap.heapify(snake_case_ , snake_case_ )
for _ in range(1 , len(snake_case_ ) ):
UpperCAmelCase__ : Optional[int] = heap.delete_minimum(snake_case_ , snake_case_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
UpperCAmelCase__ : Optional[int] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(snake_case_ )]
):
UpperCAmelCase__ : List[Any] = distance
heap.bottom_to_top(
snake_case_ , heap.get_position(snake_case_ ) , snake_case_ , snake_case_ )
UpperCAmelCase__ : Union[str, Any] = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
_lowerCAmelCase : str = int(input("""Enter number of edges: """).strip())
_lowerCAmelCase : Union[str, Any] = defaultdict(list)
for _ in range(edges_number):
_lowerCAmelCase : Union[str, Any] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 370
|
"""simple docstring"""
import qiskit
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts:
'''simple docstring'''
UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" )
UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = half_adder(1, 1)
print(F"""Half Adder Output Qubit Counts: {counts}""")
| 298
| 0
|
"""simple docstring"""
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
_lowerCAmelCase : Any = logging.get_logger(__name__)
class lowerCAmelCase__ ( _a ):
SCREAMING_SNAKE_CASE_ ="""linear"""
SCREAMING_SNAKE_CASE_ ="""cosine"""
SCREAMING_SNAKE_CASE_ ="""cosine_with_restarts"""
SCREAMING_SNAKE_CASE_ ="""polynomial"""
SCREAMING_SNAKE_CASE_ ="""constant"""
SCREAMING_SNAKE_CASE_ ="""constant_with_warmup"""
SCREAMING_SNAKE_CASE_ ="""piecewise_constant"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : int = -1 )-> Optional[Any]:
'''simple docstring'''
return LambdaLR(a__ , lambda snake_case : 1 , last_epoch=a__ )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : int , snake_case : int = -1 )-> Union[str, Any]:
'''simple docstring'''
def lr_lambda(snake_case : int ):
if current_step < num_warmup_steps:
return float(a__ ) / float(max(1.0 , a__ ) )
return 1.0
return LambdaLR(a__ , a__ , last_epoch=a__ )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : str , snake_case : int = -1 )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : int = {}
UpperCAmelCase__ : Union[str, Any] = step_rules.split("," )
for rule_str in rule_list[:-1]:
UpperCAmelCase__ , UpperCAmelCase__ : Dict = rule_str.split(":" )
UpperCAmelCase__ : Tuple = int(a__ )
UpperCAmelCase__ : List[str] = float(a__ )
UpperCAmelCase__ : str = value
UpperCAmelCase__ : Optional[Any] = float(rule_list[-1] )
def create_rules_function(snake_case : Dict , snake_case : List[Any] ):
def rule_func(snake_case : int ) -> float:
UpperCAmelCase__ : Tuple = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(a__ ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
UpperCAmelCase__ : Optional[Any] = create_rules_function(a__ , a__ )
return LambdaLR(a__ , a__ , last_epoch=a__ )
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Dict , snake_case : str , snake_case : Optional[int]=-1 )-> Optional[Any]:
'''simple docstring'''
def lr_lambda(snake_case : int ):
if current_step < num_warmup_steps:
return float(a__ ) / float(max(1 , a__ ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(a__ , a__ , a__ )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : int , snake_case : int , snake_case : float = 0.5 , snake_case : int = -1 )-> str:
'''simple docstring'''
def lr_lambda(snake_case : Union[str, Any] ):
if current_step < num_warmup_steps:
return float(a__ ) / float(max(1 , a__ ) )
UpperCAmelCase__ : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(a__ ) * 2.0 * progress )) )
return LambdaLR(a__ , a__ , a__ )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : int , snake_case : int , snake_case : int = 1 , snake_case : int = -1 )-> int:
'''simple docstring'''
def lr_lambda(snake_case : List[Any] ):
if current_step < num_warmup_steps:
return float(a__ ) / float(max(1 , a__ ) )
UpperCAmelCase__ : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(a__ ) * progress) % 1.0) )) )
return LambdaLR(a__ , a__ , a__ )
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : List[str] , snake_case : Optional[int]=1E-7 , snake_case : str=1.0 , snake_case : int=-1 )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : Any = optimizer.defaults["lr"]
if not (lr_init > lr_end):
raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' )
def lr_lambda(snake_case : int ):
if current_step < num_warmup_steps:
return float(a__ ) / float(max(1 , a__ ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
UpperCAmelCase__ : Optional[int] = lr_init - lr_end
UpperCAmelCase__ : Optional[Any] = num_training_steps - num_warmup_steps
UpperCAmelCase__ : Any = 1 - (current_step - num_warmup_steps) / decay_steps
UpperCAmelCase__ : int = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(a__ , a__ , a__ )
_lowerCAmelCase : Any = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, SchedulerType] , snake_case : Optimizer , snake_case : Optional[str] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : int = 1 , snake_case : float = 1.0 , snake_case : int = -1 , )-> List[str]:
'''simple docstring'''
UpperCAmelCase__ : int = SchedulerType(a__ )
UpperCAmelCase__ : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(a__ , last_epoch=a__ )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(a__ , step_rules=a__ , last_epoch=a__ )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(a__ , num_warmup_steps=a__ , last_epoch=a__ )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
a__ , num_warmup_steps=a__ , num_training_steps=a__ , num_cycles=a__ , last_epoch=a__ , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
a__ , num_warmup_steps=a__ , num_training_steps=a__ , power=a__ , last_epoch=a__ , )
return schedule_func(
a__ , num_warmup_steps=a__ , num_training_steps=a__ , last_epoch=a__ )
| 371
|
"""simple docstring"""
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
_lowerCAmelCase : Union[str, Any] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''efficientformer'''
def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ):
'''simple docstring'''
super().__init__(**snake_case__ )
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : List[str] = hidden_sizes
UpperCAmelCase__ : Union[str, Any] = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : List[Any] = initializer_range
UpperCAmelCase__ : List[Any] = layer_norm_eps
UpperCAmelCase__ : Optional[int] = patch_size
UpperCAmelCase__ : Tuple = num_channels
UpperCAmelCase__ : Optional[int] = depths
UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio
UpperCAmelCase__ : Dict = downsamples
UpperCAmelCase__ : Any = dim
UpperCAmelCase__ : str = key_dim
UpperCAmelCase__ : List[Any] = attention_ratio
UpperCAmelCase__ : Optional[Any] = resolution
UpperCAmelCase__ : Optional[Any] = pool_size
UpperCAmelCase__ : Any = downsample_patch_size
UpperCAmelCase__ : int = downsample_stride
UpperCAmelCase__ : Dict = downsample_pad
UpperCAmelCase__ : List[Any] = drop_path_rate
UpperCAmelCase__ : Optional[Any] = num_metaad_blocks
UpperCAmelCase__ : List[str] = distillation
UpperCAmelCase__ : Dict = use_layer_scale
UpperCAmelCase__ : List[Any] = layer_scale_init_value
UpperCAmelCase__ : Optional[Any] = image_size
UpperCAmelCase__ : Optional[int] = batch_norm_eps
| 298
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_lowerCAmelCase : str = {
"""configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""],
"""tokenization_ctrl""": ["""CTRLTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Optional[Any] = [
"""CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CTRLForSequenceClassification""",
"""CTRLLMHeadModel""",
"""CTRLModel""",
"""CTRLPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Any = [
"""TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFCTRLForSequenceClassification""",
"""TFCTRLLMHeadModel""",
"""TFCTRLModel""",
"""TFCTRLPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
_lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 350
|
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : str = args.log_outputs
UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
UpperCAmelCase__ : List[str] = load_metric("wer" )
UpperCAmelCase__ : Tuple = load_metric("cer" )
# compute metrics
UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] )
UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case )
with open(f'{dataset_id}_eval_results.txt' , "w" ) as f:
f.write(snake_case )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt'
UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt'
with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case : List[Any] , snake_case : List[str] ):
p.write(f'{i}' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(f'{i}' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case , with_indices=snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str:
'''simple docstring'''
UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) )
return text
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCAmelCase__ : str = feature_extractor.sampling_rate
# resample audio
UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) )
# load eval pipeline
if args.device is None:
UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1
UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case : Any ):
UpperCAmelCase__ : List[str] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
UpperCAmelCase__ : List[Any] = prediction["text"]
UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case , snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCAmelCase : Tuple = parser.parse_args()
main(args)
| 298
| 0
|
"""simple docstring"""
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ):
def __init__( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = []
def __a ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Any , **snake_case__ : Optional[int] ):
'''simple docstring'''
self.events.append("on_init_end" )
def __a ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : str , **snake_case__ : Dict ):
'''simple docstring'''
self.events.append("on_train_begin" )
def __a ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Dict , **snake_case__ : Tuple ):
'''simple docstring'''
self.events.append("on_train_end" )
def __a ( self : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : str , **snake_case__ : List[str] ):
'''simple docstring'''
self.events.append("on_epoch_begin" )
def __a ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Any , **snake_case__ : Tuple ):
'''simple docstring'''
self.events.append("on_epoch_end" )
def __a ( self : Any , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : str , **snake_case__ : Optional[int] ):
'''simple docstring'''
self.events.append("on_step_begin" )
def __a ( self : Any , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str , **snake_case__ : str ):
'''simple docstring'''
self.events.append("on_step_end" )
def __a ( self : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : Tuple , **snake_case__ : List[str] ):
'''simple docstring'''
self.events.append("on_evaluate" )
def __a ( self : Optional[Any] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Dict , **snake_case__ : Optional[Any] ):
'''simple docstring'''
self.events.append("on_predict" )
def __a ( self : Optional[int] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Any , **snake_case__ : Optional[Any] ):
'''simple docstring'''
self.events.append("on_save" )
def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : int , **snake_case__ : Optional[Any] ):
'''simple docstring'''
self.events.append("on_log" )
def __a ( self : Any , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Tuple , **snake_case__ : Union[str, Any] ):
'''simple docstring'''
self.events.append("on_prediction_step" )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = tempfile.mkdtemp()
def __a ( self : Any ):
'''simple docstring'''
shutil.rmtree(self.output_dir )
def __a ( self : Tuple , snake_case__ : Tuple=0 , snake_case__ : List[str]=0 , snake_case__ : Dict=6_4 , snake_case__ : Dict=6_4 , snake_case__ : Optional[Any]=None , snake_case__ : Optional[int]=False , **snake_case__ : Optional[Any] ):
'''simple docstring'''
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
UpperCAmelCase__ : Optional[Any] = RegressionDataset(length=snake_case__ )
UpperCAmelCase__ : Union[str, Any] = RegressionDataset(length=snake_case__ )
UpperCAmelCase__ : int = RegressionModelConfig(a=snake_case__ , b=snake_case__ )
UpperCAmelCase__ : str = RegressionPreTrainedModel(snake_case__ )
UpperCAmelCase__ : str = TrainingArguments(self.output_dir , disable_tqdm=snake_case__ , report_to=[] , **snake_case__ )
return Trainer(
snake_case__ , snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , callbacks=snake_case__ , )
def __a ( self : Optional[int] , snake_case__ : Dict , snake_case__ : List[str] ):
'''simple docstring'''
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) )
# Order doesn't matter
UpperCAmelCase__ : Any = sorted(snake_case__ , key=lambda snake_case__ : cb.__name__ if isinstance(snake_case__ , snake_case__ ) else cb.__class__.__name__ )
UpperCAmelCase__ : Tuple = sorted(snake_case__ , key=lambda snake_case__ : cb.__name__ if isinstance(snake_case__ , snake_case__ ) else cb.__class__.__name__ )
for cba, cba in zip(snake_case__ , snake_case__ ):
if isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ):
self.assertEqual(snake_case__ , snake_case__ )
elif isinstance(snake_case__ , snake_case__ ) and not isinstance(snake_case__ , snake_case__ ):
self.assertEqual(snake_case__ , cba.__class__ )
elif not isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ):
self.assertEqual(cba.__class__ , snake_case__ )
else:
self.assertEqual(snake_case__ , snake_case__ )
def __a ( self : Dict , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = ["""on_init_end""", """on_train_begin"""]
UpperCAmelCase__ : int = 0
UpperCAmelCase__ : str = len(trainer.get_eval_dataloader() )
UpperCAmelCase__ : str = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("on_epoch_begin" )
for _ in range(snake_case__ ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("on_log" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("on_save" )
expected_events.append("on_epoch_end" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.get_trainer()
UpperCAmelCase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ )
# Callbacks passed at init are added to the default callbacks
UpperCAmelCase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(snake_case__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
UpperCAmelCase__ : Any = self.get_trainer(disable_tqdm=snake_case__ )
UpperCAmelCase__ : List[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
UpperCAmelCase__ : str = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(snake_case__ )
expected_callbacks.remove(snake_case__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ )
UpperCAmelCase__ : List[str] = self.get_trainer()
UpperCAmelCase__ : Any = trainer.pop_callback(snake_case__ )
self.assertEqual(cb.__class__ , snake_case__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ )
trainer.add_callback(snake_case__ )
expected_callbacks.insert(0 , snake_case__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ )
# We can also add, pop, or remove by instance
UpperCAmelCase__ : str = self.get_trainer()
UpperCAmelCase__ : Tuple = trainer.callback_handler.callbacks[0]
trainer.remove_callback(snake_case__ )
expected_callbacks.remove(snake_case__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ )
UpperCAmelCase__ : List[Any] = self.get_trainer()
UpperCAmelCase__ : Tuple = trainer.callback_handler.callbacks[0]
UpperCAmelCase__ : Tuple = trainer.pop_callback(snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ )
trainer.add_callback(snake_case__ )
expected_callbacks.insert(0 , snake_case__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case__ )
def __a ( self : str ):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="ignore" , category=snake_case__ )
UpperCAmelCase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
UpperCAmelCase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) )
# Independent log/save/eval
UpperCAmelCase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
UpperCAmelCase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) )
UpperCAmelCase__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
UpperCAmelCase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) )
UpperCAmelCase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" )
trainer.train()
UpperCAmelCase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) )
UpperCAmelCase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" )
trainer.train()
UpperCAmelCase__ : List[Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) )
# A bit of everything
UpperCAmelCase__ : str = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="steps" , )
trainer.train()
UpperCAmelCase__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(snake_case__ , self.get_expected_events(snake_case__ ) )
# warning should be emitted for duplicated callbacks
with patch("transformers.trainer_callback.logger.warning" ) as warn_mock:
UpperCAmelCase__ : Tuple = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(snake_case__ ) in warn_mock.call_args[0][0]
| 351
|
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowerCAmelCase__ :
def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ):
'''simple docstring'''
UpperCAmelCase__ : int = parent
UpperCAmelCase__ : List[str] = 1_0_0
UpperCAmelCase__ : List[Any] = batch_size
UpperCAmelCase__ : int = image_size
UpperCAmelCase__ : List[Any] = patch_size
UpperCAmelCase__ : List[Any] = num_channels
UpperCAmelCase__ : Any = is_training
UpperCAmelCase__ : str = use_labels
UpperCAmelCase__ : Any = hidden_size
UpperCAmelCase__ : Dict = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Any = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : str = attention_probs_dropout_prob
UpperCAmelCase__ : Optional[int] = type_sequence_label_size
UpperCAmelCase__ : Any = initializer_range
UpperCAmelCase__ : Any = scope
UpperCAmelCase__ : Optional[Any] = out_indices
UpperCAmelCase__ : int = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2
UpperCAmelCase__ : Optional[int] = num_patches + 1
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : str = None
UpperCAmelCase__ : Optional[int] = None
if self.use_labels:
UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase__ : Tuple = self.get_config()
return config, pixel_values, labels, pixel_labels
def __a ( self : int ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[Any] = model(snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase__ : Any = 1
UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.num_labels
UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs
UpperCAmelCase__ : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': BeitModel,
'''image-classification''': BeitForImageClassification,
'''image-segmentation''': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModelTester(self )
UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 )
def __a ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds" )
def __a ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def __a ( self : List[str] ):
'''simple docstring'''
pass
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(snake_case__ )
UpperCAmelCase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : str = [*signature.parameters.keys()]
UpperCAmelCase__ : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]:
continue
UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ )
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss
loss.backward()
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase__ : List[Any] = model_class(snake_case__ )
model.gradient_checkpointing_enable()
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss
loss.backward()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ )
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(config=snake_case__ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def __a ( self : Any ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ )
UpperCAmelCase__ : int = self.default_image_processor
UpperCAmelCase__ : List[Any] = prepare_img()
UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ )
# prepare bool_masked_pos
UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ )
UpperCAmelCase__ : str = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Any = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) )
@slow
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Dict = prepare_img()
UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ )
UpperCAmelCase__ : Any = outputs.logits
# verify the logits
UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : List[str] = 2_8_1
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to(
snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Any = prepare_img()
UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[Any] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : Any = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : List[Any] = model.to(snake_case__ )
UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[str] = model(**snake_case__ )
UpperCAmelCase__ : Dict = outputs.logits
# verify the logits
UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" )
if is_pillow_less_than_a:
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=snake_case__ , )
else:
UpperCAmelCase__ : int = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=snake_case__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits.detach().cpu()
UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] )
UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ )
UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
| 298
| 0
|
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def SCREAMING_SNAKE_CASE__ ( snake_case : dict )-> int:
'''simple docstring'''
return (data["data"], data["target"])
def SCREAMING_SNAKE_CASE__ ( snake_case : np.ndarray , snake_case : np.ndarray , snake_case : np.ndarray )-> List[Any]:
'''simple docstring'''
UpperCAmelCase__ : Dict = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ )
# Predict target for test data
UpperCAmelCase__ : Any = xgb.predict(lowerCAmelCase__ )
UpperCAmelCase__ : List[str] = predictions.reshape(len(lowerCAmelCase__ ) , 1 )
return predictions
def SCREAMING_SNAKE_CASE__ ( )-> Any:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = fetch_california_housing()
UpperCAmelCase__ : str = data_handling(lowerCAmelCase__ )
UpperCAmelCase__ : List[Any] = train_test_split(
lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 )
UpperCAmelCase__ : Union[str, Any] = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Error printing
print(f'Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}' )
print(f'Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 352
|
"""simple docstring"""
import functools
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int:
'''simple docstring'''
UpperCAmelCase__ : List[str] = len(snake_case )
UpperCAmelCase__ : str = len(snake_case )
@functools.cache
def min_distance(snake_case : int , snake_case : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
"""simple docstring"""
import math
import os
import sys
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = ""
try:
with open(snake_case , "rb" ) as binary_file:
UpperCAmelCase__ : Any = binary_file.read()
for dat in data:
UpperCAmelCase__ : Any = f'{dat:08b}'
result += curr_byte
return result
except OSError:
print("File not accessible" )
sys.exit()
def SCREAMING_SNAKE_CASE__ ( snake_case : dict[str, str] , snake_case : str , snake_case : int , snake_case : str )-> Any:
'''simple docstring'''
lexicon.pop(snake_case )
UpperCAmelCase__ : Tuple = last_match_id
if math.loga(snake_case ).is_integer():
for curr_key in lexicon:
UpperCAmelCase__ : str = "0" + lexicon[curr_key]
UpperCAmelCase__ : Optional[Any] = bin(snake_case )[2:]
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> Any:
'''simple docstring'''
UpperCAmelCase__ : Tuple = {"0": "0", "1": "1"}
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = "", ""
UpperCAmelCase__ : Union[str, Any] = len(snake_case )
for i in range(len(snake_case ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
UpperCAmelCase__ : Dict = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case )
index += 1
UpperCAmelCase__ : Tuple = ""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
UpperCAmelCase__ : List[str] = lexicon[curr_string]
result += last_match_id
return result
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> str:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = os.path.getsize(snake_case )
UpperCAmelCase__ : Any = bin(snake_case )[2:]
UpperCAmelCase__ : Optional[int] = len(snake_case )
return "0" * (length_length - 1) + file_length_binary + compressed
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : str = 8
try:
with open(snake_case , "wb" ) as opened_file:
UpperCAmelCase__ : Optional[Any] = [
to_write[i : i + byte_length]
for i in range(0 , len(snake_case ) , snake_case )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("10000000" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder="big" ) )
except OSError:
print("File not accessible" )
sys.exit()
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : List[str] = read_file_binary(snake_case )
UpperCAmelCase__ : str = compress_data(snake_case )
UpperCAmelCase__ : Any = add_file_length(snake_case , snake_case )
write_file_binary(snake_case , snake_case )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 353
|
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class lowerCAmelCase__ ( __magic_name__ ):
def __a ( self : List[Any] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" )
UpperCAmelCase__ : Tuple = input_file.read()
UpperCAmelCase__ : Tuple = regexp.search(snake_case__ )
return match
def __a ( self : List[str] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL )
UpperCAmelCase__ : Dict = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase__ : int = regexp.finditer(snake_case__ )
UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = Path("./datasets" )
UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(snake_case__ ) ):
raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = Path("./datasets" )
UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_print_statements(str(snake_case__ ) ):
raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
| 298
| 0
|
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
_lowerCAmelCase : int = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
_lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Tuple=False )-> Dict:
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = create_model(
"HTSAT-tiny" , "roberta" , snake_case , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=snake_case , fusion_type="aff_2d" if enable_fusion else None , )
return model, model_cfg
def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = {}
UpperCAmelCase__ : Union[str, Any] = r".*sequential.(\d+).*"
UpperCAmelCase__ : str = r".*_projection.(\d+).*"
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase__ : List[Any] = key.replace(snake_case , snake_case )
if re.match(snake_case , snake_case ):
# replace sequential layers with list
UpperCAmelCase__ : Tuple = re.match(snake_case , snake_case ).group(1 )
UpperCAmelCase__ : List[Any] = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(snake_case )//3}.linear.' )
elif re.match(snake_case , snake_case ):
UpperCAmelCase__ : Any = int(re.match(snake_case , snake_case ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCAmelCase__ : str = 1 if projecton_layer == 0 else 2
UpperCAmelCase__ : List[str] = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCAmelCase__ : List[Any] = value
UpperCAmelCase__ : Union[str, Any] = mixed_qkv.size(0 ) // 3
UpperCAmelCase__ : Optional[int] = mixed_qkv[:qkv_dim]
UpperCAmelCase__ : Any = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCAmelCase__ : str = mixed_qkv[qkv_dim * 2 :]
UpperCAmelCase__ : Dict = query_layer
UpperCAmelCase__ : Optional[Any] = key_layer
UpperCAmelCase__ : str = value_layer
else:
UpperCAmelCase__ : Union[str, Any] = value
return model_state_dict
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Any=False )-> str:
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = init_clap(snake_case , enable_fusion=snake_case )
clap_model.eval()
UpperCAmelCase__ : List[Any] = clap_model.state_dict()
UpperCAmelCase__ : List[str] = rename_state_dict(snake_case )
UpperCAmelCase__ : List[str] = ClapConfig()
UpperCAmelCase__ : int = enable_fusion
UpperCAmelCase__ : Dict = ClapModel(snake_case )
# ignore the spectrogram embedding layer
model.load_state_dict(snake_case , strict=snake_case )
model.save_pretrained(snake_case )
transformers_config.save_pretrained(snake_case )
if __name__ == "__main__":
_lowerCAmelCase : str = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
_lowerCAmelCase : int = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 354
|
"""simple docstring"""
import numpy as np
import datasets
_lowerCAmelCase : Optional[int] = """
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
"""
_lowerCAmelCase : Tuple = """\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
"""
_lowerCAmelCase : Optional[int] = """
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{'mahalanobis': array([0.5])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __a ( self : Any ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ):
'''simple docstring'''
# convert to numpy arrays
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ )
UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T )
try:
UpperCAmelCase__ : str = np.linalg.inv(snake_case__ )
except np.linalg.LinAlgError:
UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ )
UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ )
UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 298
| 0
|
"""simple docstring"""
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowerCAmelCase__ ( UpperCamelCase__ ):
def __init__( self : int , *snake_case__ : Dict , snake_case__ : Tuple=None , snake_case__ : List[str]=None , **snake_case__ : Tuple ):
'''simple docstring'''
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
UpperCAmelCase__ : List[str] = eval_examples
UpperCAmelCase__ : Any = post_process_function
def __a ( self : str , snake_case__ : Optional[Dataset] = None , snake_case__ : str=None , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "eval" , **snake_case__ : Dict , ):
'''simple docstring'''
UpperCAmelCase__ : str = gen_kwargs.copy()
UpperCAmelCase__ : str = (
gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length
)
UpperCAmelCase__ : List[str] = (
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams
)
UpperCAmelCase__ : Dict = gen_kwargs
UpperCAmelCase__ : int = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase__ : Tuple = self.get_eval_dataloader(UpperCamelCase_ )
UpperCAmelCase__ : str = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase__ : Optional[int] = self.compute_metrics
UpperCAmelCase__ : Optional[int] = None
UpperCAmelCase__ : Any = time.time()
UpperCAmelCase__ : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase__ : Optional[Any] = eval_loop(
UpperCamelCase_ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , )
finally:
UpperCAmelCase__ : int = compute_metrics
UpperCAmelCase__ : Any = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
UpperCAmelCase__ : Union[str, Any] = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
UpperCAmelCase__ : Any = self.compute_metrics(UpperCamelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
UpperCAmelCase__ : Tuple = metrics.pop(UpperCamelCase_ )
metrics.update(output.metrics )
else:
UpperCAmelCase__ : List[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(UpperCamelCase_ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase__ : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ )
return metrics
def __a ( self : int , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Any=None , snake_case__ : str = "test" , **snake_case__ : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = gen_kwargs.copy()
UpperCAmelCase__ : List[str] = self.get_test_dataloader(UpperCamelCase_ )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase__ : List[str] = self.compute_metrics
UpperCAmelCase__ : str = None
UpperCAmelCase__ : Tuple = time.time()
UpperCAmelCase__ : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase__ : str = eval_loop(
UpperCamelCase_ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , )
finally:
UpperCAmelCase__ : Tuple = compute_metrics
UpperCAmelCase__ : Tuple = self.args.eval_batch_size * self.args.world_size
if f'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase__ : Dict = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , "predict" )
UpperCAmelCase__ : Optional[int] = self.compute_metrics(UpperCamelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'{metric_key_prefix}_' ):
UpperCAmelCase__ : List[Any] = metrics.pop(UpperCamelCase_ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
| 355
|
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =IFPipeline
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''}
def __a ( self : Dict ):
'''simple docstring'''
return self._get_dummy_components()
def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ):
'''simple docstring'''
if str(snake_case__ ).startswith("mps" ):
UpperCAmelCase__ : str = torch.manual_seed(snake_case__ )
else:
UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
UpperCAmelCase__ : Tuple = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __a ( self : Tuple ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def __a ( self : Tuple ):
'''simple docstring'''
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __a ( self : Dict ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __a ( self : int ):
'''simple docstring'''
self._test_save_load_local()
def __a ( self : Any ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __a ( self : Optional[Any] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : str ):
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self : Tuple ):
'''simple docstring'''
# if
UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa )
UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("cuda" )
UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCAmelCase__ : Tuple = None
UpperCAmelCase__ : List[Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : List[Any] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : str = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Tuple = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : str = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Optional[Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : int = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : int = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : int = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Tuple = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : List[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Any:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 298
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : str = logging.get_logger(__name__)
_lowerCAmelCase : List[str] = {
'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json',
}
class lowerCAmelCase__ ( lowerCamelCase__ ):
SCREAMING_SNAKE_CASE_ ='''transfo-xl'''
SCREAMING_SNAKE_CASE_ =['''mems''']
SCREAMING_SNAKE_CASE_ ={
'''n_token''': '''vocab_size''',
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Dict , snake_case__ : Any=2_6_7_7_3_5 , snake_case__ : Optional[int]=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , snake_case__ : List[str]=1_0_2_4 , snake_case__ : Union[str, Any]=1_0_2_4 , snake_case__ : List[str]=1_6 , snake_case__ : str=6_4 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : Optional[int]=4 , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=1_8 , snake_case__ : List[str]=1_6_0_0 , snake_case__ : List[str]=1_0_0_0 , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Optional[int]=0 , snake_case__ : List[str]=-1 , snake_case__ : int=True , snake_case__ : str=0.1 , snake_case__ : Any=0.0 , snake_case__ : List[str]=True , snake_case__ : Optional[Any]="normal" , snake_case__ : List[Any]=0.01 , snake_case__ : List[str]=0.01 , snake_case__ : str=0.02 , snake_case__ : Dict=1e-5 , snake_case__ : Optional[int]=0 , **snake_case__ : str , ):
'''simple docstring'''
UpperCAmelCase__ : str = vocab_size
UpperCAmelCase__ : Tuple = []
self.cutoffs.extend(__lowerCamelCase )
if proj_share_all_but_first:
UpperCAmelCase__ : Optional[Any] = [False] + [True] * len(self.cutoffs )
else:
UpperCAmelCase__ : str = [False] + [False] * len(self.cutoffs )
UpperCAmelCase__ : str = d_model
UpperCAmelCase__ : List[str] = d_embed
UpperCAmelCase__ : Optional[Any] = d_head
UpperCAmelCase__ : str = d_inner
UpperCAmelCase__ : List[Any] = div_val
UpperCAmelCase__ : Optional[int] = pre_lnorm
UpperCAmelCase__ : Any = n_layer
UpperCAmelCase__ : int = n_head
UpperCAmelCase__ : Optional[int] = mem_len
UpperCAmelCase__ : Tuple = same_length
UpperCAmelCase__ : Optional[Any] = attn_type
UpperCAmelCase__ : Tuple = clamp_len
UpperCAmelCase__ : List[str] = sample_softmax
UpperCAmelCase__ : Dict = adaptive
UpperCAmelCase__ : str = dropout
UpperCAmelCase__ : List[str] = dropatt
UpperCAmelCase__ : List[str] = untie_r
UpperCAmelCase__ : str = init
UpperCAmelCase__ : Union[str, Any] = init_range
UpperCAmelCase__ : Optional[int] = proj_init_std
UpperCAmelCase__ : Optional[Any] = init_std
UpperCAmelCase__ : Dict = layer_norm_epsilon
super().__init__(eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@property
def __a ( self : Tuple ):
'''simple docstring'''
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def __a ( self : int , snake_case__ : Dict ):
'''simple docstring'''
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 356
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Optional[int] = {
"""vocab_file""": """vocab.txt""",
"""merges_file""": """bpe.codes""",
}
_lowerCAmelCase : List[Any] = {
"""vocab_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""",
},
"""merges_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""",
},
}
_lowerCAmelCase : int = {
"""vinai/phobert-base""": 256,
"""vinai/phobert-large""": 256,
}
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = set()
UpperCAmelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase__ : Dict = char
UpperCAmelCase__ : Tuple = set(snake_case )
return pairs
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ):
'''simple docstring'''
super().__init__(
bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase__ : Dict = vocab_file
UpperCAmelCase__ : Tuple = merges_file
UpperCAmelCase__ : List[Any] = {}
UpperCAmelCase__ : Dict = 0
UpperCAmelCase__ : int = 1
UpperCAmelCase__ : Dict = 2
UpperCAmelCase__ : Dict = 3
self.add_from_file(snake_case__ )
UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
with open(snake_case__ , encoding="utf-8" ) as merges_handle:
UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1]
UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges]
UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Dict = {}
def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
UpperCAmelCase__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ )
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1]
def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __a ( self : List[str] ):
'''simple docstring'''
return len(self.encoder )
def __a ( self : Any ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __a ( self : Dict , snake_case__ : Tuple ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
UpperCAmelCase__ : Any = get_pairs(snake_case__ )
if not pairs:
return token
while True:
UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram
UpperCAmelCase__ : Optional[Any] = []
UpperCAmelCase__ : Tuple = 0
while i < len(snake_case__ ):
try:
UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase__ : Dict = j
if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase__ : Dict = tuple(snake_case__ )
UpperCAmelCase__ : List[Any] = new_word
if len(snake_case__ ) == 1:
break
else:
UpperCAmelCase__ : Dict = get_pairs(snake_case__ )
UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ )
UpperCAmelCase__ : Optional[int] = word[:-4]
UpperCAmelCase__ : Union[str, Any] = word
return word
def __a ( self : List[Any] , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = []
UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ )
for token in words:
split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) )
return split_tokens
def __a ( self : Dict , snake_case__ : List[str] ):
'''simple docstring'''
return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) )
def __a ( self : List[Any] , snake_case__ : Any ):
'''simple docstring'''
return self.decoder.get(snake_case__ , self.unk_token )
def __a ( self : str , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip()
return out_string
def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCAmelCase__ : Tuple = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : str = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ):
copyfile(self.merges_file , snake_case__ )
return out_vocab_file, out_merge_file
def __a ( self : List[Any] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
try:
with open(snake_case__ , "r" , encoding="utf-8" ) as fd:
self.add_from_file(snake_case__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' )
return
UpperCAmelCase__ : Dict = f.readlines()
for lineTmp in lines:
UpperCAmelCase__ : Optional[int] = lineTmp.strip()
UpperCAmelCase__ : Tuple = line.rfind(" " )
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" )
UpperCAmelCase__ : Any = line[:idx]
UpperCAmelCase__ : str = len(self.encoder )
| 298
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
_lowerCAmelCase : str = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ="""canine"""
def __init__( self : Dict , snake_case__ : Dict=7_6_8 , snake_case__ : Dict=1_2 , snake_case__ : Union[str, Any]=1_2 , snake_case__ : List[str]=3_0_7_2 , snake_case__ : List[str]="gelu" , snake_case__ : Dict=0.1 , snake_case__ : int=0.1 , snake_case__ : List[str]=1_6_3_8_4 , snake_case__ : Any=1_6 , snake_case__ : Optional[int]=0.02 , snake_case__ : str=1e-12 , snake_case__ : List[str]=0 , snake_case__ : str=0xe_000 , snake_case__ : str=0xe_001 , snake_case__ : Optional[int]=4 , snake_case__ : List[Any]=4 , snake_case__ : Optional[int]=8 , snake_case__ : str=1_6_3_8_4 , snake_case__ : int=1_2_8 , **snake_case__ : Dict , ):
'''simple docstring'''
super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A )
UpperCAmelCase__ : Union[str, Any] = max_position_embeddings
UpperCAmelCase__ : List[str] = hidden_size
UpperCAmelCase__ : Union[str, Any] = num_hidden_layers
UpperCAmelCase__ : str = num_attention_heads
UpperCAmelCase__ : Optional[int] = intermediate_size
UpperCAmelCase__ : Any = hidden_act
UpperCAmelCase__ : int = hidden_dropout_prob
UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : Optional[Any] = initializer_range
UpperCAmelCase__ : Any = type_vocab_size
UpperCAmelCase__ : int = layer_norm_eps
# Character config:
UpperCAmelCase__ : Union[str, Any] = downsampling_rate
UpperCAmelCase__ : Union[str, Any] = upsampling_kernel_size
UpperCAmelCase__ : Union[str, Any] = num_hash_functions
UpperCAmelCase__ : int = num_hash_buckets
UpperCAmelCase__ : Tuple = local_transformer_stride
| 357
|
"""simple docstring"""
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowerCAmelCase__ :
SCREAMING_SNAKE_CASE_ =42
# setable values
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =None
@classmethod
def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ):
'''simple docstring'''
return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ )
@dataclass
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =42
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ):
SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers]
SCREAMING_SNAKE_CASE_ =42
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return True
@register_to_config
def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = dtype
def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ):
'''simple docstring'''
if common is None:
UpperCAmelCase__ : Any = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype )
UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , )
def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ):
'''simple docstring'''
return sample
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=snake_case__ , timesteps=snake_case__ , )
def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ):
'''simple docstring'''
UpperCAmelCase__ : int = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
UpperCAmelCase__ : Union[str, Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) )
elif variance_type == "fixed_large":
UpperCAmelCase__ : List[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
UpperCAmelCase__ : List[str] = variance
UpperCAmelCase__ : Optional[Any] = state.common.betas[t]
UpperCAmelCase__ : Any = (predicted_variance + 1) / 2
UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log
return variance
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = timestep
if key is None:
UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 )
else:
UpperCAmelCase__ : int = None
# 1. compute alphas, betas
UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase__ : List[Any] = model_output
elif self.config.prediction_type == "v_prediction":
UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '
" for the FlaxDDPMScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 )
UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ )
def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 298
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCAmelCase__ ( lowerCamelCase__ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
@property
def __a ( self : int ):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = ort.SessionOptions()
UpperCAmelCase__ : int = False
return options
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
UpperCAmelCase__ : int = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
UpperCAmelCase__ : List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase__ : Any = 'A red cat sitting on a park bench'
UpperCAmelCase__ : int = np.random.RandomState(0 )
UpperCAmelCase__ : Dict = pipe(
prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__snake_case , output_type="np" , )
UpperCAmelCase__ : Tuple = output.images
UpperCAmelCase__ : List[Any] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : int = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
UpperCAmelCase__ : Any = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
UpperCAmelCase__ : Optional[int] = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" )
UpperCAmelCase__ : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase__ : str = 'A red cat sitting on a park bench'
UpperCAmelCase__ : List[str] = np.random.RandomState(0 )
UpperCAmelCase__ : Optional[Any] = pipe(
prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__snake_case , output_type="np" , )
UpperCAmelCase__ : Any = output.images
UpperCAmelCase__ : List[Any] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ : Optional[Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 358
|
"""simple docstring"""
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class lowerCAmelCase__ :
def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ):
'''simple docstring'''
UpperCAmelCase__ : str = parent
UpperCAmelCase__ : Tuple = batch_size
UpperCAmelCase__ : Dict = seq_length
UpperCAmelCase__ : Union[str, Any] = act_dim
UpperCAmelCase__ : Dict = state_dim
UpperCAmelCase__ : Optional[Any] = hidden_size
UpperCAmelCase__ : List[str] = max_length
UpperCAmelCase__ : int = is_training
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 )
UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) )
UpperCAmelCase__ : Optional[int] = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def __a ( self : int ):
'''simple docstring'''
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ =()
SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
SCREAMING_SNAKE_CASE_ =False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = DecisionTransformerModelTester(self )
UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : List[str] ):
'''simple docstring'''
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase__ : str = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform
UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Optional[int] = model.config
torch.manual_seed(0 )
UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset()
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ )
UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
UpperCAmelCase__ : Union[str, Any] = state
UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 )
for step in range(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model(
states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ),
1.0,
False,
{},
)
UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1]
UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 )
UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward
UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
UpperCAmelCase__ : Tuple = torch.cat(
[timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
| 298
| 0
|
"""simple docstring"""
import unittest
from knapsack import greedy_knapsack as kp
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0]
UpperCAmelCase__ : Dict = [2, 4, 6, 8, 1_0, 1_2]
UpperCAmelCase__ : Optional[int] = 1_0_0
self.assertEqual(kp.calc_profit(A__ , A__ , A__ ) , 2_1_0 )
def __a ( self : List[str] ):
'''simple docstring'''
self.assertRaisesRegex(A__ , "max_weight must greater than zero." )
def __a ( self : Dict ):
'''simple docstring'''
self.assertRaisesRegex(A__ , "Weight can not be negative." )
def __a ( self : Optional[int] ):
'''simple docstring'''
self.assertRaisesRegex(A__ , "Profit can not be negative." )
def __a ( self : str ):
'''simple docstring'''
self.assertRaisesRegex(A__ , "max_weight must greater than zero." )
def __a ( self : Any ):
'''simple docstring'''
self.assertRaisesRegex(
A__ , "The length of profit and weight must be same." )
if __name__ == "__main__":
unittest.main()
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : Tuple = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 298
| 0
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowerCAmelCase__ ( __a , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =KandinskyInpaintPipeline
SCREAMING_SNAKE_CASE_ =["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
SCREAMING_SNAKE_CASE_ =[
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
SCREAMING_SNAKE_CASE_ =[
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
SCREAMING_SNAKE_CASE_ =False
@property
def __a ( self : List[Any] ):
'''simple docstring'''
return 3_2
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return 3_2
@property
def __a ( self : int ):
'''simple docstring'''
return self.time_input_dim
@property
def __a ( self : Tuple ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def __a ( self : List[Any] ):
'''simple docstring'''
return 1_0_0
@property
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : str = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def __a ( self : Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase__ : List[Any] = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , )
UpperCAmelCase__ : Optional[int] = MultilingualCLIP(a__ )
UpperCAmelCase__ : int = text_encoder.eval()
return text_encoder
@property
def __a ( self : Dict ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase__ : str = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase__ : Tuple = UNetaDConditionModel(**a__ )
return model
@property
def __a ( self : str ):
'''simple docstring'''
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def __a ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase__ : Union[str, Any] = VQModel(**self.dummy_movq_kwargs )
return model
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : str = self.dummy_text_encoder
UpperCAmelCase__ : Union[str, Any] = self.dummy_tokenizer
UpperCAmelCase__ : str = self.dummy_unet
UpperCAmelCase__ : Dict = self.dummy_movq
UpperCAmelCase__ : Tuple = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=a__ , set_alpha_to_one=a__ , steps_offset=1 , prediction_type="epsilon" , thresholding=a__ , )
UpperCAmelCase__ : Any = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def __a ( self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict=0 ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a__ ) ).to(a__ )
UpperCAmelCase__ : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a__ )
# create init_image
UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(a__ ) ).to(a__ )
UpperCAmelCase__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase__ : List[Any] = Image.fromarray(np.uinta(a__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
# create mask
UpperCAmelCase__ : Optional[Any] = np.ones((6_4, 6_4) , dtype=np.floataa )
UpperCAmelCase__ : Optional[Any] = 0
if str(a__ ).startswith("mps" ):
UpperCAmelCase__ : Union[str, Any] = torch.manual_seed(a__ )
else:
UpperCAmelCase__ : int = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase__ : Any = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = "cpu"
UpperCAmelCase__ : Optional[Any] = self.get_dummy_components()
UpperCAmelCase__ : Optional[int] = self.pipeline_class(**a__ )
UpperCAmelCase__ : Tuple = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase__ : Optional[int] = pipe(**self.get_dummy_inputs(a__ ) )
UpperCAmelCase__ : Optional[Any] = output.images
UpperCAmelCase__ : Union[str, Any] = pipe(
**self.get_dummy_inputs(a__ ) , return_dict=a__ , )[0]
UpperCAmelCase__ : List[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1]
print(f'image.shape {image.shape}' )
assert image.shape == (1, 6_4, 6_4, 3)
UpperCAmelCase__ : List[str] = np.array(
[0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def __a ( self : List[Any] ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : int ):
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase__ : List[str] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase__ : Any = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
UpperCAmelCase__ : Any = 0
UpperCAmelCase__ : Tuple = "a hat"
UpperCAmelCase__ : List[str] = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(a__ )
UpperCAmelCase__ : Optional[int] = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase__ : List[str] = pipeline.to(a__ )
pipeline.set_progress_bar_config(disable=a__ )
UpperCAmelCase__ : str = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = pipe_prior(
a__ , generator=a__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase__ : Any = pipeline(
a__ , image=a__ , mask_image=a__ , image_embeds=a__ , negative_image_embeds=a__ , generator=a__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , )
UpperCAmelCase__ : Dict = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(a__ , a__ )
| 360
|
"""simple docstring"""
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
_lowerCAmelCase : Optional[int] = get_logger(__name__)
_lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md"""
_lowerCAmelCase : Dict = uuida().hex
_lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f'; torch/{_torch_version}'
if is_flax_available():
ua += f'; jax/{_jax_version}'
ua += f'; flax/{_flax_version}'
if is_onnx_available():
ua += f'; onnxruntime/{_onnxruntime_version}'
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(snake_case , snake_case ):
ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() )
elif isinstance(snake_case , snake_case ):
ua += "; " + user_agent
return ua
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]:
'''simple docstring'''
if token is None:
UpperCAmelCase__ : Optional[Any] = HfFolder.get_token()
if organization is None:
UpperCAmelCase__ : Tuple = whoami(snake_case )["name"]
return f'{username}/{model_id}'
else:
return f'{organization}/{model_id}'
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]:
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"Modelcard rendering is based on Jinja templates."
" Please make sure to have `jinja` installed before using `create_model_card`."
" To install it, please run `pip install Jinja2`." )
if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]:
return
UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None
UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case )
UpperCAmelCase__ : Tuple = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None
) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , )
UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" )
model_card.save(snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple:
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() )
UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case )
if search is None:
return None
UpperCAmelCase__ : Dict = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
_lowerCAmelCase : Dict = os.path.expanduser(
os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface"""))
)
_lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""")
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None:
'''simple docstring'''
if new_cache_dir is None:
UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE
if old_cache_dir is None:
UpperCAmelCase__ : str = old_diffusers_cache
UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser()
UpperCAmelCase__ : Any = Path(snake_case ).expanduser()
for old_blob_path in old_cache_dir.glob("**/blobs/*" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case )
new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
os.replace(snake_case , snake_case )
try:
os.symlink(snake_case , snake_case )
except OSError:
logger.warning(
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
_lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""")
if not os.path.isfile(cache_version_file):
_lowerCAmelCase : Any = 0
else:
with open(cache_version_file) as f:
try:
_lowerCAmelCase : List[str] = int(f.read())
except ValueError:
_lowerCAmelCase : Optional[int] = 0
if cache_version < 1:
_lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"""The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """
"""existing cached models. This is a one-time operation, you can interrupt it or run it """
"""later by calling `diffusers.utils.hub_utils.move_cache()`."""
)
try:
move_cache()
except Exception as e:
_lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__))
logger.error(
F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
"""file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """
"""message and we will do our best to help."""
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, """w""") as f:
f.write("""1""")
except Exception:
logger.warning(
F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
"""the directory exists and can be written to."""
)
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str:
'''simple docstring'''
if variant is not None:
UpperCAmelCase__ : int = weights_name.split("." )
UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:]
UpperCAmelCase__ : Optional[int] = ".".join(snake_case )
return weights_name
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *,
snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : List[str] = str(snake_case )
if os.path.isfile(snake_case ):
return pretrained_model_name_or_path
elif os.path.isdir(snake_case ):
if os.path.isfile(os.path.join(snake_case , snake_case ) ):
# Load from a PyTorch checkpoint
UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(snake_case , snake_case , snake_case ) ):
UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case )
return model_file
else:
raise EnvironmentError(
f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" )
):
try:
UpperCAmelCase__ : List[Any] = hf_hub_download(
snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
warnings.warn(
f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , )
return model_file
except: # noqa: E722
warnings.warn(
f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , )
try:
# 2. Load model file as usual
UpperCAmelCase__ : Dict = hf_hub_download(
snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
"login`." )
except RevisionNotFoundError:
raise EnvironmentError(
f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '
"this model name. Check the model page at "
f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' )
except EntryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' )
except HTTPError as err:
raise EnvironmentError(
f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' )
except ValueError:
raise EnvironmentError(
f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'
f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'
f' directory containing a file named {weights_name} or'
" \nCheckout your internet connection or see how to run the library in"
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." )
except EnvironmentError:
raise EnvironmentError(
f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '
f'containing a file named {weights_name}' )
| 298
| 0
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 361
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss
UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy()
UpperCAmelCase__ : List[Any] = -21.22_8168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
| 298
| 0
|
"""simple docstring"""
from __future__ import annotations
from math import ceil, floor, sqrt
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] = 200_0000 )-> int:
'''simple docstring'''
UpperCAmelCase__ : Tuple = [0]
UpperCAmelCase__ : Dict = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
UpperCAmelCase__ : Any = 0
# the area corresponding to the grid that gives the product closest to target
UpperCAmelCase__ : List[Any] = 0
# an estimate of b, using the quadratic formula
UpperCAmelCase__ : Dict = 42
# the largest integer less than b_estimate
UpperCAmelCase__ : int = 42
# the largest integer less than b_estimate
UpperCAmelCase__ : Any = 42
# the triangle number corresponding to b_floor
UpperCAmelCase__ : Tuple = 42
# the triangle number corresponding to b_ceil
UpperCAmelCase__ : List[Any] = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
UpperCAmelCase__ : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
UpperCAmelCase__ : Union[str, Any] = floor(__snake_case )
UpperCAmelCase__ : Tuple = ceil(__snake_case )
UpperCAmelCase__ : Optional[Any] = triangle_numbers[b_floor]
UpperCAmelCase__ : List[Any] = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
UpperCAmelCase__ : Dict = triangle_b_first_guess * triangle_a
UpperCAmelCase__ : Optional[int] = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
UpperCAmelCase__ : int = triangle_b_second_guess * triangle_a
UpperCAmelCase__ : List[str] = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F"""{solution() = }""")
| 362
|
"""simple docstring"""
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = parent
UpperCAmelCase__ : int = batch_size
UpperCAmelCase__ : int = seq_length
UpperCAmelCase__ : List[str] = is_training
UpperCAmelCase__ : Union[str, Any] = use_input_mask
UpperCAmelCase__ : Optional[Any] = use_token_type_ids
UpperCAmelCase__ : Any = use_labels
UpperCAmelCase__ : List[Any] = vocab_size
UpperCAmelCase__ : Any = embedding_size
UpperCAmelCase__ : List[str] = hidden_size
UpperCAmelCase__ : List[Any] = num_hidden_layers
UpperCAmelCase__ : int = num_hidden_groups
UpperCAmelCase__ : Union[str, Any] = num_attention_heads
UpperCAmelCase__ : List[str] = intermediate_size
UpperCAmelCase__ : Optional[Any] = hidden_act
UpperCAmelCase__ : List[Any] = hidden_dropout_prob
UpperCAmelCase__ : Tuple = attention_probs_dropout_prob
UpperCAmelCase__ : str = max_position_embeddings
UpperCAmelCase__ : Any = type_vocab_size
UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = initializer_range
UpperCAmelCase__ : Tuple = num_labels
UpperCAmelCase__ : List[str] = num_choices
UpperCAmelCase__ : Union[str, Any] = scope
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : Optional[int] = None
UpperCAmelCase__ : Any = None
if self.use_labels:
UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self : Any ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : str = AlbertModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[int] = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_labels
UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : str = self.num_labels
UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_choices
UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Tuple = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[Any] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': AlbertModel,
'''fill-mask''': AlbertForMaskedLM,
'''question-answering''': AlbertForQuestionAnswering,
'''text-classification''': AlbertForSequenceClassification,
'''token-classification''': AlbertForTokenClassification,
'''zero-shot''': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =True
def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if model_class in get_values(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ )
UpperCAmelCase__ : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case__ )
return inputs_dict
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Dict = AlbertModelTester(self )
UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case__ )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase__ : Dict = type
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" )
UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , snake_case__ )
UpperCAmelCase__ : Union[str, Any] = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
| 298
| 0
|
"""simple docstring"""
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_lowerCAmelCase : Union[str, Any] = """."""
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
_lowerCAmelCase : int = [
"""Assert""",
"""AssignVariableOp""",
"""EmptyTensorList""",
"""MergeV2Checkpoints""",
"""ReadVariableOp""",
"""ResourceGather""",
"""RestoreV2""",
"""SaveV2""",
"""ShardedFilename""",
"""StatefulPartitionedCall""",
"""StaticRegexFullMatch""",
"""VarHandleOp""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : str , snake_case : List[str] )-> List[str]:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = SavedModel()
UpperCAmelCase__ : Union[str, Any] = []
with open(os.path.join(UpperCAmelCase__ , "utils" , "tf_ops" , "onnx.json" ) ) as f:
UpperCAmelCase__ : Dict = json.load(UpperCAmelCase__ )["opsets"]
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(UpperCAmelCase__ )] )
with open(UpperCAmelCase__ , "rb" ) as f:
saved_model.ParseFromString(f.read() )
UpperCAmelCase__ : Optional[int] = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
UpperCAmelCase__ : Any = sorted(UpperCAmelCase__ )
UpperCAmelCase__ : List[str] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(UpperCAmelCase__ )
if strict and len(UpperCAmelCase__ ) > 0:
raise Exception(f'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops )
elif len(UpperCAmelCase__ ) > 0:
print(f'Found the following incompatible ops for the opset {opset}:' )
print(*UpperCAmelCase__ , sep="\n" )
else:
print(f'The saved model {saved_model_path} can properly be converted with ONNX.' )
if __name__ == "__main__":
_lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""")
parser.add_argument(
"""--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested."""
)
parser.add_argument(
"""--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model."""
)
parser.add_argument(
"""--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)"""
)
_lowerCAmelCase : Optional[Any] = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 363
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any:
'''simple docstring'''
UpperCAmelCase__ : List[str] = [1]
for i in range(2 , snake_case ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCAmelCase__ : Union[str, Any] = []
UpperCAmelCase__ : str = list(range(snake_case ) )
# Find permutation
while factorials:
UpperCAmelCase__ : str = factorials.pop()
UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
"""simple docstring"""
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCAmelCase__ ( snake_case__ ):
SCREAMING_SNAKE_CASE_ =["""image_processor""", """tokenizer"""]
SCREAMING_SNAKE_CASE_ ="""Pix2StructImageProcessor"""
SCREAMING_SNAKE_CASE_ =("""T5Tokenizer""", """T5TokenizerFast""")
def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = False
super().__init__(_A , _A )
def __call__( self : str , snake_case__ : int=None , snake_case__ : Optional[int] = None , snake_case__ : Tuple = True , snake_case__ : Tuple = False , snake_case__ : Optional[Any] = None , snake_case__ : str = None , snake_case__ : Tuple = 2_0_4_8 , snake_case__ : Tuple = 0 , snake_case__ : List[str] = None , snake_case__ : Any = None , snake_case__ : Any = False , snake_case__ : Tuple = False , snake_case__ : int = False , snake_case__ : Tuple = False , snake_case__ : str = False , snake_case__ : Dict = True , snake_case__ : Union[str, Any] = None , **snake_case__ : str , ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("You have to specify either images or text." )
# Get only text
if images is None and not self.image_processor.is_vqa:
UpperCAmelCase__ : Union[str, Any] = self.tokenizer
UpperCAmelCase__ : str = self.tokenizer(
text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , )
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
UpperCAmelCase__ : Optional[int] = self.image_processor(
_A , return_tensors=_A , max_patches=_A , **_A )
else:
# add pixel_values and bbox
UpperCAmelCase__ : Any = self.image_processor(
_A , return_tensors=_A , max_patches=_A , header_text=_A , **_A )
if text is not None and not self.image_processor.is_vqa:
UpperCAmelCase__ : str = self.tokenizer(
text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , )
if "attention_mask" in text_encoding:
UpperCAmelCase__ : Optional[int] = text_encoding.pop("attention_mask" )
if "input_ids" in text_encoding:
UpperCAmelCase__ : Optional[int] = text_encoding.pop("input_ids" )
else:
UpperCAmelCase__ : List[str] = None
if text_encoding is not None:
encoding_image_processor.update(_A )
return encoding_image_processor
def __a ( self : str , *snake_case__ : int , **snake_case__ : Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*_A , **_A )
def __a ( self : List[Any] , *snake_case__ : Tuple , **snake_case__ : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*_A , **_A )
@property
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.tokenizer.model_input_names
UpperCAmelCase__ : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 364
|
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
_lowerCAmelCase : Union[str, Any] = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ):
'''simple docstring'''
UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0}
UpperCAmelCase__ : List[str] = parent
UpperCAmelCase__ : List[str] = batch_size
UpperCAmelCase__ : Optional[Any] = num_channels
UpperCAmelCase__ : Any = image_size
UpperCAmelCase__ : int = min_resolution
UpperCAmelCase__ : Tuple = max_resolution
UpperCAmelCase__ : Optional[int] = size
UpperCAmelCase__ : Optional[int] = do_normalize
UpperCAmelCase__ : str = do_convert_rgb
UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def __a ( self : str ):
'''simple docstring'''
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : int = PixaStructImageProcessingTester(self )
@property
def __a ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image()
UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
UpperCAmelCase__ : Dict = 2_0_4_8
UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def __a ( self : List[Any] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : List[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : str = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : List[Any] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
UpperCAmelCase__ : Optional[int] = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ : List[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
UpperCAmelCase__ : Optional[Any] = "Hello"
UpperCAmelCase__ : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : Dict = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : Dict ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , np.ndarray )
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : Dict = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : List[str] = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : Optional[int] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , torch.Tensor )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : str = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 )
UpperCAmelCase__ : Optional[int] = 3
@property
def __a ( self : int ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) )
def __a ( self : int ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : Dict = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 298
| 0
|
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCAmelCase : Optional[int] = 16
_lowerCAmelCase : Optional[int] = 32
def SCREAMING_SNAKE_CASE__ ( snake_case : Accelerator , snake_case : int = 16 )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : str = AutoTokenizer.from_pretrained("bert-base-cased" )
UpperCAmelCase__ : str = load_dataset("glue" , "mrpc" )
def tokenize_function(snake_case : Dict ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase__ : Optional[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case__ , max_length=snake_case__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCAmelCase__ : List[str] = datasets.map(
snake_case__ , batched=snake_case__ , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase__ : Dict = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(snake_case : Tuple ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCAmelCase__ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCAmelCase__ : str = 16
elif accelerator.mixed_precision != "no":
UpperCAmelCase__ : Dict = 8
else:
UpperCAmelCase__ : Union[str, Any] = None
return tokenizer.pad(
snake_case__ , padding="longest" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="pt" , )
# Instantiate dataloaders.
UpperCAmelCase__ : Optional[int] = DataLoader(
tokenized_datasets["train"] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ )
UpperCAmelCase__ : List[Any] = DataLoader(
tokenized_datasets["validation"] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCAmelCase : Optional[int] = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : List[Any] )-> List[str]:
'''simple docstring'''
if os.environ.get("TESTING_MOCKED_DATALOADERS" , snake_case__ ) == "1":
UpperCAmelCase__ : List[str] = 2
# New Code #
UpperCAmelCase__ : Optional[int] = int(args.gradient_accumulation_steps )
UpperCAmelCase__ : List[str] = int(args.local_sgd_steps )
# Initialize accelerator
UpperCAmelCase__ : Optional[Any] = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=snake_case__ )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase__ : Union[str, Any] = config['lr']
UpperCAmelCase__ : Optional[int] = int(config["num_epochs"] )
UpperCAmelCase__ : List[Any] = int(config["seed"] )
UpperCAmelCase__ : List[str] = int(config["batch_size"] )
UpperCAmelCase__ : Optional[Any] = evaluate.load("glue" , "mrpc" )
set_seed(snake_case__ )
UpperCAmelCase__ : int = get_dataloaders(snake_case__ , snake_case__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase__ : Tuple = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=snake_case__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase__ : Dict = model.to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase__ : List[str] = AdamW(params=model.parameters() , lr=snake_case__ )
# Instantiate scheduler
UpperCAmelCase__ : Any = get_linear_schedule_with_warmup(
optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase__ : str = accelerator.prepare(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Now we train the model
for epoch in range(snake_case__ ):
model.train()
with LocalSGD(
accelerator=snake_case__ , model=snake_case__ , local_sgd_steps=snake_case__ , enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(snake_case__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(snake_case__ ):
UpperCAmelCase__ : int = model(**snake_case__ )
UpperCAmelCase__ : Union[str, Any] = output.loss
accelerator.backward(snake_case__ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(snake_case__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase__ : Dict = model(**snake_case__ )
UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 )
UpperCAmelCase__ : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=snake_case__ , references=snake_case__ , )
UpperCAmelCase__ : List[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : Any = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=snake_case__ , default=snake_case__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
# New Code #
parser.add_argument(
"--gradient_accumulation_steps" , type=snake_case__ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , )
parser.add_argument(
"--local_sgd_steps" , type=snake_case__ , default=8 , help="Number of local SGD steps or None to disable local SGD" )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
UpperCAmelCase__ : str = parser.parse_args()
UpperCAmelCase__ : Tuple = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(snake_case__ , snake_case__ )
if __name__ == "__main__":
main()
| 365
|
"""simple docstring"""
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any:
'''simple docstring'''
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : int = "mock-s3-bucket"
UpperCAmelCase__ : Any = f's3://{mock_bucket}'
UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case )
assert dataset_path.startswith("s3://" ) is False
UpperCAmelCase__ : str = "./local/path"
UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case )
assert dataset_path == new_dataset_path
def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case )
assert is_remote is True
UpperCAmelCase__ : str = fsspec.filesystem("file" )
UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case )
assert is_remote is False
@pytest.mark.parametrize("compression_fs_class" , snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file}
UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol]
if input_path is None:
UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, '
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(snake_case )
UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case )
assert isinstance(snake_case , snake_case )
UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case )
UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )]
assert fs.glob("*" ) == [expected_filename]
with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize("protocol" , ["zip", "gzip"] )
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path}
UpperCAmelCase__ : int = compressed_file_paths[protocol]
UpperCAmelCase__ : Any = "dataset.jsonl"
UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}'
UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case )
assert fs.isfile(snake_case )
assert not fs.isfile("non_existing_" + member_file_path )
@pytest.mark.integration
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case )
UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case )
assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"]
assert hffs.isdir("data" )
assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" )
with open(snake_case ) as f:
assert hffs.open("data/text_data.txt" , "r" ).read() == f.read()
def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : Tuple = "bz2"
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(snake_case , snake_case , clobber=snake_case )
with pytest.warns(snake_case ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(snake_case ) == 1
assert (
str(warning_info[0].message )
== f'A filesystem protocol was already set for {protocol} and will be overwritten.'
)
| 298
| 0
|
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCAmelCase__ :
def __init__( self : List[Any] , snake_case__ : Dict , snake_case__ : Any=1_3 , snake_case__ : Any=3_0 , snake_case__ : Union[str, Any]=2 , snake_case__ : List[Any]=3 , snake_case__ : Optional[int]=True , snake_case__ : List[str]=True , snake_case__ : Any=3_2 , snake_case__ : Optional[Any]=2 , snake_case__ : Union[str, Any]=4 , snake_case__ : Optional[int]=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : List[Any]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : Dict=1_0 , snake_case__ : Optional[Any]=0.02 , snake_case__ : Optional[Any]=3 , snake_case__ : Optional[Any]=0.6 , snake_case__ : int=None , ):
'''simple docstring'''
UpperCAmelCase__ : int = parent
UpperCAmelCase__ : Union[str, Any] = batch_size
UpperCAmelCase__ : Optional[int] = image_size
UpperCAmelCase__ : int = patch_size
UpperCAmelCase__ : Any = num_channels
UpperCAmelCase__ : Optional[int] = is_training
UpperCAmelCase__ : int = use_labels
UpperCAmelCase__ : List[Any] = hidden_size
UpperCAmelCase__ : Any = num_hidden_layers
UpperCAmelCase__ : Tuple = num_attention_heads
UpperCAmelCase__ : str = intermediate_size
UpperCAmelCase__ : Any = hidden_act
UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob
UpperCAmelCase__ : Dict = attention_probs_dropout_prob
UpperCAmelCase__ : Optional[int] = type_sequence_label_size
UpperCAmelCase__ : str = initializer_range
UpperCAmelCase__ : List[str] = mask_ratio
UpperCAmelCase__ : Union[str, Any] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCAmelCase__ : Optional[Any] = (image_size // patch_size) ** 2
UpperCAmelCase__ : Optional[int] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : int = self.get_config()
return config, pixel_values, labels
def __a ( self : Any ):
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def __a ( self : str , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = TFViTMAEModel(config=snake_case__ )
UpperCAmelCase__ : str = model(snake_case__ , training=snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self : Union[str, Any] , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = TFViTMAEForPreTraining(snake_case__ )
UpperCAmelCase__ : int = model(snake_case__ , training=snake_case__ )
# expected sequence length = num_patches
UpperCAmelCase__ : List[str] = (self.image_size // self.patch_size) ** 2
UpperCAmelCase__ : Tuple = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
UpperCAmelCase__ : Union[str, Any] = 1
UpperCAmelCase__ : str = TFViTMAEForPreTraining(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : str = model(snake_case__ , training=snake_case__ )
UpperCAmelCase__ : int = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs()
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : str = config_and_inputs
UpperCAmelCase__ : List[str] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {}
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = TFViTMAEModelTester(self )
UpperCAmelCase__ : Optional[int] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 )
def __a ( self : Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViTMAE does not use inputs_embeds" )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
pass
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Any = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
UpperCAmelCase__ : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Layer ) )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Optional[int] = model_class(snake_case__ )
UpperCAmelCase__ : Optional[int] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase__ : Any = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case__ )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case__ )
def __a ( self : Any ):
'''simple docstring'''
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase__ : str = model_class(snake_case__ )
UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[int] = model(snake_case__ , noise=snake_case__ )
UpperCAmelCase__ : Union[str, Any] = copy.deepcopy(self._prepare_for_class(snake_case__ , snake_case__ ) )
UpperCAmelCase__ : Optional[int] = model(**snake_case__ , noise=snake_case__ )
UpperCAmelCase__ : Tuple = outputs_dict[0].numpy()
UpperCAmelCase__ : List[Any] = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
# make the mask reproducible
np.random.seed(2 )
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[Any] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(snake_case__ : Tuple ):
UpperCAmelCase__ : Optional[int] = {}
for k, v in inputs_dict.items():
if tf.is_tensor(snake_case__ ):
UpperCAmelCase__ : List[str] = v.numpy()
else:
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
return inputs_np_dict
for model_class in self.all_model_classes:
UpperCAmelCase__ : Union[str, Any] = model_class(snake_case__ )
UpperCAmelCase__ : Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase__ : str = prepare_numpy_arrays(snake_case__ )
UpperCAmelCase__ : Tuple = model(snake_case__ , noise=snake_case__ )
UpperCAmelCase__ : Tuple = model(**snake_case__ , noise=snake_case__ )
self.assert_outputs_same(snake_case__ , snake_case__ )
def __a ( self : Tuple , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Union[str, Any] ):
'''simple docstring'''
# make masks reproducible
np.random.seed(2 )
UpperCAmelCase__ : Tuple = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
UpperCAmelCase__ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase__ : List[str] = tf.constant(snake_case__ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCAmelCase__ : Any = tf_noise
super().check_pt_tf_models(snake_case__ , snake_case__ , snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Tuple = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(snake_case__ )
if module_member_name.endswith("MainLayer" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )]
for module_member in (getattr(snake_case__ , snake_case__ ),)
if isinstance(snake_case__ , snake_case__ )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(snake_case__ , "_keras_serializable" , snake_case__ )
}
UpperCAmelCase__ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase__ : Tuple = tf.convert_to_tensor(snake_case__ )
inputs_dict.update({"noise": noise} )
for main_layer_class in tf_main_layer_classes:
UpperCAmelCase__ : Union[str, Any] = main_layer_class(snake_case__ )
UpperCAmelCase__ : List[str] = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
UpperCAmelCase__ : str = tf.keras.Model(snake_case__ , outputs=main_layer(snake_case__ ) )
UpperCAmelCase__ : Dict = model(snake_case__ )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase__ : List[Any] = os.path.join(snake_case__ , "keras_model.h5" )
model.save(snake_case__ )
UpperCAmelCase__ : int = tf.keras.models.load_model(
snake_case__ , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(snake_case__ , tf.keras.Model )
UpperCAmelCase__ : int = model(snake_case__ )
self.assert_outputs_same(snake_case__ , snake_case__ )
@slow
def __a ( self : Dict ):
'''simple docstring'''
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : int = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(snake_case__ )
UpperCAmelCase__ : Any = self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[int] = model(snake_case__ , noise=snake_case__ )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase__ : Union[str, Any] = outputs.last_hidden_state.numpy()
UpperCAmelCase__ : List[Any] = 0
else:
UpperCAmelCase__ : Optional[Any] = outputs.logits.numpy()
UpperCAmelCase__ : Optional[int] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case__ , saved_model=snake_case__ )
UpperCAmelCase__ : str = model_class.from_pretrained(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , noise=snake_case__ )
if model_class.__name__ == "TFViTMAEModel":
UpperCAmelCase__ : Optional[Any] = after_outputs["last_hidden_state"].numpy()
UpperCAmelCase__ : List[Any] = 0
else:
UpperCAmelCase__ : Optional[int] = after_outputs["logits"].numpy()
UpperCAmelCase__ : Any = 0
UpperCAmelCase__ : Dict = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(snake_case__ , 1e-5 )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
# make mask reproducible
np.random.seed(2 )
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
UpperCAmelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
UpperCAmelCase__ : Optional[int] = model_class(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[int] = model(snake_case__ , noise=snake_case__ )
UpperCAmelCase__ : Optional[int] = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(snake_case__ )
UpperCAmelCase__ : List[Any] = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
UpperCAmelCase__ : Tuple = model_class.from_config(model.config )
UpperCAmelCase__ : int = new_model(snake_case__ ) # Build model
new_model.set_weights(model.get_weights() )
UpperCAmelCase__ : str = new_model(snake_case__ , noise=snake_case__ )
self.assert_outputs_same(snake_case__ , snake_case__ )
@unittest.skip(
reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." )
def __a ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" )
def __a ( self : int ):
'''simple docstring'''
pass
@slow
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Any = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" )
self.assertIsNotNone(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]:
UpperCAmelCase__ : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : List[str] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None
@slow
def __a ( self : List[Any] ):
'''simple docstring'''
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
UpperCAmelCase__ : int = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" )
UpperCAmelCase__ : Union[str, Any] = self.default_image_processor
UpperCAmelCase__ : Tuple = prepare_img()
UpperCAmelCase__ : List[str] = image_processor(images=snake_case__ , return_tensors="tf" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCAmelCase__ : Union[str, Any] = ViTMAEConfig()
UpperCAmelCase__ : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
UpperCAmelCase__ : int = np.random.uniform(size=(1, num_patches) )
# forward pass
UpperCAmelCase__ : List[str] = model(**snake_case__ , noise=snake_case__ )
# verify the logits
UpperCAmelCase__ : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] )
self.assertEqual(outputs.logits.shape , snake_case__ )
UpperCAmelCase__ : Optional[int] = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case__ , atol=1e-4 )
| 366
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : List[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''megatron-bert'''
def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase__ : str = vocab_size
UpperCAmelCase__ : str = hidden_size
UpperCAmelCase__ : List[str] = num_hidden_layers
UpperCAmelCase__ : Optional[int] = num_attention_heads
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Tuple = hidden_dropout_prob
UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : Any = max_position_embeddings
UpperCAmelCase__ : Dict = type_vocab_size
UpperCAmelCase__ : Optional[int] = initializer_range
UpperCAmelCase__ : int = layer_norm_eps
UpperCAmelCase__ : Optional[Any] = position_embedding_type
UpperCAmelCase__ : Any = use_cache
| 298
| 0
|
"""simple docstring"""
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =DownBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""down"""
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =ResnetDownsampleBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""down"""
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =AttnDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""down"""
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =CrossAttnDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""down"""
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Any = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase__ : Optional[Any] = 3_2
return init_dict, inputs_dict
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =SimpleCrossAttnDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""down"""
@property
def __a ( self : List[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_encoder_hidden_states=__lowercase )
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : str = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase__ : str = 3_2
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : int = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =SkipDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""down"""
@property
def __a ( self : int ):
'''simple docstring'''
return super().get_dummy_input(include_skip_sample=__lowercase )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : int = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =AttnSkipDownBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""down"""
@property
def __a ( self : Optional[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_skip_sample=__lowercase )
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Any = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =DownEncoderBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""down"""
@property
def __a ( self : Dict ):
'''simple docstring'''
return super().get_dummy_input(include_temb=__lowercase )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = {
'''in_channels''': 3_2,
'''out_channels''': 3_2,
}
UpperCAmelCase__ : List[Any] = self.dummy_input
return init_dict, inputs_dict
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =AttnDownEncoderBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""down"""
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return super().get_dummy_input(include_temb=__lowercase )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = {
'''in_channels''': 3_2,
'''out_channels''': 3_2,
}
UpperCAmelCase__ : List[Any] = self.dummy_input
return init_dict, inputs_dict
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : int = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =UNetMidBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""mid"""
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = {
'''in_channels''': 3_2,
'''temb_channels''': 1_2_8,
}
UpperCAmelCase__ : Dict = self.dummy_input
return init_dict, inputs_dict
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =UNetMidBlockaDCrossAttn # noqa F405
SCREAMING_SNAKE_CASE_ ="""mid"""
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase__ : Optional[Any] = 3_2
return init_dict, inputs_dict
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =UNetMidBlockaDSimpleCrossAttn # noqa F405
SCREAMING_SNAKE_CASE_ ="""mid"""
@property
def __a ( self : Optional[Any] ):
'''simple docstring'''
return super().get_dummy_input(include_encoder_hidden_states=__lowercase )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase__ : int = 3_2
return init_dict, inputs_dict
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =UpBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""up"""
@property
def __a ( self : int ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase )
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =ResnetUpsampleBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""up"""
@property
def __a ( self : Dict ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =CrossAttnUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""up"""
@property
def __a ( self : List[str] ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = 3_2
return init_dict, inputs_dict
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =SimpleCrossAttnUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""up"""
@property
def __a ( self : str ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase , include_encoder_hidden_states=__lowercase )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Dict = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase__ : int = 3_2
return init_dict, inputs_dict
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =AttnUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""up"""
@property
def __a ( self : Optional[int] ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase )
@unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : int = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =SkipUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""up"""
@property
def __a ( self : Dict ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =AttnSkipUpBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""up"""
@property
def __a ( self : int ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=__lowercase )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =UpDecoderBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""up"""
@property
def __a ( self : int ):
'''simple docstring'''
return super().get_dummy_input(include_temb=__lowercase )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = {'''in_channels''': 3_2, '''out_channels''': 3_2}
UpperCAmelCase__ : List[Any] = self.dummy_input
return init_dict, inputs_dict
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : int = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137]
super().test_output(__lowercase )
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =AttnUpDecoderBlockaD # noqa F405
SCREAMING_SNAKE_CASE_ ="""up"""
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return super().get_dummy_input(include_temb=__lowercase )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = {'''in_channels''': 3_2, '''out_channels''': 3_2}
UpperCAmelCase__ : int = self.dummy_input
return init_dict, inputs_dict
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568]
super().test_output(__lowercase )
| 367
|
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class lowerCAmelCase__ ( datasets.BeamBasedBuilder ):
def __a ( self : Dict ):
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , )
def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )]
def __a ( self : Any , snake_case__ : str , snake_case__ : str ):
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(snake_case__ )
class lowerCAmelCase__ ( datasets.BeamBasedBuilder ):
def __a ( self : Any ):
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ):
'''simple docstring'''
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} )
]
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ):
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Dict:
'''simple docstring'''
return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )]
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )]
class lowerCAmelCase__ ( __magic_name__ ):
@require_beam
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Any = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase__ : Tuple = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def __a ( self : Dict ):
'''simple docstring'''
import apache_beam as beam
UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet
UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock:
UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase__ : Dict = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def __a ( self : str ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) )
UpperCAmelCase__ : Tuple = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
| 298
| 0
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowerCAmelCase : Any = logging.get_logger(__name__)
class lowerCAmelCase__ ( UpperCamelCase__ ):
SCREAMING_SNAKE_CASE_ =["""input_values""", """padding_mask"""]
def __init__( self : Tuple , snake_case__ : int = 1 , snake_case__ : int = 2_4_0_0_0 , snake_case__ : float = 0.0 , snake_case__ : float = None , snake_case__ : float = None , **snake_case__ : str , ):
'''simple docstring'''
super().__init__(feature_size=__a , sampling_rate=__a , padding_value=__a , **__a )
UpperCAmelCase__ : List[Any] = chunk_length_s
UpperCAmelCase__ : Optional[int] = overlap
@property
def __a ( self : Any ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def __a ( self : List[Any] ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self : int , snake_case__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case__ : Optional[Union[bool, str, PaddingStrategy]] = None , snake_case__ : Optional[bool] = False , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[int] = None , ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
f' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
if padding and truncation:
raise ValueError("Both padding and truncation were set. Make sure you only set one." )
elif padding is None:
# by default let's pad the inputs
UpperCAmelCase__ : List[str] = True
UpperCAmelCase__ : Tuple = bool(
isinstance(__a , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
UpperCAmelCase__ : int = [np.asarray(__a , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__a , np.ndarray ):
UpperCAmelCase__ : List[Any] = np.asarray(__a , dtype=np.floataa )
elif isinstance(__a , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
UpperCAmelCase__ : Union[str, Any] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
UpperCAmelCase__ : List[Any] = [np.asarray(__a ).T]
# verify inputs are valid
for idx, example in enumerate(__a ):
if example.ndim > 2:
raise ValueError(f'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'Expected stereo audio but example has {example.shape[-1]} channels' )
UpperCAmelCase__ : List[str] = None
UpperCAmelCase__ : str = BatchFeature({"input_values": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
UpperCAmelCase__ : int = min(array.shape[0] for array in raw_audio )
UpperCAmelCase__ : str = int(np.floor(max_length / self.chunk_stride ) )
UpperCAmelCase__ : Optional[int] = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
UpperCAmelCase__ : List[Any] = max(array.shape[0] for array in raw_audio )
UpperCAmelCase__ : Any = int(np.ceil(max_length / self.chunk_stride ) )
UpperCAmelCase__ : Tuple = (nb_step - 1) * self.chunk_stride + self.chunk_length
UpperCAmelCase__ : List[Any] = "max_length"
else:
UpperCAmelCase__ : Any = input_values
# normal padding on batch
if padded_inputs is None:
UpperCAmelCase__ : List[str] = self.pad(
__a , max_length=__a , truncation=__a , padding=__a , return_attention_mask=__a , )
if padding:
UpperCAmelCase__ : int = padded_inputs.pop("attention_mask" )
UpperCAmelCase__ : Union[str, Any] = []
for example in padded_inputs.pop("input_values" ):
if self.feature_size == 1:
UpperCAmelCase__ : str = example[..., None]
input_values.append(example.T )
UpperCAmelCase__ : Tuple = input_values
if return_tensors is not None:
UpperCAmelCase__ : Optional[Any] = padded_inputs.convert_to_tensors(__a )
return padded_inputs
| 368
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =XLMTokenizer
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ : Optional[int] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(snake_case__ ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(snake_case__ ) )
def __a ( self : Union[str, Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = "lower newer"
UpperCAmelCase__ : Optional[Any] = "lower newer"
return input_text, output_text
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ : List[Any] = "lower"
UpperCAmelCase__ : Any = ["low", "er</w>"]
UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"]
UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" )
UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 298
| 0
|
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
_lowerCAmelCase : Tuple = {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""",
}
class lowerCAmelCase__ ( _UpperCamelCase ):
SCREAMING_SNAKE_CASE_ ='xlnet'
SCREAMING_SNAKE_CASE_ =['mems']
SCREAMING_SNAKE_CASE_ ={
'n_token': 'vocab_size', # Backward compatibility
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Optional[Any] , snake_case__ : List[Any]=3_2_0_0_0 , snake_case__ : int=1_0_2_4 , snake_case__ : Optional[Any]=2_4 , snake_case__ : str=1_6 , snake_case__ : int=4_0_9_6 , snake_case__ : int="gelu" , snake_case__ : Any=True , snake_case__ : Dict="bi" , snake_case__ : List[str]=0.02 , snake_case__ : str=1e-12 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=5_1_2 , snake_case__ : List[str]=None , snake_case__ : List[Any]=True , snake_case__ : Optional[int]=False , snake_case__ : Tuple=False , snake_case__ : List[Any]=-1 , snake_case__ : Optional[Any]=False , snake_case__ : List[str]="last" , snake_case__ : Dict=True , snake_case__ : Tuple="tanh" , snake_case__ : str=0.1 , snake_case__ : List[Any]=5 , snake_case__ : str=5 , snake_case__ : Dict=5 , snake_case__ : Optional[int]=1 , snake_case__ : List[Any]=2 , **snake_case__ : Optional[Any] , ):
'''simple docstring'''
UpperCAmelCase__ : Dict = vocab_size
UpperCAmelCase__ : Union[str, Any] = d_model
UpperCAmelCase__ : Optional[int] = n_layer
UpperCAmelCase__ : Union[str, Any] = n_head
if d_model % n_head != 0:
raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' )
UpperCAmelCase__ : List[Any] = d_model // n_head
UpperCAmelCase__ : Dict = ff_activation
UpperCAmelCase__ : int = d_inner
UpperCAmelCase__ : int = untie_r
UpperCAmelCase__ : Dict = attn_type
UpperCAmelCase__ : Tuple = initializer_range
UpperCAmelCase__ : Tuple = layer_norm_eps
UpperCAmelCase__ : Union[str, Any] = dropout
UpperCAmelCase__ : int = mem_len
UpperCAmelCase__ : str = reuse_len
UpperCAmelCase__ : List[Any] = bi_data
UpperCAmelCase__ : Dict = clamp_len
UpperCAmelCase__ : int = same_length
UpperCAmelCase__ : int = summary_type
UpperCAmelCase__ : Any = summary_use_proj
UpperCAmelCase__ : Dict = summary_activation
UpperCAmelCase__ : Tuple = summary_last_dropout
UpperCAmelCase__ : Any = start_n_top
UpperCAmelCase__ : Optional[Any] = end_n_top
UpperCAmelCase__ : List[str] = bos_token_id
UpperCAmelCase__ : Dict = pad_token_id
UpperCAmelCase__ : List[Any] = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , _UpperCAmelCase , )
UpperCAmelCase__ : List[Any] = kwargs['use_cache']
UpperCAmelCase__ : Optional[Any] = use_mems_eval
UpperCAmelCase__ : List[Any] = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def __a ( self : Optional[Any] ):
'''simple docstring'''
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def __a ( self : List[str] , snake_case__ : List[str] ):
'''simple docstring'''
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 369
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ):
'''simple docstring'''
UpperCAmelCase__ : Any = "bilinear"
UpperCAmelCase__ : Any = max_size
UpperCAmelCase__ : Any = short_edge_length
def __call__( self : Dict , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = []
for img in imgs:
UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2]
# later: provide list and randomly choose index for resize
UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ )
if h < w:
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w
else:
UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size
if max(snake_case__ , snake_case__ ) > self.max_size:
UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ )
UpperCAmelCase__ : List[str] = newh * scale
UpperCAmelCase__ : int = neww * scale
UpperCAmelCase__ : List[Any] = int(neww + 0.5 )
UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 )
if img.dtype == np.uinta:
UpperCAmelCase__ : Any = Image.fromarray(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ )
else:
UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
UpperCAmelCase__ : Tuple = nn.functional.interpolate(
snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 )
img_augs.append(snake_case__ )
return img_augs
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
UpperCAmelCase__ : Any = cfg.INPUT.FORMAT
UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY
UpperCAmelCase__ : str = cfg.PAD_VALUE
UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST
UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE
UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std
def __a ( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) )
UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images]
UpperCAmelCase__ : int = [
nn.functional.pad(
snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(snake_case__ , snake_case__ )
]
return torch.stack(snake_case__ ), torch.tensor(snake_case__ )
def __call__( self : str , snake_case__ : int , snake_case__ : int=False ):
'''simple docstring'''
with torch.no_grad():
if not isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ : Dict = [images]
if single_image:
assert len(snake_case__ ) == 1
for i in range(len(snake_case__ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] )
UpperCAmelCase__ : Tuple = self.aug(snake_case__ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images]
# now pad them to do the following operations
UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]:
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int:
'''simple docstring'''
assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!"
UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case )
tensor[:, 1].clamp_(min=0 , max=snake_case )
tensor[:, 2].clamp_(min=0 , max=snake_case )
tensor[:, 3].clamp_(min=0 , max=snake_case )
| 298
| 0
|
"""simple docstring"""
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Union[str, Any] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : Tuple = torch.load(__SCREAMING_SNAKE_CASE , map_location="cpu" )
UpperCAmelCase__ : int = chkpt["model"]
# We have the base model one level deeper than the original XLM repository
UpperCAmelCase__ : Optional[int] = {}
for k, v in state_dict.items():
if "pred_layer" in k:
UpperCAmelCase__ : Any = v
else:
UpperCAmelCase__ : List[str] = v
UpperCAmelCase__ : Optional[Any] = chkpt["params"]
UpperCAmelCase__ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__SCREAMING_SNAKE_CASE , (torch.FloatTensor, numpy.ndarray) )}
UpperCAmelCase__ : Optional[Any] = chkpt["dico_word2id"]
UpperCAmelCase__ : Optional[int] = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()}
# Save pytorch-model
UpperCAmelCase__ : Union[str, Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
UpperCAmelCase__ : List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME
UpperCAmelCase__ : Dict = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"]
print(f'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
print(f'Save configuration file to {pytorch_config_dump_path}' )
with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__SCREAMING_SNAKE_CASE , indent=2 ) + "\n" )
print(f'Save vocab file to {pytorch_config_dump_path}' )
with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__SCREAMING_SNAKE_CASE , indent=2 ) + "\n" )
if __name__ == "__main__":
_lowerCAmelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
_lowerCAmelCase : Any = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 370
|
"""simple docstring"""
import qiskit
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts:
'''simple docstring'''
UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" )
UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = half_adder(1, 1)
print(F"""Half Adder Output Qubit Counts: {counts}""")
| 298
| 0
|
"""simple docstring"""
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase__ :
def __init__( self : int , snake_case__ : int , snake_case__ : str=1_3 , snake_case__ : int=3_2 , snake_case__ : Union[str, Any]=2 , snake_case__ : int=3 , snake_case__ : List[str]=1_6 , snake_case__ : List[str]=[1, 2, 1] , snake_case__ : List[Any]=[2, 2, 4] , snake_case__ : List[str]=2 , snake_case__ : Union[str, Any]=2.0 , snake_case__ : List[Any]=True , snake_case__ : List[str]=0.0 , snake_case__ : str=0.0 , snake_case__ : Optional[Any]=0.1 , snake_case__ : str="gelu" , snake_case__ : List[str]=False , snake_case__ : Tuple=True , snake_case__ : Tuple=0.02 , snake_case__ : Optional[int]=1e-5 , snake_case__ : Any=True , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[int]=True , snake_case__ : Any=1_0 , snake_case__ : Any=8 , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = parent
UpperCAmelCase__ : str = batch_size
UpperCAmelCase__ : Any = image_size
UpperCAmelCase__ : Dict = patch_size
UpperCAmelCase__ : str = num_channels
UpperCAmelCase__ : Dict = embed_dim
UpperCAmelCase__ : Union[str, Any] = depths
UpperCAmelCase__ : Any = num_heads
UpperCAmelCase__ : Union[str, Any] = window_size
UpperCAmelCase__ : str = mlp_ratio
UpperCAmelCase__ : Tuple = qkv_bias
UpperCAmelCase__ : int = hidden_dropout_prob
UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : str = drop_path_rate
UpperCAmelCase__ : Union[str, Any] = hidden_act
UpperCAmelCase__ : str = use_absolute_embeddings
UpperCAmelCase__ : Any = patch_norm
UpperCAmelCase__ : Union[str, Any] = layer_norm_eps
UpperCAmelCase__ : Tuple = initializer_range
UpperCAmelCase__ : Any = is_training
UpperCAmelCase__ : Union[str, Any] = scope
UpperCAmelCase__ : List[Any] = use_labels
UpperCAmelCase__ : List[Any] = type_sequence_label_size
UpperCAmelCase__ : Tuple = encoder_stride
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __a ( self : List[Any] ):
'''simple docstring'''
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = SwinvaModel(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase__ : Optional[Any] = model(__snake_case )
UpperCAmelCase__ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __a ( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = SwinvaForMaskedImageModeling(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase__ : Optional[int] = model(__snake_case )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ : Optional[Any] = 1
UpperCAmelCase__ : int = SwinvaForMaskedImageModeling(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Optional[Any] = model(__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.type_sequence_label_size
UpperCAmelCase__ : Optional[int] = SwinvaForImageClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase__ : Optional[Any] = model(__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = config_and_inputs
UpperCAmelCase__ : Dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
SCREAMING_SNAKE_CASE_ =(
{'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : int = SwinvaModelTester(self )
UpperCAmelCase__ : int = ConfigTester(self , config_class=__snake_case , embed_dim=3_7 )
def __a ( self : List[str] ):
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
@unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." )
def __a ( self : str ):
'''simple docstring'''
pass
@unittest.skip(reason="Swinv2 does not use inputs_embeds" )
def __a ( self : int ):
'''simple docstring'''
pass
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Union[str, Any] = model_class(__snake_case )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) )
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Union[str, Any] = model_class(__snake_case )
UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : List[Any] = [*signature.parameters.keys()]
UpperCAmelCase__ : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __snake_case )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : int = True
for model_class in self.all_model_classes:
UpperCAmelCase__ : Optional[Any] = True
UpperCAmelCase__ : Optional[Any] = False
UpperCAmelCase__ : List[Any] = True
UpperCAmelCase__ : Dict = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
UpperCAmelCase__ : List[str] = model(**self._prepare_for_class(__snake_case , __snake_case ) )
UpperCAmelCase__ : Union[str, Any] = outputs.attentions
UpperCAmelCase__ : Dict = len(self.model_tester.depths )
self.assertEqual(len(__snake_case ) , __snake_case )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ : Tuple = True
UpperCAmelCase__ : Optional[Any] = config.window_size**2
UpperCAmelCase__ : List[Any] = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case ) )
UpperCAmelCase__ : int = outputs.attentions
self.assertEqual(len(__snake_case ) , __snake_case )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ : Dict = len(__snake_case )
# Check attention is always last and order is fine
UpperCAmelCase__ : Dict = True
UpperCAmelCase__ : int = True
UpperCAmelCase__ : List[Any] = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
UpperCAmelCase__ : Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) )
if hasattr(self.model_tester , "num_hidden_states_types" ):
UpperCAmelCase__ : Dict = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ : Optional[Any] = 2
self.assertEqual(out_len + added_hidden_states , len(__snake_case ) )
UpperCAmelCase__ : Dict = outputs.attentions
self.assertEqual(len(__snake_case ) , __snake_case )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def __a ( self : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
UpperCAmelCase__ : Any = model(**self._prepare_for_class(__snake_case , __snake_case ) )
UpperCAmelCase__ : List[Any] = outputs.hidden_states
UpperCAmelCase__ : Optional[Any] = getattr(
self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__snake_case ) , __snake_case )
# Swinv2 has a different seq_length
UpperCAmelCase__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ : str = outputs.reshaped_hidden_states
self.assertEqual(len(__snake_case ) , __snake_case )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = reshaped_hidden_states[0].shape
UpperCAmelCase__ : str = (
reshaped_hidden_states[0].view(__snake_case , __snake_case , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ : Optional[Any] = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ : List[str] = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case )
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = 3
UpperCAmelCase__ : Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ : int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ : Union[str, Any] = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ : Tuple = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) )
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case )
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__snake_case )
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Any = SwinvaModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : List[str] = _config_zero_init(__snake_case )
for model_class in self.all_model_classes:
UpperCAmelCase__ : List[Any] = model_class(config=__snake_case )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : Any ):
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" )
if is_vision_available()
else None
)
@slow
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to(
__snake_case )
UpperCAmelCase__ : int = self.default_image_processor
UpperCAmelCase__ : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
UpperCAmelCase__ : Tuple = image_processor(images=__snake_case , return_tensors="pt" ).to(__snake_case )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : int = model(**__snake_case )
# verify the logits
UpperCAmelCase__ : Optional[int] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __snake_case )
UpperCAmelCase__ : Optional[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) )
| 371
|
"""simple docstring"""
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
_lowerCAmelCase : Union[str, Any] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''efficientformer'''
def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ):
'''simple docstring'''
super().__init__(**snake_case__ )
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : List[str] = hidden_sizes
UpperCAmelCase__ : Union[str, Any] = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : List[Any] = initializer_range
UpperCAmelCase__ : List[Any] = layer_norm_eps
UpperCAmelCase__ : Optional[int] = patch_size
UpperCAmelCase__ : Tuple = num_channels
UpperCAmelCase__ : Optional[int] = depths
UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio
UpperCAmelCase__ : Dict = downsamples
UpperCAmelCase__ : Any = dim
UpperCAmelCase__ : str = key_dim
UpperCAmelCase__ : List[Any] = attention_ratio
UpperCAmelCase__ : Optional[Any] = resolution
UpperCAmelCase__ : Optional[Any] = pool_size
UpperCAmelCase__ : Any = downsample_patch_size
UpperCAmelCase__ : int = downsample_stride
UpperCAmelCase__ : Dict = downsample_pad
UpperCAmelCase__ : List[Any] = drop_path_rate
UpperCAmelCase__ : Optional[Any] = num_metaad_blocks
UpperCAmelCase__ : List[str] = distillation
UpperCAmelCase__ : Dict = use_layer_scale
UpperCAmelCase__ : List[Any] = layer_scale_init_value
UpperCAmelCase__ : Optional[Any] = image_size
UpperCAmelCase__ : Optional[int] = batch_norm_eps
| 298
| 0
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class lowerCAmelCase__ :
def __init__( self : str , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=1_3 , snake_case__ : Any=7 , snake_case__ : str=False , snake_case__ : Union[str, Any]=True , snake_case__ : int=False , snake_case__ : List[str]=False , snake_case__ : List[Any]=1_9 , snake_case__ : List[str]=3_2 , snake_case__ : int=5 , snake_case__ : Dict=4 , snake_case__ : str=3_7 , snake_case__ : Any="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : str=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=1_6 , snake_case__ : List[Any]=2 , snake_case__ : int=0.02 , snake_case__ : Optional[Any]=3 , snake_case__ : Tuple=4 , snake_case__ : List[Any]=None , ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = parent
UpperCAmelCase__ : List[Any] = batch_size
UpperCAmelCase__ : Optional[Any] = seq_length
UpperCAmelCase__ : List[Any] = is_training
UpperCAmelCase__ : Tuple = use_input_mask
UpperCAmelCase__ : Dict = use_token_type_ids
UpperCAmelCase__ : Tuple = use_labels
UpperCAmelCase__ : Optional[Any] = vocab_size
UpperCAmelCase__ : List[Any] = hidden_size
UpperCAmelCase__ : Optional[int] = num_hidden_layers
UpperCAmelCase__ : str = num_attention_heads
UpperCAmelCase__ : List[str] = intermediate_size
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : int = hidden_dropout_prob
UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : Optional[Any] = max_position_embeddings
UpperCAmelCase__ : Optional[Any] = type_vocab_size
UpperCAmelCase__ : Optional[int] = type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = initializer_range
UpperCAmelCase__ : Optional[int] = num_labels
UpperCAmelCase__ : Tuple = num_choices
UpperCAmelCase__ : Optional[Any] = scope
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : List[Any] = None
if self.use_input_mask:
UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ : Optional[Any] = None
UpperCAmelCase__ : str = None
UpperCAmelCase__ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ : List[Any] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : str = EsmConfig(
vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=snake_case__ , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , )
return config
def __a ( self : Any , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = EsmForProteinFolding(config=snake_case__ ).float()
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ )
UpperCAmelCase__ : Tuple = model(snake_case__ )
UpperCAmelCase__ : List[str] = model(snake_case__ )
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) )
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs()
(
UpperCAmelCase__
) : List[Any] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =(EsmForProteinFolding,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ =()
SCREAMING_SNAKE_CASE_ ={} if is_torch_available() else {}
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = EsmFoldModelTester(self )
UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
@unittest.skip("Does not support attention outputs" )
def __a ( self : Dict ):
'''simple docstring'''
pass
@unittest.skip
def __a ( self : Dict ):
'''simple docstring'''
pass
@unittest.skip("Esm does not support embedding resizing" )
def __a ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("Esm does not support embedding resizing" )
def __a ( self : Dict ):
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support passing input embeds!" )
def __a ( self : int ):
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning." )
def __a ( self : Any ):
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning." )
def __a ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning." )
def __a ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning." )
def __a ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning." )
def __a ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip("ESMFold does not output hidden states in the normal way." )
def __a ( self : Dict ):
'''simple docstring'''
pass
@unittest.skip("ESMfold does not output hidden states in the normal way." )
def __a ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip("ESMFold only has one output format." )
def __a ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" )
def __a ( self : Any ):
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support input chunking." )
def __a ( self : Dict ):
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." )
def __a ( self : Any ):
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't support torchscript compilation." )
def __a ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't support torchscript compilation." )
def __a ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't support torchscript compilation." )
def __a ( self : Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't support data parallel." )
def __a ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def __a ( self : Dict ):
'''simple docstring'''
pass
@require_torch
class lowerCAmelCase__ ( __magic_name__ ):
@slow
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : str = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float()
model.eval()
UpperCAmelCase__ : Tuple = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] )
UpperCAmelCase__ : Any = model(snake_case__ )["positions"]
UpperCAmelCase__ : Tuple = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , snake_case__ , atol=1e-4 ) )
| 350
|
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : str = args.log_outputs
UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
UpperCAmelCase__ : List[str] = load_metric("wer" )
UpperCAmelCase__ : Tuple = load_metric("cer" )
# compute metrics
UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] )
UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case )
with open(f'{dataset_id}_eval_results.txt' , "w" ) as f:
f.write(snake_case )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt'
UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt'
with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case : List[Any] , snake_case : List[str] ):
p.write(f'{i}' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(f'{i}' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case , with_indices=snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str:
'''simple docstring'''
UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) )
return text
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCAmelCase__ : str = feature_extractor.sampling_rate
# resample audio
UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) )
# load eval pipeline
if args.device is None:
UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1
UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case : Any ):
UpperCAmelCase__ : List[str] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
UpperCAmelCase__ : List[Any] = prediction["text"]
UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case , snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCAmelCase : Tuple = parser.parse_args()
main(args)
| 298
| 0
|
"""simple docstring"""
from manim import *
class lowerCAmelCase__ ( __magic_name__ ):
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = Rectangle(height=0.5 , width=0.5 )
UpperCAmelCase__ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCAmelCase__ : Optional[Any] = [mem.copy() for i in range(6 )]
UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )]
UpperCAmelCase__ : Dict = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 )
UpperCAmelCase__ : Optional[Any] = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 )
UpperCAmelCase__ : Any = VGroup(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0 )
UpperCAmelCase__ : Union[str, Any] = Text("CPU" , font_size=2_4 )
UpperCAmelCase__ : Optional[int] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(snake_case__ )
UpperCAmelCase__ : Dict = [mem.copy() for i in range(4 )]
UpperCAmelCase__ : List[Any] = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 )
UpperCAmelCase__ : Union[str, Any] = Text("GPU" , font_size=2_4 )
UpperCAmelCase__ : Any = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ )
gpu.move_to([-1, -1, 0] )
self.add(snake_case__ )
UpperCAmelCase__ : List[str] = [mem.copy() for i in range(6 )]
UpperCAmelCase__ : List[str] = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 )
UpperCAmelCase__ : Optional[int] = Text("Model" , font_size=2_4 )
UpperCAmelCase__ : List[Any] = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__ )
model.move_to([3, -1.0, 0] )
self.add(snake_case__ )
UpperCAmelCase__ : Any = []
for i, rect in enumerate(snake_case__ ):
rect.set_stroke(snake_case__ )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
UpperCAmelCase__ : Tuple = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case__ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=snake_case__ , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=snake_case__ , buff=0.0 )
self.add(snake_case__ )
cpu_targs.append(snake_case__ )
UpperCAmelCase__ : Any = [mem.copy() for i in range(6 )]
UpperCAmelCase__ : Tuple = VGroup(*snake_case__ ).arrange(snake_case__ , buff=0 )
UpperCAmelCase__ : List[str] = Text("Loaded Checkpoint" , font_size=2_4 )
UpperCAmelCase__ : Dict = Group(snake_case__ , snake_case__ ).arrange(snake_case__ , aligned_edge=snake_case__ , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
UpperCAmelCase__ : Optional[int] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCAmelCase__ : List[str] = MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=1_8 , )
key_text.move_to([-5, 2.4, 0] )
self.add(snake_case__ , snake_case__ )
UpperCAmelCase__ : List[str] = MarkupText(
f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=1_8 , )
blue_text.next_to(snake_case__ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
UpperCAmelCase__ : Optional[Any] = MarkupText(
f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=2_4 , )
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case__ ) , Write(snake_case__ ) )
self.play(Write(snake_case__ , run_time=1 ) , Create(snake_case__ , run_time=1 ) )
UpperCAmelCase__ : Tuple = []
UpperCAmelCase__ : Optional[Any] = []
for i, rect in enumerate(snake_case__ ):
UpperCAmelCase__ : List[str] = fill.copy().set_fill(snake_case__ , opacity=0.7 )
target.move_to(snake_case__ )
first_animations.append(GrowFromCenter(snake_case__ , run_time=1 ) )
UpperCAmelCase__ : Dict = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(snake_case__ , run_time=1.5 ) )
self.play(*snake_case__ )
self.play(*snake_case__ )
self.wait()
| 351
|
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowerCAmelCase__ :
def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ):
'''simple docstring'''
UpperCAmelCase__ : int = parent
UpperCAmelCase__ : List[str] = 1_0_0
UpperCAmelCase__ : List[Any] = batch_size
UpperCAmelCase__ : int = image_size
UpperCAmelCase__ : List[Any] = patch_size
UpperCAmelCase__ : List[Any] = num_channels
UpperCAmelCase__ : Any = is_training
UpperCAmelCase__ : str = use_labels
UpperCAmelCase__ : Any = hidden_size
UpperCAmelCase__ : Dict = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Any = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : str = attention_probs_dropout_prob
UpperCAmelCase__ : Optional[int] = type_sequence_label_size
UpperCAmelCase__ : Any = initializer_range
UpperCAmelCase__ : Any = scope
UpperCAmelCase__ : Optional[Any] = out_indices
UpperCAmelCase__ : int = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2
UpperCAmelCase__ : Optional[int] = num_patches + 1
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : str = None
UpperCAmelCase__ : Optional[int] = None
if self.use_labels:
UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase__ : Tuple = self.get_config()
return config, pixel_values, labels, pixel_labels
def __a ( self : int ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[Any] = model(snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase__ : Any = 1
UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.num_labels
UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs
UpperCAmelCase__ : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': BeitModel,
'''image-classification''': BeitForImageClassification,
'''image-segmentation''': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModelTester(self )
UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 )
def __a ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds" )
def __a ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def __a ( self : List[str] ):
'''simple docstring'''
pass
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(snake_case__ )
UpperCAmelCase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : str = [*signature.parameters.keys()]
UpperCAmelCase__ : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]:
continue
UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ )
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss
loss.backward()
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase__ : List[Any] = model_class(snake_case__ )
model.gradient_checkpointing_enable()
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss
loss.backward()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ )
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(config=snake_case__ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def __a ( self : Any ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ )
UpperCAmelCase__ : int = self.default_image_processor
UpperCAmelCase__ : List[Any] = prepare_img()
UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ )
# prepare bool_masked_pos
UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ )
UpperCAmelCase__ : str = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Any = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) )
@slow
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Dict = prepare_img()
UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ )
UpperCAmelCase__ : Any = outputs.logits
# verify the logits
UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : List[str] = 2_8_1
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to(
snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Any = prepare_img()
UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[Any] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : Any = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : List[Any] = model.to(snake_case__ )
UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[str] = model(**snake_case__ )
UpperCAmelCase__ : Dict = outputs.logits
# verify the logits
UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" )
if is_pillow_less_than_a:
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=snake_case__ , )
else:
UpperCAmelCase__ : int = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=snake_case__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits.detach().cpu()
UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] )
UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ )
UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
| 298
| 0
|
"""simple docstring"""
import os
import sys
_lowerCAmelCase : str = os.path.join(os.path.dirname(__file__), """src""")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
_lowerCAmelCase : List[Any] = [
"""torch""",
"""numpy""",
"""tokenizers""",
"""filelock""",
"""requests""",
"""tqdm""",
"""regex""",
"""sentencepiece""",
"""sacremoses""",
"""importlib_metadata""",
"""huggingface_hub""",
]
@add_start_docstrings(AutoConfig.__doc__ )
def SCREAMING_SNAKE_CASE__ ( *snake_case : List[Any] , **snake_case : Any )-> Dict:
'''simple docstring'''
return AutoConfig.from_pretrained(*snake_case , **snake_case )
@add_start_docstrings(AutoTokenizer.__doc__ )
def SCREAMING_SNAKE_CASE__ ( *snake_case : Union[str, Any] , **snake_case : Dict )-> Optional[int]:
'''simple docstring'''
return AutoTokenizer.from_pretrained(*snake_case , **snake_case )
@add_start_docstrings(AutoModel.__doc__ )
def SCREAMING_SNAKE_CASE__ ( *snake_case : Optional[int] , **snake_case : str )-> Union[str, Any]:
'''simple docstring'''
return AutoModel.from_pretrained(*snake_case , **snake_case )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def SCREAMING_SNAKE_CASE__ ( *snake_case : str , **snake_case : str )-> Tuple:
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*snake_case , **snake_case )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def SCREAMING_SNAKE_CASE__ ( *snake_case : Optional[Any] , **snake_case : Tuple )-> Tuple:
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*snake_case , **snake_case )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def SCREAMING_SNAKE_CASE__ ( *snake_case : List[str] , **snake_case : Any )-> Dict:
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*snake_case , **snake_case )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def SCREAMING_SNAKE_CASE__ ( *snake_case : List[Any] , **snake_case : int )-> str:
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*snake_case , **snake_case )
| 352
|
"""simple docstring"""
import functools
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int:
'''simple docstring'''
UpperCAmelCase__ : List[str] = len(snake_case )
UpperCAmelCase__ : str = len(snake_case )
@functools.cache
def min_distance(snake_case : int , snake_case : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
_lowerCAmelCase : List[Any] = """
Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.
In March 2021, Hugging Face raised $40 million in a Series B funding round.[3]
On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]
"""
class lowerCAmelCase__ ( unittest.TestCase , __magic_name__ ):
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = load_tool("text-question-answering" )
self.tool.setup()
UpperCAmelCase__ : Optional[Any] = load_tool("text-question-answering" , remote=snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.tool(snake_case__ , "What did Hugging Face do in April 2021?" )
self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = self.remote_tool(snake_case__ , "What did Hugging Face do in April 2021?" )
self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" )
self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.remote_tool(text=snake_case__ , question="What did Hugging Face do in April 2021?" )
self.assertEqual(snake_case__ , "launched the BigScience Research Workshop" )
| 353
|
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class lowerCAmelCase__ ( __magic_name__ ):
def __a ( self : List[Any] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" )
UpperCAmelCase__ : Tuple = input_file.read()
UpperCAmelCase__ : Tuple = regexp.search(snake_case__ )
return match
def __a ( self : List[str] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL )
UpperCAmelCase__ : Dict = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase__ : int = regexp.finditer(snake_case__ )
UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = Path("./datasets" )
UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(snake_case__ ) ):
raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = Path("./datasets" )
UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_print_statements(str(snake_case__ ) ):
raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
| 298
| 0
|
"""simple docstring"""
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
_lowerCAmelCase : List[Any] = logging.getLogger(__name__)
_lowerCAmelCase : List[str] = """Hello world! cécé herlolip"""
_lowerCAmelCase : List[str] = namedtuple(
"""BertAbsConfig""",
[
"""temp_dir""",
"""large""",
"""use_bert_emb""",
"""finetune_bert""",
"""encoder""",
"""share_emb""",
"""max_pos""",
"""enc_layers""",
"""enc_hidden_size""",
"""enc_heads""",
"""enc_ff_size""",
"""enc_dropout""",
"""dec_layers""",
"""dec_hidden_size""",
"""dec_heads""",
"""dec_ff_size""",
"""dec_dropout""",
],
)
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : List[Any] )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : Dict = BertAbsConfig(
temp_dir="." , finetune_bert=snake_case , large=snake_case , share_emb=snake_case , use_bert_emb=snake_case , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , )
UpperCAmelCase__ : Dict = torch.load(snake_case , lambda snake_case , snake_case : storage )
UpperCAmelCase__ : Optional[int] = AbsSummarizer(snake_case , torch.device("cpu" ) , snake_case )
original.eval()
UpperCAmelCase__ : List[str] = BertAbsSummarizer(snake_case , torch.device("cpu" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("convert the model" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("Make sure that the models' outputs are identical" )
UpperCAmelCase__ : Optional[int] = BertTokenizer.from_pretrained("bert-base-uncased" )
# prepare the model inputs
UpperCAmelCase__ : Union[str, Any] = tokenizer.encode("This is sample éàalj'-." )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case )) )
UpperCAmelCase__ : List[str] = torch.tensor(snake_case ).unsqueeze(0 )
UpperCAmelCase__ : List[Any] = tokenizer.encode("This is sample 3 éàalj'-." )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case )) )
UpperCAmelCase__ : Dict = torch.tensor(snake_case ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
UpperCAmelCase__ : Dict = encoder_input_ids
UpperCAmelCase__ : str = decoder_input_ids
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : int = None
UpperCAmelCase__ : List[str] = None
UpperCAmelCase__ : Tuple = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
UpperCAmelCase__ : Optional[Any] = original(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )[0]
UpperCAmelCase__ : int = original.generator(snake_case )
UpperCAmelCase__ : Any = new_model(
snake_case , snake_case , snake_case , snake_case , snake_case )[0]
UpperCAmelCase__ : Dict = new_model.generator(snake_case )
UpperCAmelCase__ : List[str] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(snake_case ) )
UpperCAmelCase__ : Dict = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(snake_case ) )
UpperCAmelCase__ : int = torch.allclose(snake_case , snake_case , atol=1E-3 )
if are_identical:
logging.info("all weights are equal up to 1e-3" )
else:
raise ValueError("the weights are different. The new model is likely different from the original one." )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("saving the model's state dictionary" )
torch.save(
new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" )
if __name__ == "__main__":
_lowerCAmelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"""--bertabs_checkpoint_path""",
default=None,
type=str,
required=True,
help="""Path the official PyTorch dump.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=True,
help="""Path to the output PyTorch model.""",
)
_lowerCAmelCase : Tuple = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 354
|
"""simple docstring"""
import numpy as np
import datasets
_lowerCAmelCase : Optional[int] = """
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
"""
_lowerCAmelCase : Tuple = """\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
"""
_lowerCAmelCase : Optional[int] = """
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{'mahalanobis': array([0.5])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __a ( self : Any ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ):
'''simple docstring'''
# convert to numpy arrays
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ )
UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T )
try:
UpperCAmelCase__ : str = np.linalg.inv(snake_case__ )
except np.linalg.LinAlgError:
UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ )
UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ )
UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 298
| 0
|
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_lowerCAmelCase : Tuple = logging.get_logger(__name__)
_lowerCAmelCase : Tuple = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
_lowerCAmelCase : Any = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : str , snake_case : str , snake_case : Any , snake_case : Any )-> str:
'''simple docstring'''
for attribute in key.split("." ):
UpperCAmelCase__ : int = getattr(snake_case , snake_case )
if weight_type is not None:
UpperCAmelCase__ : List[Any] = getattr(snake_case , snake_case ).shape
else:
UpperCAmelCase__ : Dict = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
UpperCAmelCase__ : List[Any] = value
elif weight_type == "weight_g":
UpperCAmelCase__ : str = value
elif weight_type == "weight_v":
UpperCAmelCase__ : int = value
elif weight_type == "bias":
UpperCAmelCase__ : Optional[int] = value
elif weight_type == "running_mean":
UpperCAmelCase__ : Dict = value
elif weight_type == "running_var":
UpperCAmelCase__ : Tuple = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase__ : Any = value
elif weight_type == "inv_freq":
UpperCAmelCase__ : Any = value
else:
UpperCAmelCase__ : Dict = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Any , snake_case : Optional[int] )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : Tuple = []
UpperCAmelCase__ : Union[str, Any] = fairseq_model.state_dict()
UpperCAmelCase__ : Optional[int] = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ : Dict = False
if "conv_layers" in name:
load_conv_layer(
snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase__ : List[str] = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ : Optional[int] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase__ : str = True
if "*" in mapped_key:
UpperCAmelCase__ : str = name.split(snake_case )[0].split("." )[-2]
UpperCAmelCase__ : Optional[Any] = mapped_key.replace("*" , snake_case )
if "pos_bias_u" in name:
UpperCAmelCase__ : Dict = None
elif "pos_bias_v" in name:
UpperCAmelCase__ : Any = None
elif "weight_g" in name:
UpperCAmelCase__ : Optional[Any] = "weight_g"
elif "weight_v" in name:
UpperCAmelCase__ : Optional[Any] = "weight_v"
elif "bias" in name:
UpperCAmelCase__ : int = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase__ : List[Any] = "weight"
elif "running_mean" in name:
UpperCAmelCase__ : Optional[Any] = "running_mean"
elif "inv_freq" in name:
UpperCAmelCase__ : Dict = "inv_freq"
elif "running_var" in name:
UpperCAmelCase__ : List[str] = "running_var"
elif "num_batches_tracked" in name:
UpperCAmelCase__ : List[Any] = "num_batches_tracked"
else:
UpperCAmelCase__ : Any = None
set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case )
continue
if not is_used:
unused_weights.append(snake_case )
logger.warning(f'Unused weights: {unused_weights}' )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Any , snake_case : Tuple , snake_case : List[str] )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = full_name.split("conv_layers." )[-1]
UpperCAmelCase__ : int = name.split("." )
UpperCAmelCase__ : Tuple = int(items[0] )
UpperCAmelCase__ : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
UpperCAmelCase__ : int = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
UpperCAmelCase__ : Dict = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
UpperCAmelCase__ : Tuple = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
UpperCAmelCase__ : Optional[int] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(snake_case )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Union[str, Any]=None , snake_case : Tuple=None , snake_case : str=True )-> str:
'''simple docstring'''
if config_path is not None:
UpperCAmelCase__ : Any = WavaVecaConformerConfig.from_pretrained(snake_case , hidden_act="swish" )
else:
UpperCAmelCase__ : List[str] = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase__ : int = "rotary"
if is_finetuned:
if dict_path:
UpperCAmelCase__ : str = Dictionary.load(snake_case )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ : Optional[int] = target_dict.pad_index
UpperCAmelCase__ : str = target_dict.bos_index
UpperCAmelCase__ : Tuple = target_dict.eos_index
UpperCAmelCase__ : str = len(target_dict.symbols )
UpperCAmelCase__ : Dict = os.path.join(snake_case , "vocab.json" )
if not os.path.isdir(snake_case ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(snake_case ) )
return
os.makedirs(snake_case , exist_ok=snake_case )
UpperCAmelCase__ : Union[str, Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase__ : Tuple = 0
UpperCAmelCase__ : int = 1
with open(snake_case , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(snake_case , snake_case )
UpperCAmelCase__ : Tuple = WavaVecaCTCTokenizer(
snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=snake_case , )
UpperCAmelCase__ : int = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase__ : Dict = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case , return_attention_mask=snake_case , )
UpperCAmelCase__ : Any = WavaVecaProcessor(feature_extractor=snake_case , tokenizer=snake_case )
processor.save_pretrained(snake_case )
UpperCAmelCase__ : str = WavaVecaConformerForCTC(snake_case )
else:
UpperCAmelCase__ : List[Any] = WavaVecaConformerForPreTraining(snake_case )
if is_finetuned:
UpperCAmelCase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase__ : Optional[Any] = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase__ : Any = fairseq.tasks.setup_task(snake_case )
UpperCAmelCase__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case )
UpperCAmelCase__ : Union[str, Any] = model[0].eval()
recursively_load_weights(snake_case , snake_case , not is_finetuned )
hf_wavavec.save_pretrained(snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
_lowerCAmelCase : List[Any] = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 355
|
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =IFPipeline
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''}
def __a ( self : Dict ):
'''simple docstring'''
return self._get_dummy_components()
def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ):
'''simple docstring'''
if str(snake_case__ ).startswith("mps" ):
UpperCAmelCase__ : str = torch.manual_seed(snake_case__ )
else:
UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
UpperCAmelCase__ : Tuple = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __a ( self : Tuple ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def __a ( self : Tuple ):
'''simple docstring'''
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __a ( self : Dict ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __a ( self : int ):
'''simple docstring'''
self._test_save_load_local()
def __a ( self : Any ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __a ( self : Optional[Any] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : str ):
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self : Tuple ):
'''simple docstring'''
# if
UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa )
UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("cuda" )
UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCAmelCase__ : Tuple = None
UpperCAmelCase__ : List[Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : List[Any] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : str = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Tuple = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : str = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Optional[Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : int = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : int = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : int = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Tuple = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : List[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Any:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 298
| 0
|
"""simple docstring"""
import math
def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float )-> float:
'''simple docstring'''
if initial_intensity < 0:
raise ValueError("The value of intensity cannot be negative" )
# handling of negative values of initial intensity
if angle < 0 or angle > 360:
raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(snake_case ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name="""malus_law""")
| 356
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Optional[int] = {
"""vocab_file""": """vocab.txt""",
"""merges_file""": """bpe.codes""",
}
_lowerCAmelCase : List[Any] = {
"""vocab_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""",
},
"""merges_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""",
},
}
_lowerCAmelCase : int = {
"""vinai/phobert-base""": 256,
"""vinai/phobert-large""": 256,
}
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = set()
UpperCAmelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase__ : Dict = char
UpperCAmelCase__ : Tuple = set(snake_case )
return pairs
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ):
'''simple docstring'''
super().__init__(
bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase__ : Dict = vocab_file
UpperCAmelCase__ : Tuple = merges_file
UpperCAmelCase__ : List[Any] = {}
UpperCAmelCase__ : Dict = 0
UpperCAmelCase__ : int = 1
UpperCAmelCase__ : Dict = 2
UpperCAmelCase__ : Dict = 3
self.add_from_file(snake_case__ )
UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
with open(snake_case__ , encoding="utf-8" ) as merges_handle:
UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1]
UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges]
UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Dict = {}
def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
UpperCAmelCase__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ )
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1]
def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __a ( self : List[str] ):
'''simple docstring'''
return len(self.encoder )
def __a ( self : Any ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __a ( self : Dict , snake_case__ : Tuple ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
UpperCAmelCase__ : Any = get_pairs(snake_case__ )
if not pairs:
return token
while True:
UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram
UpperCAmelCase__ : Optional[Any] = []
UpperCAmelCase__ : Tuple = 0
while i < len(snake_case__ ):
try:
UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase__ : Dict = j
if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase__ : Dict = tuple(snake_case__ )
UpperCAmelCase__ : List[Any] = new_word
if len(snake_case__ ) == 1:
break
else:
UpperCAmelCase__ : Dict = get_pairs(snake_case__ )
UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ )
UpperCAmelCase__ : Optional[int] = word[:-4]
UpperCAmelCase__ : Union[str, Any] = word
return word
def __a ( self : List[Any] , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = []
UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ )
for token in words:
split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) )
return split_tokens
def __a ( self : Dict , snake_case__ : List[str] ):
'''simple docstring'''
return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) )
def __a ( self : List[Any] , snake_case__ : Any ):
'''simple docstring'''
return self.decoder.get(snake_case__ , self.unk_token )
def __a ( self : str , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip()
return out_string
def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCAmelCase__ : Tuple = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : str = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ):
copyfile(self.merges_file , snake_case__ )
return out_vocab_file, out_merge_file
def __a ( self : List[Any] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
try:
with open(snake_case__ , "r" , encoding="utf-8" ) as fd:
self.add_from_file(snake_case__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' )
return
UpperCAmelCase__ : Dict = f.readlines()
for lineTmp in lines:
UpperCAmelCase__ : Optional[int] = lineTmp.strip()
UpperCAmelCase__ : Tuple = line.rfind(" " )
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" )
UpperCAmelCase__ : Any = line[:idx]
UpperCAmelCase__ : str = len(self.encoder )
| 298
| 0
|
"""simple docstring"""
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( snake_case : list[int] )-> list[int]: # This function is recursive
'''simple docstring'''
UpperCAmelCase__ : Tuple = len(snake_case )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
UpperCAmelCase__ : List[Any] = array[0]
UpperCAmelCase__ : List[str] = False
UpperCAmelCase__ : Optional[Any] = 1
UpperCAmelCase__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
UpperCAmelCase__ : List[Any] = True
UpperCAmelCase__ : List[Any] = [element for element in array[i:] if element >= array[i]]
UpperCAmelCase__ : Any = longest_subsequence(snake_case )
if len(snake_case ) > len(snake_case ):
UpperCAmelCase__ : Optional[Any] = temp_array
else:
i += 1
UpperCAmelCase__ : str = [element for element in array[1:] if element >= pivot]
UpperCAmelCase__ : List[Any] = [pivot, *longest_subsequence(snake_case )]
if len(snake_case ) > len(snake_case ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357
|
"""simple docstring"""
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowerCAmelCase__ :
SCREAMING_SNAKE_CASE_ =42
# setable values
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =None
@classmethod
def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ):
'''simple docstring'''
return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ )
@dataclass
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =42
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ):
SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers]
SCREAMING_SNAKE_CASE_ =42
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return True
@register_to_config
def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = dtype
def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ):
'''simple docstring'''
if common is None:
UpperCAmelCase__ : Any = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype )
UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , )
def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ):
'''simple docstring'''
return sample
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=snake_case__ , timesteps=snake_case__ , )
def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ):
'''simple docstring'''
UpperCAmelCase__ : int = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
UpperCAmelCase__ : Union[str, Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) )
elif variance_type == "fixed_large":
UpperCAmelCase__ : List[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
UpperCAmelCase__ : List[str] = variance
UpperCAmelCase__ : Optional[Any] = state.common.betas[t]
UpperCAmelCase__ : Any = (predicted_variance + 1) / 2
UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log
return variance
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = timestep
if key is None:
UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 )
else:
UpperCAmelCase__ : int = None
# 1. compute alphas, betas
UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase__ : List[Any] = model_output
elif self.config.prediction_type == "v_prediction":
UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '
" for the FlaxDDPMScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 )
UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ )
def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 298
| 0
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> list:
'''simple docstring'''
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
UpperCAmelCase__ : Optional[int] = gray_code_sequence_string(snake_case )
#
# convert them to integers
for i in range(len(snake_case ) ):
UpperCAmelCase__ : str = int(sequence[i] , 2 )
return sequence
def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> list:
'''simple docstring'''
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
UpperCAmelCase__ : Tuple = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
UpperCAmelCase__ : Tuple = gray_code_sequence_string(bit_count - 1 )
UpperCAmelCase__ : Optional[int] = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
UpperCAmelCase__ : Optional[Any] = "0" + smaller_sequence[i]
sequence.append(snake_case )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
UpperCAmelCase__ : str = "1" + smaller_sequence[i]
sequence.append(snake_case )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 358
|
"""simple docstring"""
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class lowerCAmelCase__ :
def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ):
'''simple docstring'''
UpperCAmelCase__ : str = parent
UpperCAmelCase__ : Tuple = batch_size
UpperCAmelCase__ : Dict = seq_length
UpperCAmelCase__ : Union[str, Any] = act_dim
UpperCAmelCase__ : Dict = state_dim
UpperCAmelCase__ : Optional[Any] = hidden_size
UpperCAmelCase__ : List[str] = max_length
UpperCAmelCase__ : int = is_training
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 )
UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) )
UpperCAmelCase__ : Optional[int] = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def __a ( self : int ):
'''simple docstring'''
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ =()
SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
SCREAMING_SNAKE_CASE_ =False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = DecisionTransformerModelTester(self )
UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : List[str] ):
'''simple docstring'''
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase__ : str = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform
UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Optional[int] = model.config
torch.manual_seed(0 )
UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset()
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ )
UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
UpperCAmelCase__ : Union[str, Any] = state
UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 )
for step in range(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model(
states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ),
1.0,
False,
{},
)
UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1]
UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 )
UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward
UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
UpperCAmelCase__ : Tuple = torch.cat(
[timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
| 298
| 0
|
"""simple docstring"""
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Any = """Hello, World!"""
_lowerCAmelCase : List[Any] = """en_XX"""
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str , snake_case : bool )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : Any = Path("data_bin" )
UpperCAmelCase__ : int = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(snake_case ).parent ) , checkpoint_file=Path(snake_case ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(snake_case ) , bpe="sentencepiece" , sentencepiece_model=str(Path(snake_case ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , )
xmod.eval() # disable dropout
print(snake_case )
UpperCAmelCase__ : Any = xmod.model.encoder.sentence_encoder
UpperCAmelCase__ : List[str] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
UpperCAmelCase__ : List[str] = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our X-MOD config:" , snake_case )
UpperCAmelCase__ : str = XmodForSequenceClassification(snake_case ) if classification_head else XmodForMaskedLM(snake_case )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase__ : int = xmod_sent_encoder.embed_tokens.weight
UpperCAmelCase__ : int = xmod_sent_encoder.embed_positions.weight
UpperCAmelCase__ : Any = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
UpperCAmelCase__ : str = xmod_sent_encoder.layernorm_embedding.weight
UpperCAmelCase__ : Optional[Any] = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase__ : str = model.roberta.encoder.layer[i]
UpperCAmelCase__ : Dict = xmod_sent_encoder.layers[i]
# self attention
UpperCAmelCase__ : Any = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("Dimensions of self-attention weights do not match." )
UpperCAmelCase__ : Optional[int] = xmod_layer.self_attn.q_proj.weight
UpperCAmelCase__ : int = xmod_layer.self_attn.q_proj.bias
UpperCAmelCase__ : int = xmod_layer.self_attn.k_proj.weight
UpperCAmelCase__ : Optional[Any] = xmod_layer.self_attn.k_proj.bias
UpperCAmelCase__ : Dict = xmod_layer.self_attn.v_proj.weight
UpperCAmelCase__ : Any = xmod_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase__ : int = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("Dimensions of self-attention output weights do not match." )
UpperCAmelCase__ : Optional[int] = xmod_layer.self_attn.out_proj.weight
UpperCAmelCase__ : List[str] = xmod_layer.self_attn.out_proj.bias
UpperCAmelCase__ : int = xmod_layer.self_attn_layer_norm.weight
UpperCAmelCase__ : Dict = xmod_layer.self_attn_layer_norm.bias
# intermediate
UpperCAmelCase__ : Tuple = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("Dimensions of intermediate weights do not match." )
UpperCAmelCase__ : str = xmod_layer.fca.weight
UpperCAmelCase__ : List[Any] = xmod_layer.fca.bias
# output
UpperCAmelCase__ : Union[str, Any] = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("Dimensions of feed-forward weights do not match." )
UpperCAmelCase__ : Optional[int] = xmod_layer.fca.weight
UpperCAmelCase__ : str = xmod_layer.fca.bias
UpperCAmelCase__ : int = xmod_layer.final_layer_norm.weight
UpperCAmelCase__ : Optional[int] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
UpperCAmelCase__ : List[str] = xmod_layer.adapter_layer_norm.weight
UpperCAmelCase__ : Optional[Any] = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("Lists of language adapters do not match." )
for lang_code, adapter in xmod_layer.adapter_modules.items():
UpperCAmelCase__ : List[str] = bert_output.adapter_modules[lang_code]
UpperCAmelCase__ : Optional[Any] = xmod_layer.adapter_modules[lang_code]
UpperCAmelCase__ : List[Any] = from_adapter.fca.weight
UpperCAmelCase__ : List[str] = from_adapter.fca.bias
UpperCAmelCase__ : Optional[int] = from_adapter.fca.weight
UpperCAmelCase__ : Tuple = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
UpperCAmelCase__ : Union[str, Any] = xmod_sent_encoder.layer_norm.weight
UpperCAmelCase__ : Tuple = xmod_sent_encoder.layer_norm.bias
if classification_head:
UpperCAmelCase__ : Union[str, Any] = xmod.model.classification_heads["mnli"].dense.weight
UpperCAmelCase__ : int = xmod.model.classification_heads["mnli"].dense.bias
UpperCAmelCase__ : Tuple = xmod.model.classification_heads["mnli"].out_proj.weight
UpperCAmelCase__ : str = xmod.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
UpperCAmelCase__ : str = xmod.model.encoder.lm_head.dense.weight
UpperCAmelCase__ : Optional[int] = xmod.model.encoder.lm_head.dense.bias
UpperCAmelCase__ : List[Any] = xmod.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase__ : int = xmod.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase__ : List[str] = xmod.model.encoder.lm_head.weight
UpperCAmelCase__ : Any = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase__ : Union[str, Any] = xmod.encode(snake_case ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(snake_case )
UpperCAmelCase__ : Union[str, Any] = model(snake_case )[0]
if classification_head:
UpperCAmelCase__ : Dict = xmod.model.classification_heads["mnli"](xmod.extract_features(snake_case ) )
else:
UpperCAmelCase__ : str = xmod.model(snake_case , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase__ : Optional[Any] = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7
UpperCAmelCase__ : int = torch.allclose(snake_case , snake_case , atol=1E-3 )
print("Do both models output the same tensors?" , "🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
Path(snake_case ).mkdir(parents=snake_case , exist_ok=snake_case )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
_lowerCAmelCase : Tuple = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : Tuple = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 298
| 0
|
"""simple docstring"""
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str]=None )-> Any:
'''simple docstring'''
assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match'
UpperCAmelCase__ : Dict = nn.Parameter(snake_case )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match'
UpperCAmelCase__ : Union[str, Any] = nn.Parameter(snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple , snake_case : int )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : str = np.asarray(weights[0] )
UpperCAmelCase__ : int = np.asarray(weights[1] )
UpperCAmelCase__ : List[str] = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , )
set_param(
torch_layer.output.dense , torch.tensor(snake_case ).view(-1 , snake_case ).contiguous().transpose(0 , 1 ) , )
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int , snake_case : List[Any] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : Any = np.asarray(weights[0] )
UpperCAmelCase__ : Any = np.asarray(weights[1] )
UpperCAmelCase__ : Union[str, Any] = np.asarray(weights[2] )
UpperCAmelCase__ : Union[str, Any] = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(snake_case ).transpose(1 , 2 ).contiguous().view(-1 , snake_case ) , )
set_param(
torch_layer.output.dense , torch.tensor(snake_case ).view(-1 , snake_case ).contiguous().transpose(0 , 1 ) , )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any , snake_case : int )-> Any:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = weights[0][0][0]
UpperCAmelCase__ : Optional[Any] = np.asarray(layer_norm_a[0] )
UpperCAmelCase__ : Optional[int] = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(snake_case ) , torch.tensor(snake_case ) , )
# lsh weights + output
UpperCAmelCase__ : List[Any] = weights[0][1]
if len(snake_case ) < 4:
set_layer_weights_in_torch_lsh(snake_case , torch_block.attention , snake_case )
else:
set_layer_weights_in_torch_local(snake_case , torch_block.attention , snake_case )
# intermediate weighs
UpperCAmelCase__ : Any = weights[2][0][1][2]
# Chunked Feed Forward
if len(snake_case ) == 4:
UpperCAmelCase__ : int = intermediate_weights[2]
# layernorm 2
UpperCAmelCase__ : Optional[int] = np.asarray(intermediate_weights[0][0] )
UpperCAmelCase__ : Optional[int] = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(snake_case ) , torch.tensor(snake_case ) , )
# intermediate dense
UpperCAmelCase__ : List[Any] = np.asarray(intermediate_weights[1][0] )
UpperCAmelCase__ : Union[str, Any] = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case ) , )
# intermediate out
UpperCAmelCase__ : Any = np.asarray(intermediate_weights[4][0] )
UpperCAmelCase__ : Optional[int] = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case ) , )
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str , snake_case : str )-> List[str]:
'''simple docstring'''
UpperCAmelCase__ : str = torch_model.reformer
# word embeds
UpperCAmelCase__ : int = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(snake_case ) , )
if isinstance(weights[3] , snake_case ):
UpperCAmelCase__ : Optional[int] = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
UpperCAmelCase__ : Tuple = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), f'{position_embeddings[emb_idx]} emb does not match'
UpperCAmelCase__ : List[str] = nn.Parameter(torch.tensor(snake_case ) )
UpperCAmelCase__ : List[str] = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
snake_case ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
UpperCAmelCase__ : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(snake_case , snake_case , snake_case )
# output layer norm
UpperCAmelCase__ : List[str] = np.asarray(weights[7][0] )
UpperCAmelCase__ : Optional[Any] = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(snake_case ) , torch.tensor(snake_case ) , )
# output embeddings
UpperCAmelCase__ : Optional[Any] = np.asarray(weights[9][0] )
UpperCAmelCase__ : int = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(snake_case ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case ) , )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : List[Any] , snake_case : List[str] )-> str:
'''simple docstring'''
UpperCAmelCase__ : int = ReformerConfig.from_json_file(snake_case )
print(f'Building PyTorch model from configuration: {config}' )
UpperCAmelCase__ : Tuple = ReformerModelWithLMHead(snake_case )
with open(snake_case , "rb" ) as f:
UpperCAmelCase__ : Dict = pickle.load(snake_case )["weights"]
set_model_weights_in_torch(snake_case , snake_case , config.hidden_size )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained Reformer model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
_lowerCAmelCase : List[str] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 360
|
"""simple docstring"""
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
_lowerCAmelCase : Optional[int] = get_logger(__name__)
_lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md"""
_lowerCAmelCase : Dict = uuida().hex
_lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f'; torch/{_torch_version}'
if is_flax_available():
ua += f'; jax/{_jax_version}'
ua += f'; flax/{_flax_version}'
if is_onnx_available():
ua += f'; onnxruntime/{_onnxruntime_version}'
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(snake_case , snake_case ):
ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() )
elif isinstance(snake_case , snake_case ):
ua += "; " + user_agent
return ua
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]:
'''simple docstring'''
if token is None:
UpperCAmelCase__ : Optional[Any] = HfFolder.get_token()
if organization is None:
UpperCAmelCase__ : Tuple = whoami(snake_case )["name"]
return f'{username}/{model_id}'
else:
return f'{organization}/{model_id}'
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]:
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"Modelcard rendering is based on Jinja templates."
" Please make sure to have `jinja` installed before using `create_model_card`."
" To install it, please run `pip install Jinja2`." )
if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]:
return
UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None
UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case )
UpperCAmelCase__ : Tuple = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None
) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , )
UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" )
model_card.save(snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple:
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() )
UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case )
if search is None:
return None
UpperCAmelCase__ : Dict = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
_lowerCAmelCase : Dict = os.path.expanduser(
os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface"""))
)
_lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""")
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None:
'''simple docstring'''
if new_cache_dir is None:
UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE
if old_cache_dir is None:
UpperCAmelCase__ : str = old_diffusers_cache
UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser()
UpperCAmelCase__ : Any = Path(snake_case ).expanduser()
for old_blob_path in old_cache_dir.glob("**/blobs/*" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case )
new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
os.replace(snake_case , snake_case )
try:
os.symlink(snake_case , snake_case )
except OSError:
logger.warning(
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
_lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""")
if not os.path.isfile(cache_version_file):
_lowerCAmelCase : Any = 0
else:
with open(cache_version_file) as f:
try:
_lowerCAmelCase : List[str] = int(f.read())
except ValueError:
_lowerCAmelCase : Optional[int] = 0
if cache_version < 1:
_lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"""The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """
"""existing cached models. This is a one-time operation, you can interrupt it or run it """
"""later by calling `diffusers.utils.hub_utils.move_cache()`."""
)
try:
move_cache()
except Exception as e:
_lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__))
logger.error(
F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
"""file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """
"""message and we will do our best to help."""
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, """w""") as f:
f.write("""1""")
except Exception:
logger.warning(
F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
"""the directory exists and can be written to."""
)
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str:
'''simple docstring'''
if variant is not None:
UpperCAmelCase__ : int = weights_name.split("." )
UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:]
UpperCAmelCase__ : Optional[int] = ".".join(snake_case )
return weights_name
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *,
snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : List[str] = str(snake_case )
if os.path.isfile(snake_case ):
return pretrained_model_name_or_path
elif os.path.isdir(snake_case ):
if os.path.isfile(os.path.join(snake_case , snake_case ) ):
# Load from a PyTorch checkpoint
UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(snake_case , snake_case , snake_case ) ):
UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case )
return model_file
else:
raise EnvironmentError(
f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" )
):
try:
UpperCAmelCase__ : List[Any] = hf_hub_download(
snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
warnings.warn(
f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , )
return model_file
except: # noqa: E722
warnings.warn(
f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , )
try:
# 2. Load model file as usual
UpperCAmelCase__ : Dict = hf_hub_download(
snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
"login`." )
except RevisionNotFoundError:
raise EnvironmentError(
f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '
"this model name. Check the model page at "
f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' )
except EntryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' )
except HTTPError as err:
raise EnvironmentError(
f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' )
except ValueError:
raise EnvironmentError(
f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'
f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'
f' directory containing a file named {weights_name} or'
" \nCheckout your internet connection or see how to run the library in"
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." )
except EnvironmentError:
raise EnvironmentError(
f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '
f'containing a file named {weights_name}' )
| 298
| 0
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowerCAmelCase__ :
SCREAMING_SNAKE_CASE_ =42
# setable values
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =None
@classmethod
def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ):
'''simple docstring'''
return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ )
@dataclass
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =42
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ):
SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers]
SCREAMING_SNAKE_CASE_ =42
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return True
@register_to_config
def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = dtype
def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ):
'''simple docstring'''
if common is None:
UpperCAmelCase__ : Any = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype )
UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , )
def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ):
'''simple docstring'''
return sample
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=snake_case__ , timesteps=snake_case__ , )
def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ):
'''simple docstring'''
UpperCAmelCase__ : int = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
UpperCAmelCase__ : Union[str, Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) )
elif variance_type == "fixed_large":
UpperCAmelCase__ : List[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
UpperCAmelCase__ : List[str] = variance
UpperCAmelCase__ : Optional[Any] = state.common.betas[t]
UpperCAmelCase__ : Any = (predicted_variance + 1) / 2
UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log
return variance
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = timestep
if key is None:
UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 )
else:
UpperCAmelCase__ : int = None
# 1. compute alphas, betas
UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase__ : List[Any] = model_output
elif self.config.prediction_type == "v_prediction":
UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '
" for the FlaxDDPMScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 )
UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ )
def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 361
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss
UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy()
UpperCAmelCase__ : List[Any] = -21.22_8168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
| 298
| 0
|
"""simple docstring"""
import math
import tensorflow as tf
from packaging import version
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> int:
'''simple docstring'''
UpperCAmelCase__ : Any = tf.convert_to_tensor(snake_case )
UpperCAmelCase__ : Optional[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> List[Any]:
'''simple docstring'''
UpperCAmelCase__ : Any = tf.convert_to_tensor(snake_case )
UpperCAmelCase__ : Optional[int] = tf.cast(math.pi , x.dtype )
UpperCAmelCase__ : List[str] = tf.cast(0.04_4715 , x.dtype )
UpperCAmelCase__ : int = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(snake_case , 3 )) ))
return x * cdf
def SCREAMING_SNAKE_CASE__ ( snake_case : Dict )-> Any:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = tf.convert_to_tensor(snake_case )
return x * tf.tanh(tf.math.softplus(snake_case ) )
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> List[Any]:
'''simple docstring'''
UpperCAmelCase__ : Any = tf.convert_to_tensor(snake_case )
UpperCAmelCase__ : Tuple = tf.cast(0.04_4715 , x.dtype )
UpperCAmelCase__ : Dict = tf.cast(0.79_7884_5608 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def SCREAMING_SNAKE_CASE__ ( snake_case : Dict )-> List[str]:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = tf.convert_to_tensor(snake_case )
UpperCAmelCase__ : List[str] = tf.cast(1.702 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str:
'''simple docstring'''
return tf.clip_by_value(_gelu(snake_case ) , -10 , 10 )
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : List[Any]=-1 )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = tf.split(snake_case , 2 , axis=snake_case )
return a * tf.math.sigmoid(snake_case )
if version.parse(tf.version.VERSION) >= version.parse("""2.4"""):
def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> int:
'''simple docstring'''
return tf.keras.activations.gelu(snake_case , approximate=snake_case )
_lowerCAmelCase : List[str] = tf.keras.activations.gelu
_lowerCAmelCase : int = approximate_gelu_wrap
else:
_lowerCAmelCase : Union[str, Any] = _gelu
_lowerCAmelCase : Optional[Any] = _gelu_new
_lowerCAmelCase : Union[str, Any] = {
"""gelu""": gelu,
"""gelu_10""": gelu_aa,
"""gelu_fast""": gelu_fast,
"""gelu_new""": gelu_new,
"""glu""": glu,
"""mish""": mish,
"""quick_gelu""": quick_gelu,
"""relu""": tf.keras.activations.relu,
"""sigmoid""": tf.keras.activations.sigmoid,
"""silu""": tf.keras.activations.swish,
"""swish""": tf.keras.activations.swish,
"""tanh""": tf.keras.activations.tanh,
}
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> Dict:
'''simple docstring'''
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
| 362
|
"""simple docstring"""
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = parent
UpperCAmelCase__ : int = batch_size
UpperCAmelCase__ : int = seq_length
UpperCAmelCase__ : List[str] = is_training
UpperCAmelCase__ : Union[str, Any] = use_input_mask
UpperCAmelCase__ : Optional[Any] = use_token_type_ids
UpperCAmelCase__ : Any = use_labels
UpperCAmelCase__ : List[Any] = vocab_size
UpperCAmelCase__ : Any = embedding_size
UpperCAmelCase__ : List[str] = hidden_size
UpperCAmelCase__ : List[Any] = num_hidden_layers
UpperCAmelCase__ : int = num_hidden_groups
UpperCAmelCase__ : Union[str, Any] = num_attention_heads
UpperCAmelCase__ : List[str] = intermediate_size
UpperCAmelCase__ : Optional[Any] = hidden_act
UpperCAmelCase__ : List[Any] = hidden_dropout_prob
UpperCAmelCase__ : Tuple = attention_probs_dropout_prob
UpperCAmelCase__ : str = max_position_embeddings
UpperCAmelCase__ : Any = type_vocab_size
UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = initializer_range
UpperCAmelCase__ : Tuple = num_labels
UpperCAmelCase__ : List[str] = num_choices
UpperCAmelCase__ : Union[str, Any] = scope
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : Optional[int] = None
UpperCAmelCase__ : Any = None
if self.use_labels:
UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self : Any ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : str = AlbertModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[int] = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_labels
UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : str = self.num_labels
UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_choices
UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Tuple = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[Any] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': AlbertModel,
'''fill-mask''': AlbertForMaskedLM,
'''question-answering''': AlbertForQuestionAnswering,
'''text-classification''': AlbertForSequenceClassification,
'''token-classification''': AlbertForTokenClassification,
'''zero-shot''': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =True
def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if model_class in get_values(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ )
UpperCAmelCase__ : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case__ )
return inputs_dict
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Dict = AlbertModelTester(self )
UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case__ )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase__ : Dict = type
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" )
UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , snake_case__ )
UpperCAmelCase__ : Union[str, Any] = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
| 298
| 0
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : list )-> list:
'''simple docstring'''
def merge(snake_case : list , snake_case : list ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(snake_case ) <= 1:
return collection
UpperCAmelCase__ : str = len(snake_case ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCAmelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip()
_lowerCAmelCase : Dict = [int(item) for item in user_input.split(""",""")]
print(*merge_sort(unsorted), sep=""",""")
| 363
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any:
'''simple docstring'''
UpperCAmelCase__ : List[str] = [1]
for i in range(2 , snake_case ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCAmelCase__ : Union[str, Any] = []
UpperCAmelCase__ : str = list(range(snake_case ) )
# Find permutation
while factorials:
UpperCAmelCase__ : str = factorials.pop()
UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
"""simple docstring"""
import pprint
import requests
_lowerCAmelCase : List[str] = """https://zenquotes.io/api"""
def SCREAMING_SNAKE_CASE__ ( )-> list:
'''simple docstring'''
return requests.get(API_ENDPOINT_URL + "/today" ).json()
def SCREAMING_SNAKE_CASE__ ( )-> list:
'''simple docstring'''
return requests.get(API_ENDPOINT_URL + "/random" ).json()
if __name__ == "__main__":
_lowerCAmelCase : Optional[int] = random_quotes()
pprint.pprint(response)
| 364
|
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
_lowerCAmelCase : Union[str, Any] = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ):
'''simple docstring'''
UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0}
UpperCAmelCase__ : List[str] = parent
UpperCAmelCase__ : List[str] = batch_size
UpperCAmelCase__ : Optional[Any] = num_channels
UpperCAmelCase__ : Any = image_size
UpperCAmelCase__ : int = min_resolution
UpperCAmelCase__ : Tuple = max_resolution
UpperCAmelCase__ : Optional[int] = size
UpperCAmelCase__ : Optional[int] = do_normalize
UpperCAmelCase__ : str = do_convert_rgb
UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def __a ( self : str ):
'''simple docstring'''
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : int = PixaStructImageProcessingTester(self )
@property
def __a ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image()
UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
UpperCAmelCase__ : Dict = 2_0_4_8
UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def __a ( self : List[Any] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : List[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : str = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : List[Any] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
UpperCAmelCase__ : Optional[int] = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ : List[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
UpperCAmelCase__ : Optional[Any] = "Hello"
UpperCAmelCase__ : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : Dict = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : Dict ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , np.ndarray )
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : Dict = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : List[str] = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : Optional[int] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , torch.Tensor )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : str = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 )
UpperCAmelCase__ : Optional[int] = 3
@property
def __a ( self : int ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) )
def __a ( self : int ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : Dict = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 298
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCAmelCase : Tuple = logging.get_logger(__name__)
_lowerCAmelCase : Union[str, Any] = {
"""shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""",
# See all Dinat models at https://huggingface.co/models?filter=dinat
}
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''dinat'''
SCREAMING_SNAKE_CASE_ ={
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : Any , snake_case__ : List[Any]=4 , snake_case__ : Optional[Any]=3 , snake_case__ : Tuple=6_4 , snake_case__ : str=[3, 4, 6, 5] , snake_case__ : Optional[Any]=[2, 4, 8, 1_6] , snake_case__ : Any=7 , snake_case__ : Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , snake_case__ : str=3.0 , snake_case__ : Dict=True , snake_case__ : Optional[Any]=0.0 , snake_case__ : str=0.0 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]="gelu" , snake_case__ : Optional[Any]=0.02 , snake_case__ : Optional[int]=1e-5 , snake_case__ : Optional[int]=0.0 , snake_case__ : Union[str, Any]=None , snake_case__ : int=None , **snake_case__ : List[str] , ):
'''simple docstring'''
super().__init__(**snake_case__ )
UpperCAmelCase__ : int = patch_size
UpperCAmelCase__ : str = num_channels
UpperCAmelCase__ : List[str] = embed_dim
UpperCAmelCase__ : Any = depths
UpperCAmelCase__ : int = len(snake_case__ )
UpperCAmelCase__ : List[Any] = num_heads
UpperCAmelCase__ : List[str] = kernel_size
UpperCAmelCase__ : Any = dilations
UpperCAmelCase__ : List[Any] = mlp_ratio
UpperCAmelCase__ : List[Any] = qkv_bias
UpperCAmelCase__ : int = hidden_dropout_prob
UpperCAmelCase__ : Any = attention_probs_dropout_prob
UpperCAmelCase__ : Union[str, Any] = drop_path_rate
UpperCAmelCase__ : str = hidden_act
UpperCAmelCase__ : Optional[Any] = layer_norm_eps
UpperCAmelCase__ : Optional[Any] = initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase__ : Optional[int] = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
UpperCAmelCase__ : Optional[int] = layer_scale_init_value
UpperCAmelCase__ : List[Any] = ["stem"] + [f'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )]
UpperCAmelCase__ : Optional[Any] = get_aligned_output_features_output_indices(
out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
| 365
|
"""simple docstring"""
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any:
'''simple docstring'''
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : int = "mock-s3-bucket"
UpperCAmelCase__ : Any = f's3://{mock_bucket}'
UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case )
assert dataset_path.startswith("s3://" ) is False
UpperCAmelCase__ : str = "./local/path"
UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case )
assert dataset_path == new_dataset_path
def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case )
assert is_remote is True
UpperCAmelCase__ : str = fsspec.filesystem("file" )
UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case )
assert is_remote is False
@pytest.mark.parametrize("compression_fs_class" , snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file}
UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol]
if input_path is None:
UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, '
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(snake_case )
UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case )
assert isinstance(snake_case , snake_case )
UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case )
UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )]
assert fs.glob("*" ) == [expected_filename]
with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize("protocol" , ["zip", "gzip"] )
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path}
UpperCAmelCase__ : int = compressed_file_paths[protocol]
UpperCAmelCase__ : Any = "dataset.jsonl"
UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}'
UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case )
assert fs.isfile(snake_case )
assert not fs.isfile("non_existing_" + member_file_path )
@pytest.mark.integration
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case )
UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case )
assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"]
assert hffs.isdir("data" )
assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" )
with open(snake_case ) as f:
assert hffs.open("data/text_data.txt" , "r" ).read() == f.read()
def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : Tuple = "bz2"
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(snake_case , snake_case , clobber=snake_case )
with pytest.warns(snake_case ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(snake_case ) == 1
assert (
str(warning_info[0].message )
== f'A filesystem protocol was already set for {protocol} and will be overwritten.'
)
| 298
| 0
|
"""simple docstring"""
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("""0.8.3"""):
raise Exception("""requires gluonnlp == 0.8.3""")
if version.parse(mx.__version__) != version.parse("""1.5.0"""):
raise Exception("""requires mxnet == 1.5.0""")
logging.set_verbosity_info()
_lowerCAmelCase : str = logging.get_logger(__name__)
_lowerCAmelCase : Optional[Any] = """The Nymphenburg Palace is a beautiful palace in Munich!"""
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> List[str]:
UpperCAmelCase__ : Optional[int] = {
"attention_cell": "multi_head",
"num_layers": 4,
"units": 1024,
"hidden_size": 768,
"max_length": 512,
"num_heads": 8,
"scaled": True,
"dropout": 0.1,
"use_residual": True,
"embed_size": 1024,
"embed_dropout": 0.1,
"word_embed": None,
"layer_norm_eps": 1E-5,
"token_type_vocab_size": 2,
}
UpperCAmelCase__ : Tuple = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
UpperCAmelCase__ : List[str] = BERTEncoder(
attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=snake_case , output_all_encodings=snake_case , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , snake_case ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
UpperCAmelCase__ : Any = "openwebtext_ccnews_stories_books_cased"
# Specify download folder to Gluonnlp's vocab
UpperCAmelCase__ : Tuple = os.path.join(get_home_dir() , "models" )
UpperCAmelCase__ : Union[str, Any] = _load_vocab(snake_case , snake_case , snake_case , cls=snake_case )
UpperCAmelCase__ : Union[str, Any] = nlp.model.BERTModel(
snake_case , len(snake_case ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=snake_case , use_token_type_embed=snake_case , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=snake_case , use_decoder=snake_case , )
original_bort.load_parameters(snake_case , cast_dtype=snake_case , ignore_extra=snake_case )
UpperCAmelCase__ : Optional[int] = original_bort._collect_params_with_prefix()
# Build our config 🤗
UpperCAmelCase__ : Dict = {
"architectures": ["BertForMaskedLM"],
"attention_probs_dropout_prob": predefined_args["dropout"],
"hidden_act": "gelu",
"hidden_dropout_prob": predefined_args["dropout"],
"hidden_size": predefined_args["embed_size"],
"initializer_range": 0.02,
"intermediate_size": predefined_args["hidden_size"],
"layer_norm_eps": predefined_args["layer_norm_eps"],
"max_position_embeddings": predefined_args["max_length"],
"model_type": "bort",
"num_attention_heads": predefined_args["num_heads"],
"num_hidden_layers": predefined_args["num_layers"],
"pad_token_id": 1, # 2 = BERT, 1 = RoBERTa
"type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa
"vocab_size": len(snake_case ),
}
UpperCAmelCase__ : Any = BertConfig.from_dict(snake_case )
UpperCAmelCase__ : Any = BertForMaskedLM(snake_case )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(snake_case : Dict ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(snake_case : Optional[int] , snake_case : Tuple ):
UpperCAmelCase__ : Dict = hf_param.shape
UpperCAmelCase__ : Optional[int] = to_torch(params[gluon_param] )
UpperCAmelCase__ : Optional[int] = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'
return gluon_param
UpperCAmelCase__ : str = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" )
UpperCAmelCase__ : Dict = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" )
UpperCAmelCase__ : Dict = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" )
UpperCAmelCase__ : Tuple = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
UpperCAmelCase__ : Dict = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
UpperCAmelCase__ : BertLayer = hf_bort_model.bert.encoder.layer[i]
# self attention
UpperCAmelCase__ : BertSelfAttention = layer.attention.self
UpperCAmelCase__ : Optional[int] = check_and_map_params(
self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' )
UpperCAmelCase__ : List[str] = check_and_map_params(
self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' )
UpperCAmelCase__ : int = check_and_map_params(
self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' )
UpperCAmelCase__ : Any = check_and_map_params(
self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' )
UpperCAmelCase__ : Dict = check_and_map_params(
self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' )
UpperCAmelCase__ : int = check_and_map_params(
self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' )
# self attention output
UpperCAmelCase__ : BertSelfOutput = layer.attention.output
UpperCAmelCase__ : Union[str, Any] = check_and_map_params(
self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' )
UpperCAmelCase__ : Optional[int] = check_and_map_params(
self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' )
UpperCAmelCase__ : Union[str, Any] = check_and_map_params(
self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' )
UpperCAmelCase__ : List[Any] = check_and_map_params(
self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' )
# intermediate
UpperCAmelCase__ : BertIntermediate = layer.intermediate
UpperCAmelCase__ : str = check_and_map_params(
intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' )
UpperCAmelCase__ : str = check_and_map_params(
intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' )
# output
UpperCAmelCase__ : BertOutput = layer.output
UpperCAmelCase__ : Dict = check_and_map_params(
bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' )
UpperCAmelCase__ : str = check_and_map_params(
bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' )
UpperCAmelCase__ : Optional[Any] = check_and_map_params(
bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' )
UpperCAmelCase__ : List[str] = check_and_map_params(
bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
UpperCAmelCase__ : Optional[Any] = RobertaTokenizer.from_pretrained("roberta-base" )
UpperCAmelCase__ : Tuple = tokenizer.encode_plus(snake_case )["input_ids"]
# Get gluon output
UpperCAmelCase__ : str = mx.nd.array([input_ids] )
UpperCAmelCase__ : Dict = original_bort(inputs=snake_case , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(snake_case )
UpperCAmelCase__ : str = BertModel.from_pretrained(snake_case )
hf_bort_model.eval()
UpperCAmelCase__ : List[str] = tokenizer.encode_plus(snake_case , return_tensors="pt" )
UpperCAmelCase__ : int = hf_bort_model(**snake_case )[0]
UpperCAmelCase__ : Optional[int] = output_gluon[0].asnumpy()
UpperCAmelCase__ : Tuple = output_hf[0].detach().numpy()
UpperCAmelCase__ : List[str] = np.max(np.abs(hf_layer - gluon_layer ) ).item()
UpperCAmelCase__ : List[Any] = np.allclose(snake_case , snake_case , atol=1E-3 )
if success:
print("✔️ Both model do output the same tensors" )
else:
print("❌ Both model do **NOT** output the same tensors" )
print("Absolute difference is:" , snake_case )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
_lowerCAmelCase : Optional[int] = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 366
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : List[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''megatron-bert'''
def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase__ : str = vocab_size
UpperCAmelCase__ : str = hidden_size
UpperCAmelCase__ : List[str] = num_hidden_layers
UpperCAmelCase__ : Optional[int] = num_attention_heads
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Tuple = hidden_dropout_prob
UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : Any = max_position_embeddings
UpperCAmelCase__ : Dict = type_vocab_size
UpperCAmelCase__ : Optional[int] = initializer_range
UpperCAmelCase__ : int = layer_norm_eps
UpperCAmelCase__ : Optional[Any] = position_embedding_type
UpperCAmelCase__ : Any = use_cache
| 298
| 0
|
"""simple docstring"""
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] , snake_case : Dict )-> int:
'''simple docstring'''
return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :]
def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : str , snake_case : List[Any] , snake_case : str="attention" )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] )
UpperCAmelCase__ : str = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
UpperCAmelCase__ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] )
UpperCAmelCase__ : Union[str, Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
UpperCAmelCase__ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] )
UpperCAmelCase__ : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
UpperCAmelCase__ : Union[str, Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] )
UpperCAmelCase__ : Optional[int] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : List[str] , snake_case : Dict , snake_case : Union[str, Any]=False )-> Optional[int]:
'''simple docstring'''
if split_mlp_wi:
UpperCAmelCase__ : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :]
UpperCAmelCase__ : Optional[int] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :]
UpperCAmelCase__ : List[str] = (wi_a, wi_a)
else:
UpperCAmelCase__ : List[Any] = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :]
UpperCAmelCase__ : Optional[Any] = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :]
return wi, wo
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Any , snake_case : Optional[Any] )-> Optional[int]:
'''simple docstring'''
return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i]
def SCREAMING_SNAKE_CASE__ ( snake_case : dict , *, snake_case : int , snake_case : bool , snake_case : bool = False )-> int:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = traverse_util.flatten_dict(variables["target"] )
UpperCAmelCase__ : Tuple = {"/".join(snake_case ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
UpperCAmelCase__ : int = "encoder/encoder/mlp/wi_0/kernel" in old
print("Split MLP:" , snake_case )
UpperCAmelCase__ : List[str] = collections.OrderedDict()
# Shared embeddings.
UpperCAmelCase__ : Tuple = old["token_embedder/embedding"]
# Encoder.
for i in range(snake_case ):
# Block i, layer 0 (Self Attention).
UpperCAmelCase__ : Optional[Any] = tax_layer_norm_lookup(snake_case , snake_case , "encoder" , "pre_attention_layer_norm" )
UpperCAmelCase__ : int = tax_attention_lookup(snake_case , snake_case , "encoder" , "attention" )
UpperCAmelCase__ : int = layer_norm
UpperCAmelCase__ : Tuple = k.T
UpperCAmelCase__ : str = o.T
UpperCAmelCase__ : List[str] = q.T
UpperCAmelCase__ : str = v.T
# Block i, layer 1 (MLP).
UpperCAmelCase__ : Optional[Any] = tax_layer_norm_lookup(snake_case , snake_case , "encoder" , "pre_mlp_layer_norm" )
UpperCAmelCase__ : Dict = tax_mlp_lookup(snake_case , snake_case , "encoder" , snake_case )
UpperCAmelCase__ : Any = layer_norm
if split_mlp_wi:
UpperCAmelCase__ : List[Any] = wi[0].T
UpperCAmelCase__ : Optional[Any] = wi[1].T
else:
UpperCAmelCase__ : Dict = wi.T
UpperCAmelCase__ : Union[str, Any] = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCAmelCase__ : Tuple = tax_relpos_bias_lookup(
snake_case , snake_case , "encoder" ).T
UpperCAmelCase__ : Any = old["encoder/encoder_norm/scale"]
if not scalable_attention:
UpperCAmelCase__ : List[str] = tax_relpos_bias_lookup(
snake_case , 0 , "encoder" ).T
UpperCAmelCase__ : int = tax_relpos_bias_lookup(
snake_case , 0 , "decoder" ).T
if not is_encoder_only:
# Decoder.
for i in range(snake_case ):
# Block i, layer 0 (Self Attention).
UpperCAmelCase__ : List[str] = tax_layer_norm_lookup(snake_case , snake_case , "decoder" , "pre_self_attention_layer_norm" )
UpperCAmelCase__ : Tuple = tax_attention_lookup(snake_case , snake_case , "decoder" , "self_attention" )
UpperCAmelCase__ : Tuple = layer_norm
UpperCAmelCase__ : List[str] = k.T
UpperCAmelCase__ : List[Any] = o.T
UpperCAmelCase__ : Optional[int] = q.T
UpperCAmelCase__ : int = v.T
# Block i, layer 1 (Cross Attention).
UpperCAmelCase__ : List[Any] = tax_layer_norm_lookup(snake_case , snake_case , "decoder" , "pre_cross_attention_layer_norm" )
UpperCAmelCase__ : Union[str, Any] = tax_attention_lookup(snake_case , snake_case , "decoder" , "encoder_decoder_attention" )
UpperCAmelCase__ : Union[str, Any] = layer_norm
UpperCAmelCase__ : str = k.T
UpperCAmelCase__ : Any = o.T
UpperCAmelCase__ : Optional[Any] = q.T
UpperCAmelCase__ : List[str] = v.T
# Block i, layer 2 (MLP).
UpperCAmelCase__ : Optional[int] = tax_layer_norm_lookup(snake_case , snake_case , "decoder" , "pre_mlp_layer_norm" )
UpperCAmelCase__ : Optional[Any] = tax_mlp_lookup(snake_case , snake_case , "decoder" , snake_case )
UpperCAmelCase__ : Dict = layer_norm
if split_mlp_wi:
UpperCAmelCase__ : Optional[Any] = wi[0].T
UpperCAmelCase__ : Optional[Any] = wi[1].T
else:
UpperCAmelCase__ : Dict = wi.T
UpperCAmelCase__ : Dict = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCAmelCase__ : List[str] = tax_relpos_bias_lookup(snake_case , snake_case , "decoder" ).T
UpperCAmelCase__ : Optional[Any] = old["decoder/decoder_norm/scale"]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
UpperCAmelCase__ : Union[str, Any] = old["decoder/logits_dense/kernel"].T
return new
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : bool )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
UpperCAmelCase__ : Union[str, Any] = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
UpperCAmelCase__ : Any = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head." )
UpperCAmelCase__ : Dict = state_dict["shared.weight"]
return state_dict
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : List[str] , snake_case : List[Any] , snake_case : str , snake_case : Dict )-> Any:
'''simple docstring'''
UpperCAmelCase__ : Dict = checkpoints.load_tax_checkpoint(snake_case )
UpperCAmelCase__ : List[str] = convert_tax_to_pytorch(
snake_case , num_layers=config.num_layers , is_encoder_only=snake_case , scalable_attention=snake_case )
UpperCAmelCase__ : Union[str, Any] = make_state_dict(snake_case , snake_case )
model.load_state_dict(snake_case , strict=snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : bool = False , snake_case : bool = False , )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : int = MTaConfig.from_json_file(snake_case )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
UpperCAmelCase__ : str = UMTaEncoderModel(snake_case )
else:
UpperCAmelCase__ : str = UMTaForConditionalGeneration(snake_case )
# Load weights from tf checkpoint
load_tax_weights_in_ta(snake_case , snake_case , snake_case , snake_case , snake_case )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(snake_case )
# Verify that we can load the checkpoint.
model.from_pretrained(snake_case )
print("Done" )
if __name__ == "__main__":
_lowerCAmelCase : Dict = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""")
# Required parameters
parser.add_argument(
"""--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False
)
parser.add_argument(
"""--scalable_attention""",
action="""store_true""",
help="""Whether the model uses scaled attention (umt5 model)""",
default=False,
)
_lowerCAmelCase : int = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 367
|
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class lowerCAmelCase__ ( datasets.BeamBasedBuilder ):
def __a ( self : Dict ):
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , )
def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )]
def __a ( self : Any , snake_case__ : str , snake_case__ : str ):
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(snake_case__ )
class lowerCAmelCase__ ( datasets.BeamBasedBuilder ):
def __a ( self : Any ):
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ):
'''simple docstring'''
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} )
]
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ):
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Dict:
'''simple docstring'''
return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )]
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )]
class lowerCAmelCase__ ( __magic_name__ ):
@require_beam
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Any = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase__ : Tuple = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def __a ( self : Dict ):
'''simple docstring'''
import apache_beam as beam
UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet
UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock:
UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase__ : Dict = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def __a ( self : str ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) )
UpperCAmelCase__ : Tuple = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
| 298
| 0
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =42
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ):
@register_to_config
def __init__( self : Any , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (6_4,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 3 , snake_case__ : int = 3_2 , snake_case__ : int = 2_5_6 , snake_case__ : int = 3_2 , snake_case__ : Optional[int] = None , snake_case__ : float = 0.1_8215 , snake_case__ : str = "group" , ):
'''simple docstring'''
super().__init__()
# pass init params to Encoder
UpperCAmelCase__ : Any = Encoder(
in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , )
UpperCAmelCase__ : Union[str, Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels
UpperCAmelCase__ : Tuple = nn.Convad(snake_case__ , snake_case__ , 1 )
UpperCAmelCase__ : List[Any] = VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ )
UpperCAmelCase__ : Any = nn.Convad(snake_case__ , snake_case__ , 1 )
# pass init params to Decoder
UpperCAmelCase__ : Any = Decoder(
in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , )
@apply_forward_hook
def __a ( self : int , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.encoder(snake_case__ )
UpperCAmelCase__ : List[str] = self.quant_conv(snake_case__ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=snake_case__ )
@apply_forward_hook
def __a ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True ):
'''simple docstring'''
# also go through quantization layer
if not force_not_quantize:
UpperCAmelCase__ : Any = self.quantize(snake_case__ )
else:
UpperCAmelCase__ : Union[str, Any] = h
UpperCAmelCase__ : Any = self.post_quant_conv(snake_case__ )
UpperCAmelCase__ : int = self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=snake_case__ )
def __a ( self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = sample
UpperCAmelCase__ : List[Any] = self.encode(snake_case__ ).latents
UpperCAmelCase__ : Optional[Any] = self.decode(snake_case__ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=snake_case__ )
| 368
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =XLMTokenizer
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ : Optional[int] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(snake_case__ ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(snake_case__ ) )
def __a ( self : Union[str, Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = "lower newer"
UpperCAmelCase__ : Optional[Any] = "lower newer"
return input_text, output_text
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ : List[Any] = "lower"
UpperCAmelCase__ : Any = ["low", "er</w>"]
UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"]
UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" )
UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 298
| 0
|
from ...utils import logging
from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel
from .configuration_mta import MTaConfig
_lowerCAmelCase : List[Any] = logging.get_logger(__name__)
_lowerCAmelCase : Union[str, Any] = """T5Config"""
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''mt5'''
SCREAMING_SNAKE_CASE_ =MTaConfig
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''mt5'''
SCREAMING_SNAKE_CASE_ =MTaConfig
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''mt5'''
SCREAMING_SNAKE_CASE_ =MTaConfig
| 369
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ):
'''simple docstring'''
UpperCAmelCase__ : Any = "bilinear"
UpperCAmelCase__ : Any = max_size
UpperCAmelCase__ : Any = short_edge_length
def __call__( self : Dict , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = []
for img in imgs:
UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2]
# later: provide list and randomly choose index for resize
UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ )
if h < w:
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w
else:
UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size
if max(snake_case__ , snake_case__ ) > self.max_size:
UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ )
UpperCAmelCase__ : List[str] = newh * scale
UpperCAmelCase__ : int = neww * scale
UpperCAmelCase__ : List[Any] = int(neww + 0.5 )
UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 )
if img.dtype == np.uinta:
UpperCAmelCase__ : Any = Image.fromarray(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ )
else:
UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
UpperCAmelCase__ : Tuple = nn.functional.interpolate(
snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 )
img_augs.append(snake_case__ )
return img_augs
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
UpperCAmelCase__ : Any = cfg.INPUT.FORMAT
UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY
UpperCAmelCase__ : str = cfg.PAD_VALUE
UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST
UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE
UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std
def __a ( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) )
UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images]
UpperCAmelCase__ : int = [
nn.functional.pad(
snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(snake_case__ , snake_case__ )
]
return torch.stack(snake_case__ ), torch.tensor(snake_case__ )
def __call__( self : str , snake_case__ : int , snake_case__ : int=False ):
'''simple docstring'''
with torch.no_grad():
if not isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ : Dict = [images]
if single_image:
assert len(snake_case__ ) == 1
for i in range(len(snake_case__ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] )
UpperCAmelCase__ : Tuple = self.aug(snake_case__ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images]
# now pad them to do the following operations
UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]:
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int:
'''simple docstring'''
assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!"
UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case )
tensor[:, 1].clamp_(min=0 , max=snake_case )
tensor[:, 2].clamp_(min=0 , max=snake_case )
tensor[:, 3].clamp_(min=0 , max=snake_case )
| 298
| 0
|
"""simple docstring"""
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any=2 , snake_case__ : Optional[Any]=5_6 , snake_case__ : Tuple=True , snake_case__ : List[str]=True , snake_case__ : str=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=9_9 , snake_case__ : Optional[int]=3_2 , snake_case__ : List[str]=2 , snake_case__ : List[str]=2 , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[int]="gelu_new" , snake_case__ : Optional[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Union[str, Any]=1_6 , snake_case__ : Optional[Any]=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Optional[Any]=4 , snake_case__ : str="block_sparse" , snake_case__ : Union[str, Any]=True , snake_case__ : Union[str, Any]=False , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=3 , ):
'''simple docstring'''
UpperCAmelCase__ : Dict = parent
UpperCAmelCase__ : Optional[int] = batch_size
UpperCAmelCase__ : List[str] = seq_length
UpperCAmelCase__ : Optional[Any] = is_training
UpperCAmelCase__ : List[str] = use_attention_mask
UpperCAmelCase__ : List[Any] = use_token_type_ids
UpperCAmelCase__ : Union[str, Any] = use_labels
UpperCAmelCase__ : Tuple = vocab_size
UpperCAmelCase__ : Dict = hidden_size
UpperCAmelCase__ : List[str] = num_hidden_layers
UpperCAmelCase__ : str = num_attention_heads
UpperCAmelCase__ : List[str] = intermediate_size
UpperCAmelCase__ : Optional[Any] = hidden_act
UpperCAmelCase__ : List[Any] = hidden_dropout_prob
UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : int = max_position_embeddings
UpperCAmelCase__ : Dict = type_vocab_size
UpperCAmelCase__ : Optional[Any] = type_sequence_label_size
UpperCAmelCase__ : Optional[Any] = initializer_range
UpperCAmelCase__ : int = num_choices
UpperCAmelCase__ : List[Any] = rescale_embeddings
UpperCAmelCase__ : Tuple = attention_type
UpperCAmelCase__ : Union[str, Any] = use_bias
UpperCAmelCase__ : Optional[int] = block_size
UpperCAmelCase__ : List[Any] = num_random_blocks
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : str = None
if self.use_attention_mask:
UpperCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ : List[str] = None
if self.use_token_type_ids:
UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ : Any = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase__ : List[str] = config_and_inputs
UpperCAmelCase__ : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __a ( self : Union[str, Any] ):
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __a ( self : List[Any] ):
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __a ( self : Tuple ):
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __a ( self : int ):
'''simple docstring'''
super().test_hidden_states_output()
@slow
def __a ( self : List[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(snake_case__ )
def __a ( self : Optional[int] ):
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase__ : List[str] = self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase__ : str = model_class(snake_case__ )
@jax.jit
def model_jitted(snake_case__ : str , snake_case__ : List[str]=None , **snake_case__ : Optional[int] ):
return model(input_ids=snake_case__ , attention_mask=snake_case__ , **snake_case__ )
with self.subTest("JIT Enabled" ):
UpperCAmelCase__ : List[str] = model_jitted(**snake_case__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
UpperCAmelCase__ : List[str] = model_jitted(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) )
for jitted_output, output in zip(snake_case__ , snake_case__ ):
self.assertEqual(jitted_output.shape , output.shape )
def __a ( self : Tuple , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=1e-5 , snake_case__ : str="outputs" , snake_case__ : Any=None ):
'''simple docstring'''
# `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version,
# an effort was done to return `attention_probs` (yet to be verified).
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
| 370
|
"""simple docstring"""
import qiskit
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts:
'''simple docstring'''
UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" )
UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = half_adder(1, 1)
print(F"""Half Adder Output Qubit Counts: {counts}""")
| 298
| 0
|
"""simple docstring"""
import sys
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : List[str] = len(snake_case )
UpperCAmelCase__ : int = [[0 for x in range(snake_case )] for x in range(snake_case )]
UpperCAmelCase__ : str = [[0 for x in range(snake_case )] for x in range(snake_case )]
for chain_length in range(2 , snake_case ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase__ : Dict = a + chain_length - 1
UpperCAmelCase__ : Optional[Any] = sys.maxsize
for c in range(snake_case , snake_case ):
UpperCAmelCase__ : Optional[Any] = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase__ : Optional[Any] = cost
UpperCAmelCase__ : Any = c
return matrix, sol
def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] )-> Any:
'''simple docstring'''
if i == j:
print("A" + str(snake_case ) , end=" " )
else:
print("(" , end=" " )
print_optiomal_solution(snake_case , snake_case , optimal_solution[i][j] )
print_optiomal_solution(snake_case , optimal_solution[i][j] + 1 , snake_case )
print(")" , end=" " )
def SCREAMING_SNAKE_CASE__ ( )-> Any:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = [30, 35, 15, 5, 10, 20, 25]
UpperCAmelCase__ : Optional[int] = len(snake_case )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase__ : Dict = matrix_chain_order(snake_case )
print("No. of Operation required: " + str(matrix[1][n - 1] ) )
print_optiomal_solution(snake_case , 1 , n - 1 )
if __name__ == "__main__":
main()
| 371
|
"""simple docstring"""
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
_lowerCAmelCase : Union[str, Any] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''efficientformer'''
def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ):
'''simple docstring'''
super().__init__(**snake_case__ )
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : List[str] = hidden_sizes
UpperCAmelCase__ : Union[str, Any] = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : List[Any] = initializer_range
UpperCAmelCase__ : List[Any] = layer_norm_eps
UpperCAmelCase__ : Optional[int] = patch_size
UpperCAmelCase__ : Tuple = num_channels
UpperCAmelCase__ : Optional[int] = depths
UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio
UpperCAmelCase__ : Dict = downsamples
UpperCAmelCase__ : Any = dim
UpperCAmelCase__ : str = key_dim
UpperCAmelCase__ : List[Any] = attention_ratio
UpperCAmelCase__ : Optional[Any] = resolution
UpperCAmelCase__ : Optional[Any] = pool_size
UpperCAmelCase__ : Any = downsample_patch_size
UpperCAmelCase__ : int = downsample_stride
UpperCAmelCase__ : Dict = downsample_pad
UpperCAmelCase__ : List[Any] = drop_path_rate
UpperCAmelCase__ : Optional[Any] = num_metaad_blocks
UpperCAmelCase__ : List[str] = distillation
UpperCAmelCase__ : Dict = use_layer_scale
UpperCAmelCase__ : List[Any] = layer_scale_init_value
UpperCAmelCase__ : Optional[Any] = image_size
UpperCAmelCase__ : Optional[int] = batch_norm_eps
| 298
| 0
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Optional[int] = {
"""vocab_file""": """vocab.txt""",
"""merges_file""": """bpe.codes""",
}
_lowerCAmelCase : List[Any] = {
"""vocab_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""",
},
"""merges_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""",
},
}
_lowerCAmelCase : int = {
"""vinai/phobert-base""": 256,
"""vinai/phobert-large""": 256,
}
def SCREAMING_SNAKE_CASE__ ( snake_case )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = set()
UpperCAmelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase__ : Dict = char
UpperCAmelCase__ : Tuple = set(snake_case )
return pairs
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ):
'''simple docstring'''
super().__init__(
bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase__ : Dict = vocab_file
UpperCAmelCase__ : Tuple = merges_file
UpperCAmelCase__ : List[Any] = {}
UpperCAmelCase__ : Dict = 0
UpperCAmelCase__ : int = 1
UpperCAmelCase__ : Dict = 2
UpperCAmelCase__ : Dict = 3
self.add_from_file(snake_case__ )
UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
with open(snake_case__ , encoding="utf-8" ) as merges_handle:
UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1]
UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges]
UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Dict = {}
def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
UpperCAmelCase__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ )
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1]
def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __a ( self : List[str] ):
'''simple docstring'''
return len(self.encoder )
def __a ( self : Any ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __a ( self : Dict , snake_case__ : Tuple ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
UpperCAmelCase__ : Any = get_pairs(snake_case__ )
if not pairs:
return token
while True:
UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase__ : Tuple = bigram
UpperCAmelCase__ : Optional[Any] = []
UpperCAmelCase__ : Tuple = 0
while i < len(snake_case__ ):
try:
UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase__ : Dict = j
if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase__ : Dict = tuple(snake_case__ )
UpperCAmelCase__ : List[Any] = new_word
if len(snake_case__ ) == 1:
break
else:
UpperCAmelCase__ : Dict = get_pairs(snake_case__ )
UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ )
UpperCAmelCase__ : Optional[int] = word[:-4]
UpperCAmelCase__ : Union[str, Any] = word
return word
def __a ( self : List[Any] , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = []
UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ )
for token in words:
split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) )
return split_tokens
def __a ( self : Dict , snake_case__ : List[str] ):
'''simple docstring'''
return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) )
def __a ( self : List[Any] , snake_case__ : Any ):
'''simple docstring'''
return self.decoder.get(snake_case__ , self.unk_token )
def __a ( self : str , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip()
return out_string
def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCAmelCase__ : Tuple = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : str = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ):
copyfile(self.merges_file , snake_case__ )
return out_vocab_file, out_merge_file
def __a ( self : List[Any] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
try:
with open(snake_case__ , "r" , encoding="utf-8" ) as fd:
self.add_from_file(snake_case__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' )
return
UpperCAmelCase__ : Dict = f.readlines()
for lineTmp in lines:
UpperCAmelCase__ : Optional[int] = lineTmp.strip()
UpperCAmelCase__ : Tuple = line.rfind(" " )
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" )
UpperCAmelCase__ : Any = line[:idx]
UpperCAmelCase__ : str = len(self.encoder )
| 350
|
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : str = args.log_outputs
UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
UpperCAmelCase__ : List[str] = load_metric("wer" )
UpperCAmelCase__ : Tuple = load_metric("cer" )
# compute metrics
UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] )
UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case )
with open(f'{dataset_id}_eval_results.txt' , "w" ) as f:
f.write(snake_case )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt'
UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt'
with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case : List[Any] , snake_case : List[str] ):
p.write(f'{i}' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(f'{i}' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case , with_indices=snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str:
'''simple docstring'''
UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) )
return text
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCAmelCase__ : str = feature_extractor.sampling_rate
# resample audio
UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) )
# load eval pipeline
if args.device is None:
UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1
UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case : Any ):
UpperCAmelCase__ : List[str] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
UpperCAmelCase__ : List[Any] = prediction["text"]
UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case , snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCAmelCase : Tuple = parser.parse_args()
main(args)
| 298
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''Salesforce/blip-image-captioning-base'''
SCREAMING_SNAKE_CASE_ =(
'''This is a tool that generates a description of an image. It takes an input named `image` which should be the '''
'''image to caption, and returns a text that contains the description in English.'''
)
SCREAMING_SNAKE_CASE_ ='''image_captioner'''
SCREAMING_SNAKE_CASE_ =AutoModelForVisionaSeq
SCREAMING_SNAKE_CASE_ =['''image''']
SCREAMING_SNAKE_CASE_ =['''text''']
def __init__( self : str , *snake_case__ : Dict , **snake_case__ : Tuple ):
'''simple docstring'''
requires_backends(self , ["vision"] )
super().__init__(*snake_case__ , **snake_case__ )
def __a ( self : Tuple , snake_case__ : "Image" ):
'''simple docstring'''
return self.pre_processor(images=snake_case__ , return_tensors="pt" )
def __a ( self : List[Any] , snake_case__ : Optional[int] ):
'''simple docstring'''
return self.model.generate(**snake_case__ )
def __a ( self : str , snake_case__ : str ):
'''simple docstring'''
return self.pre_processor.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )[0].strip()
| 351
|
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowerCAmelCase__ :
def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ):
'''simple docstring'''
UpperCAmelCase__ : int = parent
UpperCAmelCase__ : List[str] = 1_0_0
UpperCAmelCase__ : List[Any] = batch_size
UpperCAmelCase__ : int = image_size
UpperCAmelCase__ : List[Any] = patch_size
UpperCAmelCase__ : List[Any] = num_channels
UpperCAmelCase__ : Any = is_training
UpperCAmelCase__ : str = use_labels
UpperCAmelCase__ : Any = hidden_size
UpperCAmelCase__ : Dict = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Any = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : str = attention_probs_dropout_prob
UpperCAmelCase__ : Optional[int] = type_sequence_label_size
UpperCAmelCase__ : Any = initializer_range
UpperCAmelCase__ : Any = scope
UpperCAmelCase__ : Optional[Any] = out_indices
UpperCAmelCase__ : int = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2
UpperCAmelCase__ : Optional[int] = num_patches + 1
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : str = None
UpperCAmelCase__ : Optional[int] = None
if self.use_labels:
UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase__ : Tuple = self.get_config()
return config, pixel_values, labels, pixel_labels
def __a ( self : int ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[Any] = model(snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase__ : Any = 1
UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.num_labels
UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs
UpperCAmelCase__ : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': BeitModel,
'''image-classification''': BeitForImageClassification,
'''image-segmentation''': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModelTester(self )
UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 )
def __a ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds" )
def __a ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def __a ( self : List[str] ):
'''simple docstring'''
pass
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(snake_case__ )
UpperCAmelCase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : str = [*signature.parameters.keys()]
UpperCAmelCase__ : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]:
continue
UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ )
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss
loss.backward()
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase__ : List[Any] = model_class(snake_case__ )
model.gradient_checkpointing_enable()
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss
loss.backward()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ )
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(config=snake_case__ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def __a ( self : Any ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ )
UpperCAmelCase__ : int = self.default_image_processor
UpperCAmelCase__ : List[Any] = prepare_img()
UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ )
# prepare bool_masked_pos
UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ )
UpperCAmelCase__ : str = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Any = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) )
@slow
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Dict = prepare_img()
UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ )
UpperCAmelCase__ : Any = outputs.logits
# verify the logits
UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : List[str] = 2_8_1
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to(
snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Any = prepare_img()
UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[Any] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : Any = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : List[Any] = model.to(snake_case__ )
UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[str] = model(**snake_case__ )
UpperCAmelCase__ : Dict = outputs.logits
# verify the logits
UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" )
if is_pillow_less_than_a:
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=snake_case__ , )
else:
UpperCAmelCase__ : int = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=snake_case__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits.detach().cpu()
UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] )
UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ )
UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
| 298
| 0
|
"""simple docstring"""
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, Union
from packaging import version
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
_lowerCAmelCase : List[str] = logging.get_logger(__name__)
@dataclass
class lowerCAmelCase__ :
def __init__( self : Optional[Any] , snake_case__ : Optional[int]=False , snake_case__ : int=False , snake_case__ : Any=6.0 , snake_case__ : List[str]=None , snake_case__ : Any=False , snake_case__ : Optional[int]=False , snake_case__ : Optional[int]=None , snake_case__ : List[Any]="fp4" , snake_case__ : Optional[Any]=False , **snake_case__ : Tuple , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = load_in_abit
UpperCAmelCase__ : Tuple = load_in_abit
UpperCAmelCase__ : List[Any] = llm_inta_threshold
UpperCAmelCase__ : Optional[int] = llm_inta_skip_modules
UpperCAmelCase__ : Any = llm_inta_enable_fpaa_cpu_offload
UpperCAmelCase__ : Union[str, Any] = llm_inta_has_fpaa_weight
UpperCAmelCase__ : Dict = bnb_abit_quant_type
UpperCAmelCase__ : List[str] = bnb_abit_use_double_quant
if bnb_abit_compute_dtype is None:
UpperCAmelCase__ : List[str] = torch.floataa
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ : str = getattr(snake_case__ , snake_case__ )
elif isinstance(snake_case__ , torch.dtype ):
UpperCAmelCase__ : Optional[int] = bnb_abit_compute_dtype
else:
raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" )
self.post_init()
def __a ( self : Union[str, Any] ):
'''simple docstring'''
if not isinstance(self.llm_inta_threshold , snake_case__ ):
raise ValueError("llm_int8_threshold must be a float" )
if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , snake_case__ ):
raise ValueError("llm_int8_skip_modules must be a list of strings" )
if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , snake_case__ ):
raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" )
if not isinstance(self.llm_inta_has_fpaa_weight , snake_case__ ):
raise ValueError("llm_int8_has_fp16_weight must be a boolean" )
if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ):
raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" )
if not isinstance(self.bnb_abit_quant_type , snake_case__ ):
raise ValueError("bnb_4bit_quant_type must be a string" )
if not isinstance(self.bnb_abit_use_double_quant , snake_case__ ):
raise ValueError("bnb_4bit_use_double_quant must be a boolean" )
if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse(
"0.39.0" ):
raise ValueError(
"4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return self.load_in_abit or self.load_in_abit
def __a ( self : Union[str, Any] ):
'''simple docstring'''
if self.load_in_abit:
return "llm_int8"
elif self.load_in_abit and self.bnb_abit_quant_type == "fp4":
return "fp4"
elif self.load_in_abit and self.bnb_abit_quant_type == "nf4":
return "nf4"
else:
return None
@classmethod
def __a ( cls : str , snake_case__ : str , snake_case__ : int , **snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = cls(**snake_case__ )
UpperCAmelCase__ : Tuple = []
for key, value in kwargs.items():
if hasattr(snake_case__ , snake_case__ ):
setattr(snake_case__ , snake_case__ , snake_case__ )
to_remove.append(snake_case__ )
for key in to_remove:
kwargs.pop(snake_case__ , snake_case__ )
if return_unused_kwargs:
return config, kwargs
else:
return config
def __a ( self : str , snake_case__ : Union[str, os.PathLike] ):
'''simple docstring'''
with open(snake_case__ , "w" , encoding="utf-8" ) as writer:
UpperCAmelCase__ : Dict = self.to_dict()
UpperCAmelCase__ : int = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + "\n"
writer.write(snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = copy.deepcopy(self.__dict__ )
UpperCAmelCase__ : List[str] = str(output["bnb_4bit_compute_dtype"] ).split("." )[1]
return output
def __repr__( self : List[str] ):
'''simple docstring'''
return f'{self.__class__.__name__} {self.to_json_string()}'
def __a ( self : List[Any] , snake_case__ : bool = True ):
'''simple docstring'''
if use_diff is True:
UpperCAmelCase__ : Any = self.to_diff_dict()
else:
UpperCAmelCase__ : Optional[int] = self.to_dict()
return json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + "\n"
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.to_dict()
# get the default config dict
UpperCAmelCase__ : List[str] = BitsAndBytesConfig().to_dict()
UpperCAmelCase__ : str = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if value != default_config_dict[key]:
UpperCAmelCase__ : Any = value
return serializable_config_dict
| 352
|
"""simple docstring"""
import functools
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int:
'''simple docstring'''
UpperCAmelCase__ : List[str] = len(snake_case )
UpperCAmelCase__ : str = len(snake_case )
@functools.cache
def min_distance(snake_case : int , snake_case : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
"""simple docstring"""
import math
def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int )-> int:
'''simple docstring'''
UpperCAmelCase__ : str = len(snake_case )
UpperCAmelCase__ : List[str] = int(math.floor(math.sqrt(snake_case ) ) )
UpperCAmelCase__ : Union[str, Any] = 0
while arr[min(snake_case , snake_case ) - 1] < x:
UpperCAmelCase__ : Union[str, Any] = step
step += int(math.floor(math.sqrt(snake_case ) ) )
if prev >= n:
return -1
while arr[prev] < x:
UpperCAmelCase__ : int = prev + 1
if prev == min(snake_case , snake_case ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
_lowerCAmelCase : List[str] = input("""Enter numbers separated by a comma:\n""").strip()
_lowerCAmelCase : Tuple = [int(item) for item in user_input.split(""",""")]
_lowerCAmelCase : Tuple = int(input("""Enter the number to be searched:\n"""))
_lowerCAmelCase : str = jump_search(arr, x)
if res == -1:
print("""Number not found!""")
else:
print(F"""Number {x} is at index {res}""")
| 353
|
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class lowerCAmelCase__ ( __magic_name__ ):
def __a ( self : List[Any] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" )
UpperCAmelCase__ : Tuple = input_file.read()
UpperCAmelCase__ : Tuple = regexp.search(snake_case__ )
return match
def __a ( self : List[str] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL )
UpperCAmelCase__ : Dict = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase__ : int = regexp.finditer(snake_case__ )
UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = Path("./datasets" )
UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(snake_case__ ) ):
raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = Path("./datasets" )
UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_print_statements(str(snake_case__ ) ):
raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
| 298
| 0
|
"""simple docstring"""
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : Optional[Any] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 3
UpperCAmelCase__ : List[Any] = 2_5_0
UpperCAmelCase__ : List[str] = ids_tensor((batch_size, length) , snake_case__ )
UpperCAmelCase__ : Any = torch.ones((batch_size, length) , device=snake_case__ , dtype=torch.float ) / length
return input_ids, scores
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self._get_tensors(5 )
UpperCAmelCase__ : List[Any] = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=1_0 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(snake_case__ , snake_case__ ) )
UpperCAmelCase__ : int = self._get_tensors(9 )
self.assertFalse(criteria(snake_case__ , snake_case__ ) )
UpperCAmelCase__ : int = self._get_tensors(1_0 )
self.assertTrue(criteria(snake_case__ , snake_case__ ) )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = MaxLengthCriteria(max_length=1_0 )
UpperCAmelCase__ : Optional[int] = self._get_tensors(5 )
self.assertFalse(criteria(snake_case__ , snake_case__ ) )
UpperCAmelCase__ : Union[str, Any] = self._get_tensors(9 )
self.assertFalse(criteria(snake_case__ , snake_case__ ) )
UpperCAmelCase__ : Optional[int] = self._get_tensors(1_0 )
self.assertTrue(criteria(snake_case__ , snake_case__ ) )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : str = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
UpperCAmelCase__ : Optional[int] = self._get_tensors(5 )
self.assertFalse(criteria(snake_case__ , snake_case__ ) )
UpperCAmelCase__ : List[Any] = self._get_tensors(9 )
self.assertFalse(criteria(snake_case__ , snake_case__ ) )
UpperCAmelCase__ : Any = self._get_tensors(1_0 )
self.assertTrue(criteria(snake_case__ , snake_case__ ) )
UpperCAmelCase__ : List[str] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 1_0 )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : int = self._get_tensors(5 )
UpperCAmelCase__ : Union[str, Any] = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(snake_case__ , snake_case__ ) )
UpperCAmelCase__ : Union[str, Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(snake_case__ , snake_case__ ) )
def __a ( self : str ):
'''simple docstring'''
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 )
with self.assertWarns(snake_case__ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 )
UpperCAmelCase__ : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 1_1 )
self.assertEqual(len(snake_case__ ) , 1 )
| 354
|
"""simple docstring"""
import numpy as np
import datasets
_lowerCAmelCase : Optional[int] = """
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
"""
_lowerCAmelCase : Tuple = """\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
"""
_lowerCAmelCase : Optional[int] = """
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{'mahalanobis': array([0.5])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __a ( self : Any ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ):
'''simple docstring'''
# convert to numpy arrays
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ )
UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T )
try:
UpperCAmelCase__ : str = np.linalg.inv(snake_case__ )
except np.linalg.LinAlgError:
UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ )
UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ )
UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 298
| 0
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Dict , snake_case : Tuple , snake_case : str )-> List[Any]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
UpperCAmelCase__ : List[Any] = mf_knapsack(i - 1 , snake_case , snake_case , snake_case )
else:
UpperCAmelCase__ : Tuple = max(
mf_knapsack(i - 1 , snake_case , snake_case , snake_case ) , mf_knapsack(i - 1 , snake_case , snake_case , j - wt[i - 1] ) + val[i - 1] , )
UpperCAmelCase__ : str = val
return f[i][j]
def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : List[str] , snake_case : Optional[Any] , snake_case : List[Any] )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : Dict = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
UpperCAmelCase__ : int = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
UpperCAmelCase__ : List[str] = dp[i - 1][w_]
return dp[n][w_], dp
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : list , snake_case : list )-> Union[str, Any]:
'''simple docstring'''
if not (isinstance(snake_case , (list, tuple) ) and isinstance(snake_case , (list, tuple) )):
raise ValueError(
"Both the weights and values vectors must be either lists or tuples" )
UpperCAmelCase__ : str = len(snake_case )
if num_items != len(snake_case ):
UpperCAmelCase__ : List[str] = (
"The number of weights must be the same as the number of values.\n"
f'But got {num_items} weights and {len(snake_case )} values'
)
raise ValueError(snake_case )
for i in range(snake_case ):
if not isinstance(wt[i] , snake_case ):
UpperCAmelCase__ : Union[str, Any] = (
"All weights must be integers but got weight of "
f'type {type(wt[i] )} at index {i}'
)
raise TypeError(snake_case )
UpperCAmelCase__ : str = knapsack(snake_case , snake_case , snake_case , snake_case )
UpperCAmelCase__ : set = set()
_construct_solution(snake_case , snake_case , snake_case , snake_case , snake_case )
return optimal_val, example_optional_set
def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : list , snake_case : int , snake_case : int , snake_case : set )-> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(snake_case , snake_case , i - 1 , snake_case , snake_case )
else:
optimal_set.add(snake_case )
_construct_solution(snake_case , snake_case , i - 1 , j - wt[i - 1] , snake_case )
if __name__ == "__main__":
_lowerCAmelCase : List[str] = [3, 2, 4, 4]
_lowerCAmelCase : List[str] = [4, 3, 2, 3]
_lowerCAmelCase : str = 4
_lowerCAmelCase : Union[str, Any] = 6
_lowerCAmelCase : Union[str, Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
_lowerCAmelCase : Tuple = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
_lowerCAmelCase : str = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 355
|
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =IFPipeline
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''}
def __a ( self : Dict ):
'''simple docstring'''
return self._get_dummy_components()
def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ):
'''simple docstring'''
if str(snake_case__ ).startswith("mps" ):
UpperCAmelCase__ : str = torch.manual_seed(snake_case__ )
else:
UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
UpperCAmelCase__ : Tuple = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __a ( self : Tuple ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def __a ( self : Tuple ):
'''simple docstring'''
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __a ( self : Dict ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __a ( self : int ):
'''simple docstring'''
self._test_save_load_local()
def __a ( self : Any ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __a ( self : Optional[Any] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : str ):
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self : Tuple ):
'''simple docstring'''
# if
UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa )
UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("cuda" )
UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCAmelCase__ : Tuple = None
UpperCAmelCase__ : List[Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : List[Any] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : str = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Tuple = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : str = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Optional[Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : int = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : int = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : int = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Tuple = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : List[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Any:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 298
| 0
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> list:
'''simple docstring'''
return [
txt[:a] + txt[a].upper() + txt[a + 1 :]
for a in range(len(snake_case ) )
if txt[a].isalpha()
]
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 356
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Optional[int] = {
"""vocab_file""": """vocab.txt""",
"""merges_file""": """bpe.codes""",
}
_lowerCAmelCase : List[Any] = {
"""vocab_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""",
},
"""merges_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""",
},
}
_lowerCAmelCase : int = {
"""vinai/phobert-base""": 256,
"""vinai/phobert-large""": 256,
}
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = set()
UpperCAmelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase__ : Dict = char
UpperCAmelCase__ : Tuple = set(snake_case )
return pairs
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ):
'''simple docstring'''
super().__init__(
bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase__ : Dict = vocab_file
UpperCAmelCase__ : Tuple = merges_file
UpperCAmelCase__ : List[Any] = {}
UpperCAmelCase__ : Dict = 0
UpperCAmelCase__ : int = 1
UpperCAmelCase__ : Dict = 2
UpperCAmelCase__ : Dict = 3
self.add_from_file(snake_case__ )
UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
with open(snake_case__ , encoding="utf-8" ) as merges_handle:
UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1]
UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges]
UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Dict = {}
def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
UpperCAmelCase__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ )
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1]
def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __a ( self : List[str] ):
'''simple docstring'''
return len(self.encoder )
def __a ( self : Any ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __a ( self : Dict , snake_case__ : Tuple ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
UpperCAmelCase__ : Any = get_pairs(snake_case__ )
if not pairs:
return token
while True:
UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram
UpperCAmelCase__ : Optional[Any] = []
UpperCAmelCase__ : Tuple = 0
while i < len(snake_case__ ):
try:
UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase__ : Dict = j
if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase__ : Dict = tuple(snake_case__ )
UpperCAmelCase__ : List[Any] = new_word
if len(snake_case__ ) == 1:
break
else:
UpperCAmelCase__ : Dict = get_pairs(snake_case__ )
UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ )
UpperCAmelCase__ : Optional[int] = word[:-4]
UpperCAmelCase__ : Union[str, Any] = word
return word
def __a ( self : List[Any] , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = []
UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ )
for token in words:
split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) )
return split_tokens
def __a ( self : Dict , snake_case__ : List[str] ):
'''simple docstring'''
return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) )
def __a ( self : List[Any] , snake_case__ : Any ):
'''simple docstring'''
return self.decoder.get(snake_case__ , self.unk_token )
def __a ( self : str , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip()
return out_string
def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCAmelCase__ : Tuple = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : str = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ):
copyfile(self.merges_file , snake_case__ )
return out_vocab_file, out_merge_file
def __a ( self : List[Any] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
try:
with open(snake_case__ , "r" , encoding="utf-8" ) as fd:
self.add_from_file(snake_case__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' )
return
UpperCAmelCase__ : Dict = f.readlines()
for lineTmp in lines:
UpperCAmelCase__ : Optional[int] = lineTmp.strip()
UpperCAmelCase__ : Tuple = line.rfind(" " )
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" )
UpperCAmelCase__ : Any = line[:idx]
UpperCAmelCase__ : str = len(self.encoder )
| 298
| 0
|
"""simple docstring"""
import functools
def SCREAMING_SNAKE_CASE__ ( snake_case : list[int] , snake_case : list[int] )-> int:
'''simple docstring'''
if not isinstance(snake_case , snake_case ) or not all(isinstance(snake_case , snake_case ) for day in days ):
raise ValueError("The parameter days should be a list of integers" )
if len(snake_case ) != 3 or not all(isinstance(snake_case , snake_case ) for cost in costs ):
raise ValueError("The parameter costs should be a list of three integers" )
if len(snake_case ) == 0:
return 0
if min(snake_case ) <= 0:
raise ValueError("All days elements should be greater than 0" )
if max(snake_case ) >= 366:
raise ValueError("All days elements should be less than 366" )
UpperCAmelCase__ : List[str] = set(snake_case )
@functools.cache
def dynamic_programming(snake_case : int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357
|
"""simple docstring"""
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowerCAmelCase__ :
SCREAMING_SNAKE_CASE_ =42
# setable values
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =None
@classmethod
def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ):
'''simple docstring'''
return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ )
@dataclass
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =42
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ):
SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers]
SCREAMING_SNAKE_CASE_ =42
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return True
@register_to_config
def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = dtype
def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ):
'''simple docstring'''
if common is None:
UpperCAmelCase__ : Any = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype )
UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , )
def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ):
'''simple docstring'''
return sample
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=snake_case__ , timesteps=snake_case__ , )
def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ):
'''simple docstring'''
UpperCAmelCase__ : int = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
UpperCAmelCase__ : Union[str, Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) )
elif variance_type == "fixed_large":
UpperCAmelCase__ : List[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
UpperCAmelCase__ : List[str] = variance
UpperCAmelCase__ : Optional[Any] = state.common.betas[t]
UpperCAmelCase__ : Any = (predicted_variance + 1) / 2
UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log
return variance
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = timestep
if key is None:
UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 )
else:
UpperCAmelCase__ : int = None
# 1. compute alphas, betas
UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase__ : List[Any] = model_output
elif self.config.prediction_type == "v_prediction":
UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '
" for the FlaxDDPMScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 )
UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ )
def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 298
| 0
|
"""simple docstring"""
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : int , snake_case : Optional[int] , snake_case : Optional[int] )-> str:
'''simple docstring'''
if isinstance(snake_case , snake_case ):
UpperCAmelCase__ : Dict = np.full((len(snake_case ), sequence_length, 2) , snake_case )
else:
UpperCAmelCase__ : List[str] = np.full((len(snake_case ), sequence_length) , snake_case )
for i, tensor in enumerate(snake_case ):
if padding_side == "right":
if isinstance(snake_case , snake_case ):
UpperCAmelCase__ : List[str] = tensor[:sequence_length]
else:
UpperCAmelCase__ : Dict = tensor[:sequence_length]
else:
if isinstance(snake_case , snake_case ):
UpperCAmelCase__ : Tuple = tensor[:sequence_length]
else:
UpperCAmelCase__ : Tuple = tensor[:sequence_length]
return out_tensor.tolist()
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = ord(snake_case )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
UpperCAmelCase__ : Optional[int] = unicodedata.category(snake_case )
if cat.startswith("P" ):
return True
return False
@dataclass
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =True
SCREAMING_SNAKE_CASE_ =None
SCREAMING_SNAKE_CASE_ =None
SCREAMING_SNAKE_CASE_ =-100
SCREAMING_SNAKE_CASE_ ='''pt'''
def __a ( self : Union[str, Any] , snake_case__ : Any ):
'''simple docstring'''
import torch
UpperCAmelCase__ : List[Any] = "label" if "label" in features[0].keys() else "labels"
UpperCAmelCase__ : int = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
UpperCAmelCase__ : Any = self.tokenizer.pad(
snake_case__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , )
if labels is None:
return batch
UpperCAmelCase__ : Any = torch.tensor(batch["entity_ids"] ).shape[1]
UpperCAmelCase__ : List[Any] = self.tokenizer.padding_side
if padding_side == "right":
UpperCAmelCase__ : List[str] = [
list(snake_case__ ) + [self.label_pad_token_id] * (sequence_length - len(snake_case__ )) for label in labels
]
else:
UpperCAmelCase__ : str = [
[self.label_pad_token_id] * (sequence_length - len(snake_case__ )) + list(snake_case__ ) for label in labels
]
UpperCAmelCase__ : Dict = [feature["ner_tags"] for feature in features]
UpperCAmelCase__ : str = padding_tensor(snake_case__ , -1 , snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[int] = [feature["original_entity_spans"] for feature in features]
UpperCAmelCase__ : str = padding_tensor(snake_case__ , (-1, -1) , snake_case__ , snake_case__ )
UpperCAmelCase__ : Union[str, Any] = {k: torch.tensor(snake_case__ , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 358
|
"""simple docstring"""
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class lowerCAmelCase__ :
def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ):
'''simple docstring'''
UpperCAmelCase__ : str = parent
UpperCAmelCase__ : Tuple = batch_size
UpperCAmelCase__ : Dict = seq_length
UpperCAmelCase__ : Union[str, Any] = act_dim
UpperCAmelCase__ : Dict = state_dim
UpperCAmelCase__ : Optional[Any] = hidden_size
UpperCAmelCase__ : List[str] = max_length
UpperCAmelCase__ : int = is_training
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 )
UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) )
UpperCAmelCase__ : Optional[int] = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def __a ( self : int ):
'''simple docstring'''
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ =()
SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
SCREAMING_SNAKE_CASE_ =False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = DecisionTransformerModelTester(self )
UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : List[str] ):
'''simple docstring'''
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase__ : str = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform
UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Optional[int] = model.config
torch.manual_seed(0 )
UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset()
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ )
UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
UpperCAmelCase__ : Union[str, Any] = state
UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 )
for step in range(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model(
states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ),
1.0,
False,
{},
)
UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1]
UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 )
UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward
UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
UpperCAmelCase__ : Tuple = torch.cat(
[timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
| 298
| 0
|
"""simple docstring"""
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
_lowerCAmelCase : Tuple = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"""text-classification""",
"""language-modeling""",
"""summarization""",
"""token-classification""",
"""question-answering""",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
_lowerCAmelCase : Union[str, Any] = logging.getLogger()
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : Tuple = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase__ : str = parser.parse_args()
return args.f
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Union[str, Any]="eval" )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : str = os.path.join(snake_case , f'{split}_results.json' )
if os.path.exists(snake_case ):
with open(snake_case , "r" ) as f:
return json.load(snake_case )
raise ValueError(f'can\'t find {path}' )
_lowerCAmelCase : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowerCAmelCase__ ( __magic_name__ ):
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ : Tuple = f'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split()
with patch.object(snake_case__ , "argv" , snake_case__ ):
run_flax_glue.main()
UpperCAmelCase__ : List[Any] = get_results(snake_case__ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
@slow
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ : Union[str, Any] = f'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split()
with patch.object(snake_case__ , "argv" , snake_case__ ):
run_clm_flax.main()
UpperCAmelCase__ : Dict = get_results(snake_case__ )
self.assertLess(result["eval_perplexity"] , 1_0_0 )
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ : int = f'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split()
with patch.object(snake_case__ , "argv" , snake_case__ ):
run_summarization_flax.main()
UpperCAmelCase__ : str = get_results(snake_case__ , split="test" )
self.assertGreaterEqual(result["test_rouge1"] , 1_0 )
self.assertGreaterEqual(result["test_rouge2"] , 2 )
self.assertGreaterEqual(result["test_rougeL"] , 7 )
self.assertGreaterEqual(result["test_rougeLsum"] , 7 )
@slow
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Any = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ : int = f'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split()
with patch.object(snake_case__ , "argv" , snake_case__ ):
run_mlm_flax.main()
UpperCAmelCase__ : List[str] = get_results(snake_case__ )
self.assertLess(result["eval_perplexity"] , 4_2 )
@slow
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ : str = f'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split()
with patch.object(snake_case__ , "argv" , snake_case__ ):
run_ta_mlm_flax.main()
UpperCAmelCase__ : int = get_results(snake_case__ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.42 )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase__ : Any = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ : Tuple = f'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split()
with patch.object(snake_case__ , "argv" , snake_case__ ):
run_flax_ner.main()
UpperCAmelCase__ : int = get_results(snake_case__ )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
self.assertGreaterEqual(result["eval_f1"] , 0.3 )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : str = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ : Dict = f'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split()
with patch.object(snake_case__ , "argv" , snake_case__ ):
run_qa.main()
UpperCAmelCase__ : int = get_results(snake_case__ )
self.assertGreaterEqual(result["eval_f1"] , 3_0 )
self.assertGreaterEqual(result["eval_exact"] , 3_0 )
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : Tuple = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 298
| 0
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : list , snake_case : int , snake_case : int , snake_case : int )-> int:
'''simple docstring'''
if index == number_of_items:
return 0
UpperCAmelCase__ : Any = 0
UpperCAmelCase__ : int = 0
UpperCAmelCase__ : Tuple = knapsack(snake_case , snake_case , snake_case , snake_case , index + 1 )
if weights[index] <= max_weight:
UpperCAmelCase__ : Union[str, Any] = values[index] + knapsack(
snake_case , snake_case , snake_case , max_weight - weights[index] , index + 1 )
return max(snake_case , snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360
|
"""simple docstring"""
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
_lowerCAmelCase : Optional[int] = get_logger(__name__)
_lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md"""
_lowerCAmelCase : Dict = uuida().hex
_lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f'; torch/{_torch_version}'
if is_flax_available():
ua += f'; jax/{_jax_version}'
ua += f'; flax/{_flax_version}'
if is_onnx_available():
ua += f'; onnxruntime/{_onnxruntime_version}'
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(snake_case , snake_case ):
ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() )
elif isinstance(snake_case , snake_case ):
ua += "; " + user_agent
return ua
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]:
'''simple docstring'''
if token is None:
UpperCAmelCase__ : Optional[Any] = HfFolder.get_token()
if organization is None:
UpperCAmelCase__ : Tuple = whoami(snake_case )["name"]
return f'{username}/{model_id}'
else:
return f'{organization}/{model_id}'
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]:
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"Modelcard rendering is based on Jinja templates."
" Please make sure to have `jinja` installed before using `create_model_card`."
" To install it, please run `pip install Jinja2`." )
if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]:
return
UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None
UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case )
UpperCAmelCase__ : Tuple = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None
) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , )
UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" )
model_card.save(snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple:
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() )
UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case )
if search is None:
return None
UpperCAmelCase__ : Dict = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
_lowerCAmelCase : Dict = os.path.expanduser(
os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface"""))
)
_lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""")
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None:
'''simple docstring'''
if new_cache_dir is None:
UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE
if old_cache_dir is None:
UpperCAmelCase__ : str = old_diffusers_cache
UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser()
UpperCAmelCase__ : Any = Path(snake_case ).expanduser()
for old_blob_path in old_cache_dir.glob("**/blobs/*" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case )
new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
os.replace(snake_case , snake_case )
try:
os.symlink(snake_case , snake_case )
except OSError:
logger.warning(
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
_lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""")
if not os.path.isfile(cache_version_file):
_lowerCAmelCase : Any = 0
else:
with open(cache_version_file) as f:
try:
_lowerCAmelCase : List[str] = int(f.read())
except ValueError:
_lowerCAmelCase : Optional[int] = 0
if cache_version < 1:
_lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"""The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """
"""existing cached models. This is a one-time operation, you can interrupt it or run it """
"""later by calling `diffusers.utils.hub_utils.move_cache()`."""
)
try:
move_cache()
except Exception as e:
_lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__))
logger.error(
F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
"""file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """
"""message and we will do our best to help."""
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, """w""") as f:
f.write("""1""")
except Exception:
logger.warning(
F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
"""the directory exists and can be written to."""
)
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str:
'''simple docstring'''
if variant is not None:
UpperCAmelCase__ : int = weights_name.split("." )
UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:]
UpperCAmelCase__ : Optional[int] = ".".join(snake_case )
return weights_name
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *,
snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : List[str] = str(snake_case )
if os.path.isfile(snake_case ):
return pretrained_model_name_or_path
elif os.path.isdir(snake_case ):
if os.path.isfile(os.path.join(snake_case , snake_case ) ):
# Load from a PyTorch checkpoint
UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(snake_case , snake_case , snake_case ) ):
UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case )
return model_file
else:
raise EnvironmentError(
f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" )
):
try:
UpperCAmelCase__ : List[Any] = hf_hub_download(
snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
warnings.warn(
f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , )
return model_file
except: # noqa: E722
warnings.warn(
f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , )
try:
# 2. Load model file as usual
UpperCAmelCase__ : Dict = hf_hub_download(
snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
"login`." )
except RevisionNotFoundError:
raise EnvironmentError(
f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '
"this model name. Check the model page at "
f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' )
except EntryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' )
except HTTPError as err:
raise EnvironmentError(
f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' )
except ValueError:
raise EnvironmentError(
f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'
f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'
f' directory containing a file named {weights_name} or'
" \nCheckout your internet connection or see how to run the library in"
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." )
except EnvironmentError:
raise EnvironmentError(
f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '
f'containing a file named {weights_name}' )
| 298
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Any = {
"""google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""",
"""google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""",
"""google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''mobilenet_v2'''
def __init__( self : Optional[int] , snake_case__ : List[str]=3 , snake_case__ : str=2_2_4 , snake_case__ : Dict=1.0 , snake_case__ : List[str]=8 , snake_case__ : List[Any]=8 , snake_case__ : Tuple=6 , snake_case__ : Optional[Any]=3_2 , snake_case__ : List[str]=True , snake_case__ : Dict=True , snake_case__ : Union[str, Any]="relu6" , snake_case__ : str=True , snake_case__ : List[str]=0.8 , snake_case__ : Optional[Any]=0.02 , snake_case__ : Union[str, Any]=0.001 , snake_case__ : List[str]=2_5_5 , **snake_case__ : Any , ):
'''simple docstring'''
super().__init__(**snake_case__ )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase__ : Union[str, Any] = num_channels
UpperCAmelCase__ : List[str] = image_size
UpperCAmelCase__ : Optional[int] = depth_multiplier
UpperCAmelCase__ : Optional[Any] = depth_divisible_by
UpperCAmelCase__ : Optional[Any] = min_depth
UpperCAmelCase__ : List[Any] = expand_ratio
UpperCAmelCase__ : List[Any] = output_stride
UpperCAmelCase__ : Optional[int] = first_layer_is_expansion
UpperCAmelCase__ : Any = finegrained_output
UpperCAmelCase__ : Optional[int] = hidden_act
UpperCAmelCase__ : int = tf_padding
UpperCAmelCase__ : List[Any] = classifier_dropout_prob
UpperCAmelCase__ : int = initializer_range
UpperCAmelCase__ : List[str] = layer_norm_eps
UpperCAmelCase__ : Any = semantic_loss_ignore_index
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =version.parse('''1.11''' )
@property
def __a ( self : int ):
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def __a ( self : Dict ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def __a ( self : List[str] ):
'''simple docstring'''
return 1e-4
| 361
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss
UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy()
UpperCAmelCase__ : List[Any] = -21.22_8168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
| 298
| 0
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =XLMTokenizer
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ : Optional[int] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(snake_case__ ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(snake_case__ ) )
def __a ( self : Union[str, Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = "lower newer"
UpperCAmelCase__ : Optional[Any] = "lower newer"
return input_text, output_text
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ : List[Any] = "lower"
UpperCAmelCase__ : Any = ["low", "er</w>"]
UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"]
UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" )
UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 362
|
"""simple docstring"""
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = parent
UpperCAmelCase__ : int = batch_size
UpperCAmelCase__ : int = seq_length
UpperCAmelCase__ : List[str] = is_training
UpperCAmelCase__ : Union[str, Any] = use_input_mask
UpperCAmelCase__ : Optional[Any] = use_token_type_ids
UpperCAmelCase__ : Any = use_labels
UpperCAmelCase__ : List[Any] = vocab_size
UpperCAmelCase__ : Any = embedding_size
UpperCAmelCase__ : List[str] = hidden_size
UpperCAmelCase__ : List[Any] = num_hidden_layers
UpperCAmelCase__ : int = num_hidden_groups
UpperCAmelCase__ : Union[str, Any] = num_attention_heads
UpperCAmelCase__ : List[str] = intermediate_size
UpperCAmelCase__ : Optional[Any] = hidden_act
UpperCAmelCase__ : List[Any] = hidden_dropout_prob
UpperCAmelCase__ : Tuple = attention_probs_dropout_prob
UpperCAmelCase__ : str = max_position_embeddings
UpperCAmelCase__ : Any = type_vocab_size
UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = initializer_range
UpperCAmelCase__ : Tuple = num_labels
UpperCAmelCase__ : List[str] = num_choices
UpperCAmelCase__ : Union[str, Any] = scope
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : Optional[int] = None
UpperCAmelCase__ : Any = None
if self.use_labels:
UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self : Any ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : str = AlbertModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[int] = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_labels
UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : str = self.num_labels
UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_choices
UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Tuple = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[Any] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': AlbertModel,
'''fill-mask''': AlbertForMaskedLM,
'''question-answering''': AlbertForQuestionAnswering,
'''text-classification''': AlbertForSequenceClassification,
'''token-classification''': AlbertForTokenClassification,
'''zero-shot''': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =True
def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if model_class in get_values(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ )
UpperCAmelCase__ : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case__ )
return inputs_dict
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Dict = AlbertModelTester(self )
UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case__ )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase__ : Dict = type
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" )
UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , snake_case__ )
UpperCAmelCase__ : Union[str, Any] = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
| 298
| 0
|
"""simple docstring"""
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
_lowerCAmelCase : Any = {
"""<""": operator.lt,
"""<=""": operator.le,
"""==""": operator.eq,
"""!=""": operator.ne,
""">=""": operator.ge,
""">""": operator.gt,
}
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[Any] )-> Optional[Any]:
'''simple docstring'''
if got_ver is None or want_ver is None:
raise ValueError(
f'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'
f' reinstalling {pkg}.' )
if not ops[op](version.parse(snake_case ) , version.parse(snake_case ) ):
raise ImportError(
f'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' )
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> None:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = f'\n{hint}' if hint is not None else ""
# non-versioned check
if re.match(r"^[\w_\-\d]+$" , snake_case ):
UpperCAmelCase__ : Tuple = requirement, None, None
else:
UpperCAmelCase__ : str = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , snake_case )
if not match:
raise ValueError(
"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but"
f' got {requirement}' )
UpperCAmelCase__ : List[Any] = match[0]
UpperCAmelCase__ : Union[str, Any] = want_full.split("," ) # there could be multiple requirements
UpperCAmelCase__ : List[str] = {}
for w in want_range:
UpperCAmelCase__ : Optional[Any] = re.findall(r"^([\s!=<>]{1,2})(.+)" , snake_case )
if not match:
raise ValueError(
"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,"
f' but got {requirement}' )
UpperCAmelCase__ : str = match[0]
UpperCAmelCase__ : str = want_ver
if op not in ops:
raise ValueError(f'{requirement}: need one of {list(ops.keys() )}, but got {op}' )
# special case
if pkg == "python":
UpperCAmelCase__ : Optional[int] = ".".join([str(snake_case ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )
return
# check if any version is installed
try:
UpperCAmelCase__ : Optional[Any] = importlib.metadata.version(snake_case )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
f'The \'{requirement}\' distribution was not found and is required by this application. {hint}' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> int:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main"
return require_version(snake_case , snake_case )
| 363
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any:
'''simple docstring'''
UpperCAmelCase__ : List[str] = [1]
for i in range(2 , snake_case ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCAmelCase__ : Union[str, Any] = []
UpperCAmelCase__ : str = list(range(snake_case ) )
# Find permutation
while factorials:
UpperCAmelCase__ : str = factorials.pop()
UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = tempfile.mkdtemp()
# fmt: off
UpperCAmelCase__ : List[str] = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
UpperCAmelCase__ : Dict = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
UpperCAmelCase__ : Optional[int] = {"unk_token": "<unk>"}
UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(snake_case__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(snake_case__ ) )
UpperCAmelCase__ : Union[str, Any] = {
"do_resize": True,
"size": 2_0,
"do_center_crop": True,
"crop_size": 1_8,
"do_normalize": True,
"image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073],
"image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , snake_case__ )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(snake_case__ , snake_case__ )
def __a ( self : Dict , **snake_case__ : Any ):
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **snake_case__ )
def __a ( self : Tuple , **snake_case__ : Any ):
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **snake_case__ )
def __a ( self : Optional[Any] , **snake_case__ : Optional[Any] ):
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ )
def __a ( self : Optional[Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
UpperCAmelCase__ : List[str] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = self.get_tokenizer()
UpperCAmelCase__ : int = self.get_rust_tokenizer()
UpperCAmelCase__ : Dict = self.get_image_processor()
UpperCAmelCase__ : str = OwlViTProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
processor_slow.save_pretrained(self.tmpdirname )
UpperCAmelCase__ : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case__ )
UpperCAmelCase__ : Union[str, Any] = OwlViTProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
processor_fast.save_pretrained(self.tmpdirname )
UpperCAmelCase__ : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , snake_case__ )
self.assertIsInstance(processor_fast.tokenizer , snake_case__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , snake_case__ )
self.assertIsInstance(processor_fast.image_processor , snake_case__ )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase__ : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
UpperCAmelCase__ : int = self.get_image_processor(do_normalize=snake_case__ )
UpperCAmelCase__ : Optional[int] = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.get_image_processor()
UpperCAmelCase__ : Dict = self.get_tokenizer()
UpperCAmelCase__ : Union[str, Any] = OwlViTProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ : str = self.prepare_image_inputs()
UpperCAmelCase__ : Optional[Any] = image_processor(snake_case__ , return_tensors="np" )
UpperCAmelCase__ : int = processor(images=snake_case__ , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.get_image_processor()
UpperCAmelCase__ : Optional[int] = self.get_tokenizer()
UpperCAmelCase__ : List[str] = OwlViTProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ : List[Any] = "lower newer"
UpperCAmelCase__ : Union[str, Any] = processor(text=snake_case__ , return_tensors="np" )
UpperCAmelCase__ : Optional[Any] = tokenizer(snake_case__ , return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.get_image_processor()
UpperCAmelCase__ : List[str] = self.get_tokenizer()
UpperCAmelCase__ : List[Any] = OwlViTProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ : Optional[int] = "lower newer"
UpperCAmelCase__ : Optional[int] = self.prepare_image_inputs()
UpperCAmelCase__ : Optional[Any] = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(snake_case__ ):
processor()
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = "google/owlvit-base-patch32"
UpperCAmelCase__ : Union[str, Any] = OwlViTProcessor.from_pretrained(snake_case__ )
UpperCAmelCase__ : Tuple = ["cat", "nasa badge"]
UpperCAmelCase__ : Any = processor(text=snake_case__ )
UpperCAmelCase__ : Dict = 1_6
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(snake_case__ ):
processor()
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = "google/owlvit-base-patch32"
UpperCAmelCase__ : Dict = OwlViTProcessor.from_pretrained(snake_case__ )
UpperCAmelCase__ : List[str] = [["cat", "nasa badge"], ["person"]]
UpperCAmelCase__ : Union[str, Any] = processor(text=snake_case__ )
UpperCAmelCase__ : Any = 1_6
UpperCAmelCase__ : Optional[Any] = len(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = max([len(snake_case__ ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(snake_case__ ):
processor()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = "google/owlvit-base-patch32"
UpperCAmelCase__ : List[Any] = OwlViTProcessor.from_pretrained(snake_case__ )
UpperCAmelCase__ : Dict = ["cat", "nasa badge"]
UpperCAmelCase__ : Tuple = processor(text=snake_case__ )
UpperCAmelCase__ : Union[str, Any] = 1_6
UpperCAmelCase__ : List[Any] = inputs["input_ids"]
UpperCAmelCase__ : str = [
[4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Any = self.get_image_processor()
UpperCAmelCase__ : Optional[int] = self.get_tokenizer()
UpperCAmelCase__ : Union[str, Any] = OwlViTProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ : List[str] = self.prepare_image_inputs()
UpperCAmelCase__ : Optional[Any] = self.prepare_image_inputs()
UpperCAmelCase__ : int = processor(images=snake_case__ , query_images=snake_case__ )
self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(snake_case__ ):
processor()
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = self.get_image_processor()
UpperCAmelCase__ : Tuple = self.get_tokenizer()
UpperCAmelCase__ : Dict = OwlViTProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase__ : str = processor.batch_decode(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokenizer.batch_decode(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
| 364
|
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
_lowerCAmelCase : Union[str, Any] = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCAmelCase__ ( unittest.TestCase ):
def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ):
'''simple docstring'''
UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0}
UpperCAmelCase__ : List[str] = parent
UpperCAmelCase__ : List[str] = batch_size
UpperCAmelCase__ : Optional[Any] = num_channels
UpperCAmelCase__ : Any = image_size
UpperCAmelCase__ : int = min_resolution
UpperCAmelCase__ : Tuple = max_resolution
UpperCAmelCase__ : Optional[int] = size
UpperCAmelCase__ : Optional[int] = do_normalize
UpperCAmelCase__ : str = do_convert_rgb
UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def __a ( self : str ):
'''simple docstring'''
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : int = PixaStructImageProcessingTester(self )
@property
def __a ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image()
UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
UpperCAmelCase__ : Dict = 2_0_4_8
UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def __a ( self : List[Any] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : List[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : str = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : List[Any] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
UpperCAmelCase__ : Optional[int] = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ : List[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
UpperCAmelCase__ : Optional[Any] = "Hello"
UpperCAmelCase__ : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : Dict = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : Dict ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , np.ndarray )
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : Dict = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : List[str] = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def __a ( self : Optional[int] ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , torch.Tensor )
# Test not batched input
UpperCAmelCase__ : int = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : str = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 )
UpperCAmelCase__ : Optional[int] = 3
@property
def __a ( self : int ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , "do_normalize" ) )
self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) )
def __a ( self : int ):
'''simple docstring'''
# Initialize image_processor
UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
UpperCAmelCase__ : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
UpperCAmelCase__ : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
UpperCAmelCase__ : Dict = image_processor(
snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 298
| 0
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase : str = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> YolosConfig:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
UpperCAmelCase__ : Any = 192
UpperCAmelCase__ : str = 768
UpperCAmelCase__ : List[str] = 12
UpperCAmelCase__ : int = 3
UpperCAmelCase__ : List[Any] = [800, 1333]
UpperCAmelCase__ : List[str] = False
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase__ : int = 330
UpperCAmelCase__ : List[Any] = 14
UpperCAmelCase__ : Optional[int] = 6
UpperCAmelCase__ : Optional[int] = 1320
elif "yolos_s" in yolos_name:
UpperCAmelCase__ : Any = 384
UpperCAmelCase__ : List[Any] = 1536
UpperCAmelCase__ : List[str] = 12
UpperCAmelCase__ : Tuple = 6
elif "yolos_b" in yolos_name:
UpperCAmelCase__ : Tuple = [800, 1344]
UpperCAmelCase__ : Optional[Any] = 91
UpperCAmelCase__ : str = "huggingface/label-files"
UpperCAmelCase__ : Optional[int] = "coco-detection-id2label.json"
UpperCAmelCase__ : Optional[int] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) )
UpperCAmelCase__ : List[str] = {int(snake_case ): v for k, v in idalabel.items()}
UpperCAmelCase__ : Union[str, Any] = idalabel
UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE__ ( snake_case : dict , snake_case : YolosConfig , snake_case : bool = False )-> Optional[int]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase__ : List[str] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
UpperCAmelCase__ : List[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase__ : Optional[int] = in_proj_bias[: config.hidden_size]
UpperCAmelCase__ : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase__ : Union[str, Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase__ : Optional[int] = in_proj_weight[-config.hidden_size :, :]
UpperCAmelCase__ : str = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str:
'''simple docstring'''
if "backbone" in name:
UpperCAmelCase__ : str = name.replace("backbone" , "vit" )
if "cls_token" in name:
UpperCAmelCase__ : Dict = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
UpperCAmelCase__ : Optional[int] = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
UpperCAmelCase__ : Dict = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
UpperCAmelCase__ : Optional[Any] = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
UpperCAmelCase__ : int = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
UpperCAmelCase__ : Tuple = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
UpperCAmelCase__ : Tuple = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
UpperCAmelCase__ : Tuple = name.replace("attn" , "attention.self" )
if "norm1" in name:
UpperCAmelCase__ : Any = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
UpperCAmelCase__ : List[Any] = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
UpperCAmelCase__ : List[Any] = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
UpperCAmelCase__ : Dict = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
UpperCAmelCase__ : Dict = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
UpperCAmelCase__ : str = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
UpperCAmelCase__ : Any = name.replace("vit.norm" , "vit.layernorm" )
return name
def SCREAMING_SNAKE_CASE__ ( snake_case : dict , snake_case : YolosForObjectDetection )-> dict:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ : List[str] = orig_state_dict.pop(snake_case )
if "qkv" in key:
UpperCAmelCase__ : Union[str, Any] = key.split("." )
UpperCAmelCase__ : int = int(key_split[2] )
UpperCAmelCase__ : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
UpperCAmelCase__ : Optional[Any] = val[:dim, :]
UpperCAmelCase__ : Union[str, Any] = val[
dim : dim * 2, :
]
UpperCAmelCase__ : int = val[-dim:, :]
else:
UpperCAmelCase__ : int = val[:dim]
UpperCAmelCase__ : int = val[dim : dim * 2]
UpperCAmelCase__ : Union[str, Any] = val[-dim:]
else:
UpperCAmelCase__ : List[str] = val
return orig_state_dict
def SCREAMING_SNAKE_CASE__ ( )-> torch.Tensor:
'''simple docstring'''
UpperCAmelCase__ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case , stream=snake_case ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str , snake_case : str , snake_case : bool = False )-> int:
'''simple docstring'''
UpperCAmelCase__ : Any = get_yolos_config(snake_case )
# load original state_dict
UpperCAmelCase__ : List[str] = torch.load(snake_case , map_location="cpu" )["model"]
# load 🤗 model
UpperCAmelCase__ : Tuple = YolosForObjectDetection(snake_case )
model.eval()
UpperCAmelCase__ : Tuple = convert_state_dict(snake_case , snake_case )
model.load_state_dict(snake_case )
# Check outputs on an image, prepared by YolosImageProcessor
UpperCAmelCase__ : Tuple = 800 if yolos_name != "yolos_ti" else 512
UpperCAmelCase__ : Optional[int] = YolosImageProcessor(format="coco_detection" , size=snake_case )
UpperCAmelCase__ : Tuple = image_processor(images=prepare_img() , return_tensors="pt" )
UpperCAmelCase__ : Optional[int] = model(**snake_case )
UpperCAmelCase__ : Tuple = outputs.logits, outputs.pred_boxes
UpperCAmelCase__ : Optional[int] = None, None
if yolos_name == "yolos_ti":
UpperCAmelCase__ : List[Any] = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
UpperCAmelCase__ : Union[str, Any] = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
UpperCAmelCase__ : List[str] = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
UpperCAmelCase__ : Any = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
UpperCAmelCase__ : Optional[int] = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
UpperCAmelCase__ : List[Any] = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
UpperCAmelCase__ : Union[str, Any] = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
UpperCAmelCase__ : Tuple = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f'Unknown yolos_name: {yolos_name}' )
assert torch.allclose(logits[0, :3, :3] , snake_case , atol=1E-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , snake_case , atol=1E-4 )
Path(snake_case ).mkdir(exist_ok=snake_case )
print(f'Saving model {yolos_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case )
if push_to_hub:
UpperCAmelCase__ : List[str] = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
UpperCAmelCase__ : Optional[Any] = model_mapping[yolos_name]
image_processor.push_to_hub(snake_case , organization="hustvl" )
model.push_to_hub(snake_case , organization="hustvl" )
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--yolos_name""",
default="""yolos_s_200_pre""",
type=str,
help=(
"""Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"""
""" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."""
),
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_lowerCAmelCase : Union[str, Any] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 365
|
"""simple docstring"""
import importlib
import os
import fsspec
import pytest
from fsspec import register_implementation
from fsspec.registry import _registry as _fsspec_registry
from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem
from .utils import require_lza, require_zstandard
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any:
'''simple docstring'''
assert "mock" in _fsspec_registry
assert "bz2" in _fsspec_registry
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
assert "mock" not in _fsspec_registry
assert "bz2" in _fsspec_registry
def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ : int = "mock-s3-bucket"
UpperCAmelCase__ : Any = f's3://{mock_bucket}'
UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case )
assert dataset_path.startswith("s3://" ) is False
UpperCAmelCase__ : str = "./local/path"
UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case )
assert dataset_path == new_dataset_path
def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case )
assert is_remote is True
UpperCAmelCase__ : str = fsspec.filesystem("file" )
UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case )
assert is_remote is False
@pytest.mark.parametrize("compression_fs_class" , snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file}
UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol]
if input_path is None:
UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, '
if compression_fs_class.protocol == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_fs_class.protocol == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(snake_case )
UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case )
assert isinstance(snake_case , snake_case )
UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case )
UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )]
assert fs.glob("*" ) == [expected_filename]
with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file:
assert f.read() == expected_file.read()
@pytest.mark.parametrize("protocol" , ["zip", "gzip"] )
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path}
UpperCAmelCase__ : int = compressed_file_paths[protocol]
UpperCAmelCase__ : Any = "dataset.jsonl"
UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}'
UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case )
assert fs.isfile(snake_case )
assert not fs.isfile("non_existing_" + member_file_path )
@pytest.mark.integration
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case )
UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case )
assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"]
assert hffs.isdir("data" )
assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" )
with open(snake_case ) as f:
assert hffs.open("data/text_data.txt" , "r" ).read() == f.read()
def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : Tuple = "bz2"
# Import module
import datasets.filesystems
# Overwrite protocol and reload
register_implementation(snake_case , snake_case , clobber=snake_case )
with pytest.warns(snake_case ) as warning_info:
importlib.reload(datasets.filesystems )
assert len(snake_case ) == 1
assert (
str(warning_info[0].message )
== f'A filesystem protocol was already set for {protocol} and will be overwritten.'
)
| 298
| 0
|
"""simple docstring"""
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class lowerCAmelCase__ ( yaml.SafeLoader ):
def __a ( self : Union[str, Any] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = [self.constructed_objects[key_node] for key_node, _ in node.value]
UpperCAmelCase__ : Union[str, Any] = [tuple(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else key for key in keys]
UpperCAmelCase__ : List[str] = Counter(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(f'Got duplicate yaml keys: {duplicate_keys}' )
def __a ( self : int , snake_case__ : Optional[int] , snake_case__ : Tuple=False ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = super().construct_mapping(snake_case__ , deep=snake_case__ )
self._check_no_duplicates_on_constructed_node(snake_case__ )
return mapping
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> Tuple[Optional[str], str]:
UpperCAmelCase__ : Union[str, Any] = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
UpperCAmelCase__ : str = full_content[1:].index("---" ) + 1
UpperCAmelCase__ : Union[str, Any] = "\n".join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(snake_case )
class lowerCAmelCase__ ( __magic_name__ ):
# class attributes
SCREAMING_SNAKE_CASE_ ={'''train_eval_index'''} # train-eval-index in the YAML metadata
@classmethod
def __a ( cls : Dict , snake_case__ : Path ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as readme_file:
UpperCAmelCase__ : Union[str, Any] = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(snake_case__ )
else:
return cls()
def __a ( self : Any , snake_case__ : Path ):
'''simple docstring'''
if path.exists():
with open(snake_case__ , encoding="utf-8" ) as readme_file:
UpperCAmelCase__ : List[str] = readme_file.read()
else:
UpperCAmelCase__ : Dict = None
UpperCAmelCase__ : Optional[Any] = self._to_readme(snake_case__ )
with open(snake_case__ , "w" , encoding="utf-8" ) as readme_file:
readme_file.write(snake_case__ )
def __a ( self : Union[str, Any] , snake_case__ : Optional[str] = None ):
'''simple docstring'''
if readme_content is not None:
UpperCAmelCase__ : Optional[Any] = _split_yaml_from_readme(snake_case__ )
UpperCAmelCase__ : int = "---\n" + self.to_yaml_string() + "---\n" + content
else:
UpperCAmelCase__ : Any = "---\n" + self.to_yaml_string() + "---\n"
return full_content
@classmethod
def __a ( cls : Optional[Any] , snake_case__ : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = yaml.load(snake_case__ , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
UpperCAmelCase__ : int = {
(key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
return yaml.safe_dump(
{
(key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=snake_case__ , allow_unicode=snake_case__ , encoding="utf-8" , ).decode("utf-8" )
_lowerCAmelCase : Tuple = {
"""image-classification""": [],
"""translation""": [],
"""image-segmentation""": [],
"""fill-mask""": [],
"""automatic-speech-recognition""": [],
"""token-classification""": [],
"""sentence-similarity""": [],
"""audio-classification""": [],
"""question-answering""": [],
"""summarization""": [],
"""zero-shot-classification""": [],
"""table-to-text""": [],
"""feature-extraction""": [],
"""other""": [],
"""multiple-choice""": [],
"""text-classification""": [],
"""text-to-image""": [],
"""text2text-generation""": [],
"""zero-shot-image-classification""": [],
"""tabular-classification""": [],
"""tabular-regression""": [],
"""image-to-image""": [],
"""tabular-to-text""": [],
"""unconditional-image-generation""": [],
"""text-retrieval""": [],
"""text-to-speech""": [],
"""object-detection""": [],
"""audio-to-audio""": [],
"""text-generation""": [],
"""conversational""": [],
"""table-question-answering""": [],
"""visual-question-answering""": [],
"""image-to-text""": [],
"""reinforcement-learning""": [],
"""voice-activity-detection""": [],
"""time-series-forecasting""": [],
"""document-question-answering""": [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
_lowerCAmelCase : List[str] = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""")
ap.add_argument("""readme_filepath""")
_lowerCAmelCase : Union[str, Any] = ap.parse_args()
_lowerCAmelCase : Union[str, Any] = Path(args.readme_filepath)
_lowerCAmelCase : Dict = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 366
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : List[Any] = logging.get_logger(__name__)
_lowerCAmelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''megatron-bert'''
def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase__ : str = vocab_size
UpperCAmelCase__ : str = hidden_size
UpperCAmelCase__ : List[str] = num_hidden_layers
UpperCAmelCase__ : Optional[int] = num_attention_heads
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Tuple = hidden_dropout_prob
UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase__ : Any = max_position_embeddings
UpperCAmelCase__ : Dict = type_vocab_size
UpperCAmelCase__ : Optional[int] = initializer_range
UpperCAmelCase__ : int = layer_norm_eps
UpperCAmelCase__ : Optional[Any] = position_embedding_type
UpperCAmelCase__ : Any = use_cache
| 298
| 0
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : Union[str, Any] , *snake_case__ : Any , **snake_case__ : Dict ):
'''simple docstring'''
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , snake_case__ , )
super().__init__(*snake_case__ , **snake_case__ )
| 367
|
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class lowerCAmelCase__ ( datasets.BeamBasedBuilder ):
def __a ( self : Dict ):
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , )
def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )]
def __a ( self : Any , snake_case__ : str , snake_case__ : str ):
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(snake_case__ )
class lowerCAmelCase__ ( datasets.BeamBasedBuilder ):
def __a ( self : Any ):
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ):
'''simple docstring'''
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} )
]
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ):
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Dict:
'''simple docstring'''
return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )]
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )]
class lowerCAmelCase__ ( __magic_name__ ):
@require_beam
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Any = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase__ : Tuple = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def __a ( self : Dict ):
'''simple docstring'''
import apache_beam as beam
UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet
UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock:
UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
UpperCAmelCase__ : Dict = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def __a ( self : str ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) )
UpperCAmelCase__ : Tuple = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , snake_case__ )
self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ )
self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
| 298
| 0
|
"""simple docstring"""
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse("""3.8"""):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
_lowerCAmelCase : int = """"""
if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""):
class lowerCAmelCase__ ( tr.AbstractTransform ):
def __init__( self : Tuple , snake_case__ : str = " " ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = sentence_delimiter
def __a ( self : Optional[Any] , snake_case__ : str ):
'''simple docstring'''
return list(snake_case__ )
def __a ( self : List[str] , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : int = []
for sent_idx, sentence in enumerate(snake_case__ ):
chars.extend(self.process_string(snake_case__ ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(snake_case__ ) - 1:
chars.append(self.sentence_delimiter )
return chars
_lowerCAmelCase : Optional[int] = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
_lowerCAmelCase : List[Any] = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
_lowerCAmelCase : Dict = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
_lowerCAmelCase : Optional[int] = """\
Character error rate (CER) is a common metric of the performance of an automatic speech recognition system.
CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.
Character error rate can be computed as:
CER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct characters,
N is the number of characters in the reference (N=S+D+C).
CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a CER of 0 being a perfect score.
"""
_lowerCAmelCase : Any = """
Computes CER score of transcribed segments against references.
Args:
references: list of references for each speech input.
predictions: list of transcribtions to score.
concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.
Returns:
(float): the character error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> cer = datasets.load_metric(\"cer\")
>>> cer_score = cer.compute(predictions=predictions, references=references)
>>> print(cer_score)
0.34146341463414637
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __a ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
"https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates",
] , )
def __a ( self : Tuple , snake_case__ : str , snake_case__ : int , snake_case__ : str=False ):
'''simple docstring'''
if concatenate_texts:
return jiwer.compute_measures(
snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , )["wer"]
UpperCAmelCase__ : int = 0
UpperCAmelCase__ : str = 0
for prediction, reference in zip(snake_case__ , snake_case__ ):
UpperCAmelCase__ : Union[str, Any] = jiwer.compute_measures(
snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 368
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =XLMTokenizer
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ : Optional[int] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(snake_case__ ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(snake_case__ ) )
def __a ( self : Union[str, Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = "lower newer"
UpperCAmelCase__ : Optional[Any] = "lower newer"
return input_text, output_text
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ : List[Any] = "lower"
UpperCAmelCase__ : Any = ["low", "er</w>"]
UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"]
UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" )
UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 298
| 0
|
import random
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : float , snake_case : bool = False )-> dict:
'''simple docstring'''
UpperCAmelCase__ : dict = {i: [] for i in range(snake_case )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(snake_case )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(snake_case ):
for j in range(i + 1 , snake_case ):
if random.random() < probability:
graph[i].append(snake_case )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(snake_case )
return graph
def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> dict:
'''simple docstring'''
return {
i: [j for j in range(snake_case ) if i != j] for i in range(snake_case )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 369
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ):
'''simple docstring'''
UpperCAmelCase__ : Any = "bilinear"
UpperCAmelCase__ : Any = max_size
UpperCAmelCase__ : Any = short_edge_length
def __call__( self : Dict , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = []
for img in imgs:
UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2]
# later: provide list and randomly choose index for resize
UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ )
if h < w:
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w
else:
UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size
if max(snake_case__ , snake_case__ ) > self.max_size:
UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ )
UpperCAmelCase__ : List[str] = newh * scale
UpperCAmelCase__ : int = neww * scale
UpperCAmelCase__ : List[Any] = int(neww + 0.5 )
UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 )
if img.dtype == np.uinta:
UpperCAmelCase__ : Any = Image.fromarray(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ )
else:
UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
UpperCAmelCase__ : Tuple = nn.functional.interpolate(
snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 )
img_augs.append(snake_case__ )
return img_augs
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
UpperCAmelCase__ : Any = cfg.INPUT.FORMAT
UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY
UpperCAmelCase__ : str = cfg.PAD_VALUE
UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST
UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE
UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std
def __a ( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) )
UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images]
UpperCAmelCase__ : int = [
nn.functional.pad(
snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(snake_case__ , snake_case__ )
]
return torch.stack(snake_case__ ), torch.tensor(snake_case__ )
def __call__( self : str , snake_case__ : int , snake_case__ : int=False ):
'''simple docstring'''
with torch.no_grad():
if not isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ : Dict = [images]
if single_image:
assert len(snake_case__ ) == 1
for i in range(len(snake_case__ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] )
UpperCAmelCase__ : Tuple = self.aug(snake_case__ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images]
# now pad them to do the following operations
UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]:
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int:
'''simple docstring'''
assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!"
UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case )
tensor[:, 1].clamp_(min=0 , max=snake_case )
tensor[:, 2].clamp_(min=0 , max=snake_case )
tensor[:, 3].clamp_(min=0 , max=snake_case )
| 298
| 0
|
"""simple docstring"""
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
_lowerCAmelCase : Optional[int] = get_logger(__name__)
_lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md"""
_lowerCAmelCase : Dict = uuida().hex
_lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f'; torch/{_torch_version}'
if is_flax_available():
ua += f'; jax/{_jax_version}'
ua += f'; flax/{_flax_version}'
if is_onnx_available():
ua += f'; onnxruntime/{_onnxruntime_version}'
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(snake_case , snake_case ):
ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() )
elif isinstance(snake_case , snake_case ):
ua += "; " + user_agent
return ua
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]:
'''simple docstring'''
if token is None:
UpperCAmelCase__ : Optional[Any] = HfFolder.get_token()
if organization is None:
UpperCAmelCase__ : Tuple = whoami(snake_case )["name"]
return f'{username}/{model_id}'
else:
return f'{organization}/{model_id}'
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]:
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"Modelcard rendering is based on Jinja templates."
" Please make sure to have `jinja` installed before using `create_model_card`."
" To install it, please run `pip install Jinja2`." )
if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]:
return
UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None
UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case )
UpperCAmelCase__ : Tuple = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None
) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , )
UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" )
model_card.save(snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple:
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() )
UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case )
if search is None:
return None
UpperCAmelCase__ : Dict = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
_lowerCAmelCase : Dict = os.path.expanduser(
os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface"""))
)
_lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""")
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None:
'''simple docstring'''
if new_cache_dir is None:
UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE
if old_cache_dir is None:
UpperCAmelCase__ : str = old_diffusers_cache
UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser()
UpperCAmelCase__ : Any = Path(snake_case ).expanduser()
for old_blob_path in old_cache_dir.glob("**/blobs/*" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case )
new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
os.replace(snake_case , snake_case )
try:
os.symlink(snake_case , snake_case )
except OSError:
logger.warning(
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
_lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""")
if not os.path.isfile(cache_version_file):
_lowerCAmelCase : Any = 0
else:
with open(cache_version_file) as f:
try:
_lowerCAmelCase : List[str] = int(f.read())
except ValueError:
_lowerCAmelCase : Optional[int] = 0
if cache_version < 1:
_lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"""The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """
"""existing cached models. This is a one-time operation, you can interrupt it or run it """
"""later by calling `diffusers.utils.hub_utils.move_cache()`."""
)
try:
move_cache()
except Exception as e:
_lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__))
logger.error(
F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
"""file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """
"""message and we will do our best to help."""
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, """w""") as f:
f.write("""1""")
except Exception:
logger.warning(
F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
"""the directory exists and can be written to."""
)
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str:
'''simple docstring'''
if variant is not None:
UpperCAmelCase__ : int = weights_name.split("." )
UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:]
UpperCAmelCase__ : Optional[int] = ".".join(snake_case )
return weights_name
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *,
snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : List[str] = str(snake_case )
if os.path.isfile(snake_case ):
return pretrained_model_name_or_path
elif os.path.isdir(snake_case ):
if os.path.isfile(os.path.join(snake_case , snake_case ) ):
# Load from a PyTorch checkpoint
UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(snake_case , snake_case , snake_case ) ):
UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case )
return model_file
else:
raise EnvironmentError(
f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" )
):
try:
UpperCAmelCase__ : List[Any] = hf_hub_download(
snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
warnings.warn(
f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , )
return model_file
except: # noqa: E722
warnings.warn(
f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , )
try:
# 2. Load model file as usual
UpperCAmelCase__ : Dict = hf_hub_download(
snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
"login`." )
except RevisionNotFoundError:
raise EnvironmentError(
f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '
"this model name. Check the model page at "
f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' )
except EntryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' )
except HTTPError as err:
raise EnvironmentError(
f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' )
except ValueError:
raise EnvironmentError(
f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'
f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'
f' directory containing a file named {weights_name} or'
" \nCheckout your internet connection or see how to run the library in"
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." )
except EnvironmentError:
raise EnvironmentError(
f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '
f'containing a file named {weights_name}' )
| 370
|
"""simple docstring"""
import qiskit
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts:
'''simple docstring'''
UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" )
UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = half_adder(1, 1)
print(F"""Half Adder Output Qubit Counts: {counts}""")
| 298
| 0
|
"""simple docstring"""
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ):
SCREAMING_SNAKE_CASE_ =1
@register_to_config
def __init__( self : List[str] , snake_case__ : int = 1_0_0_0 , snake_case__ : Optional[Union[np.ndarray, List[float]]] = None ):
'''simple docstring'''
self.set_timesteps(snake_case__ )
# standard deviation of the initial noise distribution
UpperCAmelCase__ : Union[str, Any] = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
UpperCAmelCase__ : List[str] = 4
# running values
UpperCAmelCase__ : List[str] = []
def __a ( self : Tuple , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ):
'''simple docstring'''
UpperCAmelCase__ : int = num_inference_steps
UpperCAmelCase__ : str = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1]
UpperCAmelCase__ : Any = torch.cat([steps, torch.tensor([0.0] )] )
if self.config.trained_betas is not None:
UpperCAmelCase__ : Any = torch.tensor(self.config.trained_betas , dtype=torch.floataa )
else:
UpperCAmelCase__ : Optional[Any] = torch.sin(steps * math.pi / 2 ) ** 2
UpperCAmelCase__ : Optional[int] = (1.0 - self.betas**2) ** 0.5
UpperCAmelCase__ : Dict = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1]
UpperCAmelCase__ : List[Any] = timesteps.to(snake_case__ )
UpperCAmelCase__ : Optional[Any] = []
def __a ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ):
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" )
UpperCAmelCase__ : List[Any] = (self.timesteps == timestep).nonzero().item()
UpperCAmelCase__ : str = timestep_index + 1
UpperCAmelCase__ : List[str] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(snake_case__ )
if len(self.ets ) == 1:
UpperCAmelCase__ : str = self.ets[-1]
elif len(self.ets ) == 2:
UpperCAmelCase__ : int = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets ) == 3:
UpperCAmelCase__ : Any = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2
else:
UpperCAmelCase__ : Optional[int] = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4])
UpperCAmelCase__ : Optional[Any] = self._get_prev_sample(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=snake_case__ )
def __a ( self : List[str] , snake_case__ : torch.FloatTensor , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ):
'''simple docstring'''
return sample
def __a ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : str ):
'''simple docstring'''
UpperCAmelCase__ : Any = self.alphas[timestep_index]
UpperCAmelCase__ : str = self.betas[timestep_index]
UpperCAmelCase__ : Optional[int] = self.alphas[prev_timestep_index]
UpperCAmelCase__ : Dict = self.betas[prev_timestep_index]
UpperCAmelCase__ : Union[str, Any] = (sample - sigma * ets) / max(snake_case__ , 1e-8 )
UpperCAmelCase__ : List[str] = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__( self : List[Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 371
|
"""simple docstring"""
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
_lowerCAmelCase : Union[str, Any] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''efficientformer'''
def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ):
'''simple docstring'''
super().__init__(**snake_case__ )
UpperCAmelCase__ : int = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : List[str] = hidden_sizes
UpperCAmelCase__ : Union[str, Any] = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : List[Any] = initializer_range
UpperCAmelCase__ : List[Any] = layer_norm_eps
UpperCAmelCase__ : Optional[int] = patch_size
UpperCAmelCase__ : Tuple = num_channels
UpperCAmelCase__ : Optional[int] = depths
UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio
UpperCAmelCase__ : Dict = downsamples
UpperCAmelCase__ : Any = dim
UpperCAmelCase__ : str = key_dim
UpperCAmelCase__ : List[Any] = attention_ratio
UpperCAmelCase__ : Optional[Any] = resolution
UpperCAmelCase__ : Optional[Any] = pool_size
UpperCAmelCase__ : Any = downsample_patch_size
UpperCAmelCase__ : int = downsample_stride
UpperCAmelCase__ : Dict = downsample_pad
UpperCAmelCase__ : List[Any] = drop_path_rate
UpperCAmelCase__ : Optional[Any] = num_metaad_blocks
UpperCAmelCase__ : List[str] = distillation
UpperCAmelCase__ : Dict = use_layer_scale
UpperCAmelCase__ : List[Any] = layer_scale_init_value
UpperCAmelCase__ : Optional[Any] = image_size
UpperCAmelCase__ : Optional[int] = batch_norm_eps
| 298
| 0
|
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowerCAmelCase__ :
def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ):
'''simple docstring'''
UpperCAmelCase__ : int = parent
UpperCAmelCase__ : List[str] = 1_0_0
UpperCAmelCase__ : List[Any] = batch_size
UpperCAmelCase__ : int = image_size
UpperCAmelCase__ : List[Any] = patch_size
UpperCAmelCase__ : List[Any] = num_channels
UpperCAmelCase__ : Any = is_training
UpperCAmelCase__ : str = use_labels
UpperCAmelCase__ : Any = hidden_size
UpperCAmelCase__ : Dict = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Any = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : str = attention_probs_dropout_prob
UpperCAmelCase__ : Optional[int] = type_sequence_label_size
UpperCAmelCase__ : Any = initializer_range
UpperCAmelCase__ : Any = scope
UpperCAmelCase__ : Optional[Any] = out_indices
UpperCAmelCase__ : int = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2
UpperCAmelCase__ : Optional[int] = num_patches + 1
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : str = None
UpperCAmelCase__ : Optional[int] = None
if self.use_labels:
UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase__ : Tuple = self.get_config()
return config, pixel_values, labels, pixel_labels
def __a ( self : int ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[Any] = model(snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase__ : Any = 1
UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.num_labels
UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase__ : List[str] = config_and_inputs
UpperCAmelCase__ : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': BeitModel,
'''image-classification''': BeitForImageClassification,
'''image-segmentation''': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModelTester(self )
UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 )
def __a ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds" )
def __a ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def __a ( self : List[str] ):
'''simple docstring'''
pass
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(snake_case__ )
UpperCAmelCase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : str = [*signature.parameters.keys()]
UpperCAmelCase__ : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]:
continue
UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ )
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss
loss.backward()
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase__ : List[Any] = model_class(snake_case__ )
model.gradient_checkpointing_enable()
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss
loss.backward()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ )
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(config=snake_case__ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def __a ( self : Any ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ )
UpperCAmelCase__ : int = self.default_image_processor
UpperCAmelCase__ : List[Any] = prepare_img()
UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ )
# prepare bool_masked_pos
UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ )
UpperCAmelCase__ : str = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Any = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) )
@slow
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Dict = prepare_img()
UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ )
UpperCAmelCase__ : Any = outputs.logits
# verify the logits
UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : List[str] = 2_8_1
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to(
snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Any = prepare_img()
UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[Any] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : Any = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : List[Any] = model.to(snake_case__ )
UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[str] = model(**snake_case__ )
UpperCAmelCase__ : Dict = outputs.logits
# verify the logits
UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" )
if is_pillow_less_than_a:
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=snake_case__ , )
else:
UpperCAmelCase__ : int = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=snake_case__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits.detach().cpu()
UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] )
UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ )
UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
| 350
|
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any:
'''simple docstring'''
UpperCAmelCase__ : str = args.log_outputs
UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] )
# load metric
UpperCAmelCase__ : List[str] = load_metric("wer" )
UpperCAmelCase__ : Tuple = load_metric("cer" )
# compute metrics
UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] )
UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] )
# print & log results
UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}'
print(snake_case )
with open(f'{dataset_id}_eval_results.txt' , "w" ) as f:
f.write(snake_case )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt'
UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt'
with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t:
# mapping function to write output
def write_to_file(snake_case : List[Any] , snake_case : List[str] ):
p.write(f'{i}' + "\n" )
p.write(batch["prediction"] + "\n" )
t.write(f'{i}' + "\n" )
t.write(batch["target"] + "\n" )
result.map(snake_case , with_indices=snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str:
'''simple docstring'''
UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) )
return text
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCAmelCase__ : str = feature_extractor.sampling_rate
# resample audio
UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) )
# load eval pipeline
if args.device is None:
UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1
UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(snake_case : Any ):
UpperCAmelCase__ : List[str] = asr(
batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
UpperCAmelCase__ : List[Any] = prediction["text"]
UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] )
return batch
# run inference on all examples
UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case , snake_case )
if __name__ == "__main__":
_lowerCAmelCase : Any = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCAmelCase : Tuple = parser.parse_args()
main(args)
| 298
| 0
|
"""simple docstring"""
import math
class lowerCAmelCase__ :
def __init__( self : List[Any] , snake_case__ : Tuple=0 ): # a graph with Node 0,1,...,N-1
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = n
UpperCAmelCase__ : Optional[int] = [
[math.inf for j in range(0 , snake_case__ )] for i in range(0 , snake_case__ )
] # adjacency matrix for weight
UpperCAmelCase__ : Any = [
[math.inf for j in range(0 , snake_case__ )] for i in range(0 , snake_case__ )
] # dp[i][j] stores minimum distance from i to j
def __a ( self : Optional[Any] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = w
def __a ( self : Tuple ):
'''simple docstring'''
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
UpperCAmelCase__ : int = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __a ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] ):
'''simple docstring'''
return self.dp[u][v]
if __name__ == "__main__":
_lowerCAmelCase : Dict = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 351
|
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowerCAmelCase__ :
def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ):
'''simple docstring'''
UpperCAmelCase__ : int = parent
UpperCAmelCase__ : List[str] = 1_0_0
UpperCAmelCase__ : List[Any] = batch_size
UpperCAmelCase__ : int = image_size
UpperCAmelCase__ : List[Any] = patch_size
UpperCAmelCase__ : List[Any] = num_channels
UpperCAmelCase__ : Any = is_training
UpperCAmelCase__ : str = use_labels
UpperCAmelCase__ : Any = hidden_size
UpperCAmelCase__ : Dict = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : Tuple = intermediate_size
UpperCAmelCase__ : Any = hidden_act
UpperCAmelCase__ : Optional[int] = hidden_dropout_prob
UpperCAmelCase__ : str = attention_probs_dropout_prob
UpperCAmelCase__ : Optional[int] = type_sequence_label_size
UpperCAmelCase__ : Any = initializer_range
UpperCAmelCase__ : Any = scope
UpperCAmelCase__ : Optional[Any] = out_indices
UpperCAmelCase__ : int = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2
UpperCAmelCase__ : Optional[int] = num_patches + 1
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ : str = None
UpperCAmelCase__ : Optional[int] = None
if self.use_labels:
UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase__ : Tuple = self.get_config()
return config, pixel_values, labels, pixel_labels
def __a ( self : int ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[Any] = model(snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = self.type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase__ : Any = 1
UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.num_labels
UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs
UpperCAmelCase__ : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': BeitModel,
'''image-classification''': BeitForImageClassification,
'''image-segmentation''': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitModelTester(self )
UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 )
def __a ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds" )
def __a ( self : List[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def __a ( self : List[str] ):
'''simple docstring'''
pass
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(snake_case__ )
UpperCAmelCase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : str = [*signature.parameters.keys()]
UpperCAmelCase__ : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
if not self.model_tester.is_training:
return
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Optional[int] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]:
continue
UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ )
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss
loss.backward()
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCAmelCase__ : Optional[int] = False
UpperCAmelCase__ : List[str] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase__ : List[Any] = model_class(snake_case__ )
model.gradient_checkpointing_enable()
model.to(snake_case__ )
model.train()
UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss
loss.backward()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ )
for model_class in self.all_model_classes:
UpperCAmelCase__ : int = model_class(config=snake_case__ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def __a ( self : Any ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
@cached_property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ )
UpperCAmelCase__ : int = self.default_image_processor
UpperCAmelCase__ : List[Any] = prepare_img()
UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ )
# prepare bool_masked_pos
UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ )
UpperCAmelCase__ : str = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Any = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) )
@slow
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Dict = prepare_img()
UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ )
UpperCAmelCase__ : Any = outputs.logits
# verify the logits
UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : List[str] = 2_8_1
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to(
snake_case__ )
UpperCAmelCase__ : Tuple = self.default_image_processor
UpperCAmelCase__ : Any = prepare_img()
UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[Any] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits
# verify the logits
UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ )
self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) )
UpperCAmelCase__ : Any = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : List[Any] = model.to(snake_case__ )
UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : List[str] = model(**snake_case__ )
UpperCAmelCase__ : Dict = outputs.logits
# verify the logits
UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) )
self.assertEqual(logits.shape , snake_case__ )
UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" )
if is_pillow_less_than_a:
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=snake_case__ , )
else:
UpperCAmelCase__ : int = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=snake_case__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ )
UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] )
UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
UpperCAmelCase__ : Optional[int] = model(**snake_case__ )
UpperCAmelCase__ : int = outputs.logits.detach().cpu()
UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] )
UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ )
UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) )
self.assertEqual(segmentation[0].shape , snake_case__ )
| 298
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_lowerCAmelCase : Any = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : List[str] )-> str:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = b.T
UpperCAmelCase__ : List[Any] = np.sum(np.square(snake_case ) , axis=1 )
UpperCAmelCase__ : Dict = np.sum(np.square(snake_case ) , axis=0 )
UpperCAmelCase__ : Optional[int] = np.matmul(snake_case , snake_case )
UpperCAmelCase__ : Dict = aa[:, None] - 2 * ab + ba[None, :]
return d
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : str = x.reshape(-1 , 3 )
UpperCAmelCase__ : str = squared_euclidean_distance(snake_case , snake_case )
return np.argmin(snake_case , axis=1 )
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =['''pixel_values''']
def __init__( self : Union[str, Any] , snake_case__ : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : bool = True , snake_case__ : bool = True , **snake_case__ : List[Any] , ):
'''simple docstring'''
super().__init__(**snake_case__ )
UpperCAmelCase__ : int = size if size is not None else {"height": 2_5_6, "width": 2_5_6}
UpperCAmelCase__ : Union[str, Any] = get_size_dict(snake_case__ )
UpperCAmelCase__ : Tuple = np.array(snake_case__ ) if clusters is not None else None
UpperCAmelCase__ : Union[str, Any] = do_resize
UpperCAmelCase__ : Optional[Any] = size
UpperCAmelCase__ : Dict = resample
UpperCAmelCase__ : Any = do_normalize
UpperCAmelCase__ : List[Any] = do_color_quantize
def __a ( self : Optional[int] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Tuple , ):
'''simple docstring'''
UpperCAmelCase__ : str = get_size_dict(snake_case__ )
if "height" not in size or "width" not in size:
raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' )
return resize(
snake_case__ , size=(size["height"], size["width"]) , resample=snake_case__ , data_format=snake_case__ , **snake_case__ )
def __a ( self : Tuple , snake_case__ : np.ndarray , snake_case__ : Optional[Union[str, ChannelDimension]] = None , ):
'''simple docstring'''
UpperCAmelCase__ : Dict = rescale(image=snake_case__ , scale=1 / 127.5 , data_format=snake_case__ )
UpperCAmelCase__ : List[str] = image - 1
return image
def __a ( self : List[Any] , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **snake_case__ : List[str] , ):
'''simple docstring'''
UpperCAmelCase__ : Any = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase__ : str = size if size is not None else self.size
UpperCAmelCase__ : int = get_size_dict(snake_case__ )
UpperCAmelCase__ : int = resample if resample is not None else self.resample
UpperCAmelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase__ : Optional[int] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
UpperCAmelCase__ : Dict = clusters if clusters is not None else self.clusters
UpperCAmelCase__ : List[str] = np.array(snake_case__ )
UpperCAmelCase__ : List[Any] = make_list_of_images(snake_case__ )
if not valid_images(snake_case__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_color_quantize and clusters is None:
raise ValueError("Clusters must be specified if do_color_quantize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase__ : str = [to_numpy_array(snake_case__ ) for image in images]
if do_resize:
UpperCAmelCase__ : Any = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images]
if do_normalize:
UpperCAmelCase__ : List[Any] = [self.normalize(image=snake_case__ ) for image in images]
if do_color_quantize:
UpperCAmelCase__ : Dict = [to_channel_dimension_format(snake_case__ , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
UpperCAmelCase__ : Optional[Any] = np.array(snake_case__ )
UpperCAmelCase__ : List[str] = color_quantize(snake_case__ , snake_case__ ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
UpperCAmelCase__ : Dict = images.shape[0]
UpperCAmelCase__ : str = images.reshape(snake_case__ , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
UpperCAmelCase__ : Optional[Any] = list(snake_case__ )
else:
UpperCAmelCase__ : Tuple = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images]
UpperCAmelCase__ : List[Any] = {"input_ids": images}
return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
| 352
|
"""simple docstring"""
import functools
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int:
'''simple docstring'''
UpperCAmelCase__ : List[str] = len(snake_case )
UpperCAmelCase__ : str = len(snake_case )
@functools.cache
def min_distance(snake_case : int , snake_case : int ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
"""simple docstring"""
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
_lowerCAmelCase : Optional[int] = get_logger(__name__)
_lowerCAmelCase : Optional[Any] = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class lowerCAmelCase__ :
@add_start_docstrings(snake_case__ )
def __call__( self : Any , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ):
'''simple docstring'''
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
class lowerCAmelCase__ :
@add_start_docstrings(snake_case__ )
def __call__( self : str , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ):
'''simple docstring'''
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
class lowerCAmelCase__ ( __magic_name__ ):
@add_start_docstrings(snake_case__ )
def __call__( self : List[Any] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int , **snake_case__ : List[Any] ):
'''simple docstring'''
for processor in self:
UpperCAmelCase__ : Optional[Any] = inspect.signature(processor.__call__ ).parameters
if len(snake_case__ ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
f'Make sure that all the required parameters: {list(function_args.keys() )} for '
f'{processor.__class__} are passed to the logits processor.' )
UpperCAmelCase__ : Dict = processor(snake_case__ , snake_case__ , snake_case__ , **snake_case__ )
else:
UpperCAmelCase__ : int = processor(snake_case__ , snake_case__ , snake_case__ )
return scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : List[Any] , snake_case__ : float ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or not (temperature > 0):
raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' )
UpperCAmelCase__ : str = temperature
def __call__( self : Dict , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = scores / self.temperature
return scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : Union[str, Any] , snake_case__ : float , snake_case__ : float = -float("Inf" ) , snake_case__ : int = 1 ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or (top_p < 0 or top_p > 1.0):
raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' )
if not isinstance(snake_case__ , snake_case__ ) or (min_tokens_to_keep < 1):
raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' )
UpperCAmelCase__ : Tuple = top_p
UpperCAmelCase__ : int = filter_value
UpperCAmelCase__ : Any = min_tokens_to_keep
def __call__( self : List[Any] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Any = lax.top_k(snake_case__ , scores.shape[-1] )
UpperCAmelCase__ : str = jnp.full_like(snake_case__ , self.filter_value )
UpperCAmelCase__ : List[str] = jax.nn.softmax(snake_case__ , axis=-1 ).cumsum(axis=-1 )
UpperCAmelCase__ : int = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
UpperCAmelCase__ : str = jnp.roll(snake_case__ , 1 )
score_mask |= score_mask.at[:, 0].set(snake_case__ )
# min tokens to keep
UpperCAmelCase__ : Dict = score_mask.at[:, : self.min_tokens_to_keep].set(snake_case__ )
UpperCAmelCase__ : int = jnp.where(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase__ : int = jax.lax.sort_key_val(snake_case__ , snake_case__ )[-1]
return next_scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : Optional[Any] , snake_case__ : int , snake_case__ : float = -float("Inf" ) , snake_case__ : int = 1 ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or top_k <= 0:
raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' )
UpperCAmelCase__ : List[str] = max(snake_case__ , snake_case__ )
UpperCAmelCase__ : str = filter_value
def __call__( self : List[str] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Any = scores.shape
UpperCAmelCase__ : Union[str, Any] = jnp.full(batch_size * vocab_size , self.filter_value )
UpperCAmelCase__ : Optional[int] = min(self.top_k , scores.shape[-1] ) # Safety check
UpperCAmelCase__ : Union[str, Any] = lax.top_k(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[Any] = jnp.broadcast_to((jnp.arange(snake_case__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
UpperCAmelCase__ : str = topk_scores.flatten()
UpperCAmelCase__ : Optional[int] = topk_indices.flatten() + shift
UpperCAmelCase__ : Dict = next_scores_flat.at[topk_indices_flat].set(snake_case__ )
UpperCAmelCase__ : Tuple = next_scores_flat.reshape(snake_case__ , snake_case__ )
return next_scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : Union[str, Any] , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = bos_token_id
def __call__( self : Optional[int] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : str = jnp.full(scores.shape , -float("inf" ) )
UpperCAmelCase__ : List[str] = 1 - jnp.bool_(cur_len - 1 )
UpperCAmelCase__ : Optional[int] = jnp.where(snake_case__ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case__ )
return scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : int , snake_case__ : int , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = max_length
UpperCAmelCase__ : int = eos_token_id
def __call__( self : Union[str, Any] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = jnp.full(scores.shape , -float("inf" ) )
UpperCAmelCase__ : Optional[int] = 1 - jnp.bool_(cur_len - self.max_length + 1 )
UpperCAmelCase__ : Dict = jnp.where(snake_case__ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case__ )
return scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : Optional[int] , snake_case__ : int , snake_case__ : int ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or min_length < 0:
raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' )
if not isinstance(snake_case__ , snake_case__ ) or eos_token_id < 0:
raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' )
UpperCAmelCase__ : Dict = min_length
UpperCAmelCase__ : Optional[Any] = eos_token_id
def __call__( self : Dict , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Any = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
UpperCAmelCase__ : List[str] = jnp.where(snake_case__ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , snake_case__ )
return scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : Tuple , snake_case__ : List[str] , snake_case__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = list(snake_case__ )
UpperCAmelCase__ : List[Any] = begin_index
def __call__( self : Any , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : str = 1 - jnp.bool_(cur_len - self.begin_index )
UpperCAmelCase__ : Tuple = jnp.where(snake_case__ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , snake_case__ )
return scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : Optional[Any] , snake_case__ : list ):
'''simple docstring'''
UpperCAmelCase__ : Any = list(snake_case__ )
def __call__( self : Union[str, Any] , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = scores.at[..., self.suppress_tokens].set(-float("inf" ) )
return scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : List[Any] , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = dict(snake_case__ )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
UpperCAmelCase__ : List[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
UpperCAmelCase__ : str = force_token_array.at[index].set(snake_case__ )
UpperCAmelCase__ : str = jnp.intaa(snake_case__ )
def __call__( self : Dict , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : int ):
'''simple docstring'''
def _force_token(snake_case__ : Union[str, Any] ):
UpperCAmelCase__ : List[Any] = scores.shape[0]
UpperCAmelCase__ : Union[str, Any] = self.force_token_array[generation_idx]
UpperCAmelCase__ : Any = jnp.ones_like(snake_case__ , dtype=scores.dtype ) * -float("inf" )
UpperCAmelCase__ : str = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
UpperCAmelCase__ : Dict = lax.dynamic_update_slice(snake_case__ , snake_case__ , (0, current_token) )
return new_scores
UpperCAmelCase__ : List[Any] = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case__ ) , lambda: scores , ) , )
return scores
class lowerCAmelCase__ ( __magic_name__ ):
def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = generate_config.eos_token_id
UpperCAmelCase__ : str = generate_config.no_timestamps_token_id
UpperCAmelCase__ : int = generate_config.no_timestamps_token_id + 1
UpperCAmelCase__ : Union[str, Any] = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(snake_case__ , "max_initial_timestamp_index" ):
UpperCAmelCase__ : Dict = generate_config.max_initial_timestamp_index
else:
UpperCAmelCase__ : int = model_config.vocab_size
if self.max_initial_timestamp_index is None:
UpperCAmelCase__ : Union[str, Any] = model_config.vocab_size
def __call__( self : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) )
def handle_pairs(snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ):
UpperCAmelCase__ : Optional[int] = jnp.where((cur_len - self.begin_index) >= 1 , snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[Any] = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case__ , )
UpperCAmelCase__ : List[Any] = jnp.where((cur_len - self.begin_index) < 2 , snake_case__ , snake_case__ )
UpperCAmelCase__ : int = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case__ , snake_case__ , )
return jnp.where(
snake_case__ , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , snake_case__ , )
UpperCAmelCase__ : Tuple = jax.vmap(snake_case__ )(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[int] = jnp.where(cur_len == self.begin_index , snake_case__ , snake_case__ )
UpperCAmelCase__ : List[str] = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case__ , )
UpperCAmelCase__ : str = self.timestamp_begin + self.max_initial_timestamp_index
UpperCAmelCase__ : Optional[int] = jnp.where(
snake_case__ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , snake_case__ , )
# if sum of probability over timestamps is above any other token, sample timestamp
UpperCAmelCase__ : int = jax.nn.log_softmax(snake_case__ , axis=-1 )
def handle_cumulative_probs(snake_case__ : Dict , snake_case__ : List[Any] ):
UpperCAmelCase__ : Optional[int] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
UpperCAmelCase__ : List[Any] = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , snake_case__ , )
UpperCAmelCase__ : List[Any] = jax.vmap(snake_case__ )(snake_case__ , snake_case__ )
return scores
| 353
|
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class lowerCAmelCase__ ( __magic_name__ ):
def __a ( self : List[Any] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" )
UpperCAmelCase__ : Tuple = input_file.read()
UpperCAmelCase__ : Tuple = regexp.search(snake_case__ )
return match
def __a ( self : List[str] , snake_case__ : str ):
'''simple docstring'''
with open(snake_case__ , encoding="utf-8" ) as input_file:
UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL )
UpperCAmelCase__ : Dict = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase__ : int = regexp.finditer(snake_case__ )
UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = Path("./datasets" )
UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(snake_case__ ) ):
raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = Path("./datasets" )
UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_print_statements(str(snake_case__ ) ):
raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
| 298
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
_lowerCAmelCase : str = logging.get_logger(__name__)
_lowerCAmelCase : Dict[Optional[str], Type[Formatter]] = {}
_lowerCAmelCase : Dict[Optional[str], str] = {}
_lowerCAmelCase : Dict[Optional[str], Exception] = {}
def SCREAMING_SNAKE_CASE__ ( snake_case : type , snake_case : Optional[str] , snake_case : Optional[List[str]] = None , )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' )
UpperCAmelCase__ : Optional[Any] = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' )
UpperCAmelCase__ : Optional[Any] = format_type
def SCREAMING_SNAKE_CASE__ ( snake_case : Exception , snake_case : Optional[str] , snake_case : Optional[List[str]] = None )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : Tuple = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
UpperCAmelCase__ : List[Any] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=["""python"""])
_register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""])
_register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""])
_register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""])
_register_formatter(CustomFormatter, """custom""")
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""])
else:
_lowerCAmelCase : Dict = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""")
_register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""])
else:
_lowerCAmelCase : str = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""")
_register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, """jax""", aliases=[])
else:
_lowerCAmelCase : int = ValueError("""JAX needs to be installed to be able to return JAX arrays.""")
_register_unavailable_formatter(_jax_error, """jax""", aliases=[])
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] )-> Optional[str]:
'''simple docstring'''
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , **snake_case : List[str] )-> Formatter:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = get_format_type_from_alias(snake_case )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**snake_case )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
| 354
|
"""simple docstring"""
import numpy as np
import datasets
_lowerCAmelCase : Optional[int] = """
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
"""
_lowerCAmelCase : Tuple = """\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
"""
_lowerCAmelCase : Optional[int] = """
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{'mahalanobis': array([0.5])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
def __a ( self : Any ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ):
'''simple docstring'''
# convert to numpy arrays
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ )
UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T )
try:
UpperCAmelCase__ : str = np.linalg.inv(snake_case__ )
except np.linalg.LinAlgError:
UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ )
UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ )
UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 298
| 0
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =StableDiffusionInstructPixaPixPipeline
SCREAMING_SNAKE_CASE_ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''}
SCREAMING_SNAKE_CASE_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ =IMAGE_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE_ =IMAGE_TO_IMAGE_IMAGE_PARAMS
def __a ( self : Any ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase__ : List[str] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , )
UpperCAmelCase__ : Dict = PNDMScheduler(skip_prk_steps=snake_case__ )
torch.manual_seed(0 )
UpperCAmelCase__ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
UpperCAmelCase__ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
UpperCAmelCase__ : Dict = CLIPTextModel(snake_case__ )
UpperCAmelCase__ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
UpperCAmelCase__ : List[Any] = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def __a ( self : Any , snake_case__ : List[Any] , snake_case__ : Optional[int]=0 ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
UpperCAmelCase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase__ : Any = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" )
if str(snake_case__ ).startswith("mps" ):
UpperCAmelCase__ : int = torch.manual_seed(snake_case__ )
else:
UpperCAmelCase__ : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
UpperCAmelCase__ : List[str] = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"image_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : int = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase__ : List[Any] = self.get_dummy_components()
UpperCAmelCase__ : Any = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
UpperCAmelCase__ : Optional[int] = sd_pipe.to(snake_case__ )
sd_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase__ : Optional[Any] = self.get_dummy_inputs(snake_case__ )
UpperCAmelCase__ : str = sd_pipe(**snake_case__ ).images
UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
UpperCAmelCase__ : Any = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase__ : List[Any] = self.get_dummy_components()
UpperCAmelCase__ : Any = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
UpperCAmelCase__ : str = sd_pipe.to(snake_case__ )
sd_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase__ : int = self.get_dummy_inputs(snake_case__ )
UpperCAmelCase__ : List[Any] = "french fries"
UpperCAmelCase__ : Any = sd_pipe(**snake_case__ , negative_prompt=snake_case__ )
UpperCAmelCase__ : Union[str, Any] = output.images
UpperCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
UpperCAmelCase__ : Any = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase__ : List[str] = self.get_dummy_components()
UpperCAmelCase__ : Tuple = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
UpperCAmelCase__ : List[str] = sd_pipe.to(snake_case__ )
sd_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase__ : List[Any] = self.get_dummy_inputs(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = [inputs["prompt"]] * 2
UpperCAmelCase__ : Optional[Any] = np.array(inputs["image"] ).astype(np.floataa ) / 255.0
UpperCAmelCase__ : Union[str, Any] = torch.from_numpy(snake_case__ ).unsqueeze(0 ).to(snake_case__ )
UpperCAmelCase__ : Optional[Any] = image / 2 + 0.5
UpperCAmelCase__ : int = image.permute(0 , 3 , 1 , 2 )
UpperCAmelCase__ : Tuple = image.repeat(2 , 1 , 1 , 1 )
UpperCAmelCase__ : Any = sd_pipe(**snake_case__ ).images
UpperCAmelCase__ : Optional[int] = image[-1, -3:, -3:, -1]
assert image.shape == (2, 3_2, 3_2, 3)
UpperCAmelCase__ : str = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase__ : List[str] = self.get_dummy_components()
UpperCAmelCase__ : Optional[Any] = EulerAncestralDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" )
UpperCAmelCase__ : Any = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
UpperCAmelCase__ : Union[str, Any] = sd_pipe.to(snake_case__ )
sd_pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase__ : Optional[int] = self.get_dummy_inputs(snake_case__ )
UpperCAmelCase__ : Tuple = sd_pipe(**snake_case__ ).images
UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1]
UpperCAmelCase__ : int = [round(snake_case__ , 4 ) for x in image_slice.flatten().tolist()]
print(",".join([str(snake_case__ ) for x in slice] ) )
assert image.shape == (1, 3_2, 3_2, 3)
UpperCAmelCase__ : int = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __a ( self : Dict ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.get_dummy_components()
UpperCAmelCase__ : Tuple = StableDiffusionInstructPixaPixPipeline(**snake_case__ )
UpperCAmelCase__ : List[str] = VaeImageProcessor(do_resize=snake_case__ , do_normalize=snake_case__ )
UpperCAmelCase__ : Dict = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase__ : List[str] = pipe(**self.get_dummy_inputs_by_type(snake_case__ , input_image_type="pt" ) )[0]
UpperCAmelCase__ : Union[str, Any] = components["vae"]
UpperCAmelCase__ : int = self.get_dummy_inputs_by_type(snake_case__ , input_image_type="pt" )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
UpperCAmelCase__ : Dict = vae.encode(inputs[image_param] ).latent_dist.mode()
UpperCAmelCase__ : str = pipe(**snake_case__ )[0]
UpperCAmelCase__ : Optional[Any] = np.abs(out - out_latents_inputs ).max()
self.assertLess(snake_case__ , 1e-4 , "passing latents as image input generate different result from passing image" )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : Optional[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self : Optional[Any] , snake_case__ : int=0 ):
'''simple docstring'''
UpperCAmelCase__ : str = torch.manual_seed(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" )
UpperCAmelCase__ : str = {
"prompt": "turn him into a cyborg",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"image_guidance_scale": 1.0,
"output_type": "numpy",
}
return inputs
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
UpperCAmelCase__ : Optional[Any] = self.get_inputs()
UpperCAmelCase__ : Tuple = pipe(**snake_case__ ).images
UpperCAmelCase__ : List[str] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ : int = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=snake_case__ )
UpperCAmelCase__ : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
UpperCAmelCase__ : Any = self.get_inputs()
UpperCAmelCase__ : List[str] = pipe(**snake_case__ ).images
UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ : Optional[int] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=snake_case__ )
UpperCAmelCase__ : int = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
UpperCAmelCase__ : Tuple = self.get_inputs()
UpperCAmelCase__ : List[Any] = pipe(**snake_case__ ).images
UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
UpperCAmelCase__ : Any = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Any = 0
def callback_fn(snake_case__ : int , snake_case__ : int , snake_case__ : torch.FloatTensor ) -> None:
UpperCAmelCase__ : Optional[int] = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
UpperCAmelCase__ : Tuple = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 6_4, 6_4)
UpperCAmelCase__ : Any = latents[0, -3:, -3:, -1]
UpperCAmelCase__ : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
UpperCAmelCase__ : Tuple = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 6_4, 6_4)
UpperCAmelCase__ : Optional[int] = latents[0, -3:, -3:, -1]
UpperCAmelCase__ : Optional[Any] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
UpperCAmelCase__ : Union[str, Any] = False
UpperCAmelCase__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=snake_case__ , torch_dtype=torch.floataa )
UpperCAmelCase__ : int = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
UpperCAmelCase__ : Tuple = self.get_inputs()
pipe(**snake_case__ , callback=snake_case__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def __a ( self : Dict ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix" , safety_checker=snake_case__ , torch_dtype=torch.floataa )
UpperCAmelCase__ : Tuple = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
UpperCAmelCase__ : Optional[Any] = self.get_inputs()
UpperCAmelCase__ : str = pipe(**snake_case__ )
UpperCAmelCase__ : str = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 1_0**9
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
UpperCAmelCase__ : Dict = inputs["image"].resize((5_0_4, 5_0_4) )
UpperCAmelCase__ : Dict = "timbrooks/instruct-pix2pix"
UpperCAmelCase__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
snake_case__ , safety_checker=snake_case__ , )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
pipe.enable_attention_slicing()
UpperCAmelCase__ : Optional[int] = pipe(**snake_case__ )
UpperCAmelCase__ : Union[str, Any] = output.images[0]
UpperCAmelCase__ : Union[str, Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 5_0_4, 3)
UpperCAmelCase__ : Optional[int] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
| 355
|
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =IFPipeline
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''}
def __a ( self : Dict ):
'''simple docstring'''
return self._get_dummy_components()
def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ):
'''simple docstring'''
if str(snake_case__ ).startswith("mps" ):
UpperCAmelCase__ : str = torch.manual_seed(snake_case__ )
else:
UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
UpperCAmelCase__ : Tuple = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __a ( self : Tuple ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def __a ( self : Tuple ):
'''simple docstring'''
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __a ( self : Dict ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __a ( self : int ):
'''simple docstring'''
self._test_save_load_local()
def __a ( self : Any ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __a ( self : Optional[Any] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def __a ( self : str ):
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self : Tuple ):
'''simple docstring'''
# if
UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa )
UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("cuda" )
UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCAmelCase__ : Tuple = None
UpperCAmelCase__ : List[Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components )
UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : List[Any] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : str = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Tuple = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : str = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Optional[Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ):
'''simple docstring'''
# pipeline 1
_start_torch_memory_measurement()
UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : int = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , )
UpperCAmelCase__ : int = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCAmelCase__ : int = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
# pipeline 2
_start_torch_memory_measurement()
UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ )
UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pipe_a(
prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , )
UpperCAmelCase__ : Tuple = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCAmelCase__ : List[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" )
assert_mean_pixel_difference(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( )-> Any:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 298
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
_lowerCAmelCase : int = {
"""kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""",
"""kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""",
"""kssteven/ibert-roberta-large-mnli""": (
"""https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"""
),
}
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ ='''ibert'''
def __init__( self : Any , snake_case__ : Dict=3_0_5_2_2 , snake_case__ : Any=7_6_8 , snake_case__ : Any=1_2 , snake_case__ : Tuple=1_2 , snake_case__ : Tuple=3_0_7_2 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : int=2 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=1e-12 , snake_case__ : List[str]=1 , snake_case__ : str=0 , snake_case__ : Dict=2 , snake_case__ : Dict="absolute" , snake_case__ : List[Any]=False , snake_case__ : Dict="none" , **snake_case__ : List[str] , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase__ : Union[str, Any] = vocab_size
UpperCAmelCase__ : Tuple = hidden_size
UpperCAmelCase__ : Union[str, Any] = num_hidden_layers
UpperCAmelCase__ : Tuple = num_attention_heads
UpperCAmelCase__ : Any = hidden_act
UpperCAmelCase__ : List[Any] = intermediate_size
UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob
UpperCAmelCase__ : Dict = attention_probs_dropout_prob
UpperCAmelCase__ : List[str] = max_position_embeddings
UpperCAmelCase__ : Optional[int] = type_vocab_size
UpperCAmelCase__ : Union[str, Any] = initializer_range
UpperCAmelCase__ : Tuple = layer_norm_eps
UpperCAmelCase__ : List[Any] = position_embedding_type
UpperCAmelCase__ : Any = quant_mode
UpperCAmelCase__ : int = force_dequant
class lowerCAmelCase__ ( __magic_name__ ):
@property
def __a ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase__ : str = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase__ : List[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 356
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
_lowerCAmelCase : Optional[int] = {
"""vocab_file""": """vocab.txt""",
"""merges_file""": """bpe.codes""",
}
_lowerCAmelCase : List[Any] = {
"""vocab_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""",
},
"""merges_file""": {
"""vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""",
"""vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""",
},
}
_lowerCAmelCase : int = {
"""vinai/phobert-base""": 256,
"""vinai/phobert-large""": 256,
}
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = set()
UpperCAmelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase__ : Dict = char
UpperCAmelCase__ : Tuple = set(snake_case )
return pairs
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ):
'''simple docstring'''
super().__init__(
bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase__ : Dict = vocab_file
UpperCAmelCase__ : Tuple = merges_file
UpperCAmelCase__ : List[Any] = {}
UpperCAmelCase__ : Dict = 0
UpperCAmelCase__ : int = 1
UpperCAmelCase__ : Dict = 2
UpperCAmelCase__ : Dict = 3
self.add_from_file(snake_case__ )
UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()}
with open(snake_case__ , encoding="utf-8" ) as merges_handle:
UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1]
UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges]
UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Dict = {}
def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
UpperCAmelCase__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ )
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1]
def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = [self.sep_token_id]
UpperCAmelCase__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __a ( self : List[str] ):
'''simple docstring'''
return len(self.encoder )
def __a ( self : Any ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __a ( self : Dict , snake_case__ : Tuple ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
UpperCAmelCase__ : Any = get_pairs(snake_case__ )
if not pairs:
return token
while True:
UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram
UpperCAmelCase__ : Optional[Any] = []
UpperCAmelCase__ : Tuple = 0
while i < len(snake_case__ ):
try:
UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase__ : Dict = j
if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase__ : Dict = tuple(snake_case__ )
UpperCAmelCase__ : List[Any] = new_word
if len(snake_case__ ) == 1:
break
else:
UpperCAmelCase__ : Dict = get_pairs(snake_case__ )
UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ )
UpperCAmelCase__ : Optional[int] = word[:-4]
UpperCAmelCase__ : Union[str, Any] = word
return word
def __a ( self : List[Any] , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = []
UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ )
for token in words:
split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) )
return split_tokens
def __a ( self : Dict , snake_case__ : List[str] ):
'''simple docstring'''
return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) )
def __a ( self : List[Any] , snake_case__ : Any ):
'''simple docstring'''
return self.decoder.get(snake_case__ , self.unk_token )
def __a ( self : str , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip()
return out_string
def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
UpperCAmelCase__ : Tuple = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : str = os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ):
copyfile(self.merges_file , snake_case__ )
return out_vocab_file, out_merge_file
def __a ( self : List[Any] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
try:
with open(snake_case__ , "r" , encoding="utf-8" ) as fd:
self.add_from_file(snake_case__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' )
return
UpperCAmelCase__ : Dict = f.readlines()
for lineTmp in lines:
UpperCAmelCase__ : Optional[int] = lineTmp.strip()
UpperCAmelCase__ : Tuple = line.rfind(" " )
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" )
UpperCAmelCase__ : Any = line[:idx]
UpperCAmelCase__ : str = len(self.encoder )
| 298
| 0
|
"""simple docstring"""
_lowerCAmelCase : Optional[Any] = 8.31_44_62 # Unit - J mol-1 K-1
def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : float )-> float:
'''simple docstring'''
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError("Invalid inputs. Enter positive value." )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : float )-> float:
'''simple docstring'''
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError("Invalid inputs. Enter positive value." )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 357
|
"""simple docstring"""
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowerCAmelCase__ :
SCREAMING_SNAKE_CASE_ =42
# setable values
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =42
SCREAMING_SNAKE_CASE_ =None
@classmethod
def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ):
'''simple docstring'''
return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ )
@dataclass
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =42
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ):
SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers]
SCREAMING_SNAKE_CASE_ =42
@property
def __a ( self : Union[str, Any] ):
'''simple docstring'''
return True
@register_to_config
def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = dtype
def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ):
'''simple docstring'''
if common is None:
UpperCAmelCase__ : Any = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype )
UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , )
def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ):
'''simple docstring'''
return sample
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=snake_case__ , timesteps=snake_case__ , )
def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ):
'''simple docstring'''
UpperCAmelCase__ : int = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
UpperCAmelCase__ : Union[str, Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) )
elif variance_type == "fixed_large":
UpperCAmelCase__ : List[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
UpperCAmelCase__ : List[str] = variance
UpperCAmelCase__ : Optional[Any] = state.common.betas[t]
UpperCAmelCase__ : Any = (predicted_variance + 1) / 2
UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log
return variance
def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = timestep
if key is None:
UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 )
else:
UpperCAmelCase__ : int = None
# 1. compute alphas, betas
UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t]
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t
UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase__ : List[Any] = model_output
elif self.config.prediction_type == "v_prediction":
UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '
" for the FlaxDDPMScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 )
UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise
UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ )
def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ):
'''simple docstring'''
return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ )
def __len__( self : Union[str, Any] ):
'''simple docstring'''
return self.config.num_train_timesteps
| 298
| 0
|
"""simple docstring"""
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
_lowerCAmelCase : Optional[int] = imread(r"""digital_image_processing/image_data/lena_small.jpg""")
_lowerCAmelCase : Tuple = cvtColor(img, COLOR_BGR2GRAY)
def SCREAMING_SNAKE_CASE__ ( )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : int = cn.convert_to_negative(snake_case )
# assert negative_img array for at least one True
assert negative_img.any()
def SCREAMING_SNAKE_CASE__ ( )-> Any:
'''simple docstring'''
with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img:
# Work around assertion for response
assert str(cc.change_contrast(snake_case , 110 ) ).startswith(
"<PIL.Image.Image image mode=RGB size=100x100 at" )
def SCREAMING_SNAKE_CASE__ ( )-> List[str]:
'''simple docstring'''
UpperCAmelCase__ : Tuple = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
UpperCAmelCase__ : str = imread("digital_image_processing/image_data/lena_small.jpg" , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
UpperCAmelCase__ : Tuple = canny.canny(snake_case )
# assert canny array for at least one True
assert canny_array.any()
def SCREAMING_SNAKE_CASE__ ( )-> Tuple:
'''simple docstring'''
assert gg.gaussian_filter(snake_case , 5 , sigma=0.9 ).all()
def SCREAMING_SNAKE_CASE__ ( )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] )
UpperCAmelCase__ : int = conv.img_convolve(snake_case , snake_case ).astype(snake_case )
assert res.any()
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
assert med.median_filter(snake_case , 3 ).any()
def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = sob.sobel_filter(snake_case )
assert grad.any() and theta.any()
def SCREAMING_SNAKE_CASE__ ( )-> Dict:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = sp.make_sepia(snake_case , 20 )
assert sepia.all()
def SCREAMING_SNAKE_CASE__ ( snake_case : str = "digital_image_processing/image_data/lena_small.jpg" )-> Optional[Any]:
'''simple docstring'''
UpperCAmelCase__ : str = bs.Burkes(imread(snake_case , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def SCREAMING_SNAKE_CASE__ ( snake_case : str = "digital_image_processing/image_data/lena_small.jpg" , )-> List[Any]:
'''simple docstring'''
UpperCAmelCase__ : int = rs.NearestNeighbour(imread(snake_case , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def SCREAMING_SNAKE_CASE__ ( )-> List[str]:
'''simple docstring'''
UpperCAmelCase__ : List[str] = "digital_image_processing/image_data/lena.jpg"
# Reading the image and converting it to grayscale.
UpperCAmelCase__ : Dict = imread(snake_case , 0 )
# Test for get_neighbors_pixel function() return not None
UpperCAmelCase__ : str = 0
UpperCAmelCase__ : str = 0
UpperCAmelCase__ : Any = image[x_coordinate][y_coordinate]
UpperCAmelCase__ : int = lbp.get_neighbors_pixel(
snake_case , snake_case , snake_case , snake_case )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
UpperCAmelCase__ : Optional[int] = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
UpperCAmelCase__ : List[Any] = lbp.local_binary_value(snake_case , snake_case , snake_case )
assert lbp_image.any()
| 358
|
"""simple docstring"""
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class lowerCAmelCase__ :
def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ):
'''simple docstring'''
UpperCAmelCase__ : str = parent
UpperCAmelCase__ : Tuple = batch_size
UpperCAmelCase__ : Dict = seq_length
UpperCAmelCase__ : Union[str, Any] = act_dim
UpperCAmelCase__ : Dict = state_dim
UpperCAmelCase__ : Optional[Any] = hidden_size
UpperCAmelCase__ : List[str] = max_length
UpperCAmelCase__ : int = is_training
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 )
UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) )
UpperCAmelCase__ : Optional[int] = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def __a ( self : int ):
'''simple docstring'''
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ =()
SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
SCREAMING_SNAKE_CASE_ =False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = DecisionTransformerModelTester(self )
UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : List[str] ):
'''simple docstring'''
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ : Dict = model_class(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase__ : str = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform
UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized
UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" )
UpperCAmelCase__ : Any = model.to(snake_case__ )
UpperCAmelCase__ : Optional[int] = model.config
torch.manual_seed(0 )
UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset()
UpperCAmelCase__ : Optional[Any] = torch.tensor(
[[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ )
UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
UpperCAmelCase__ : Union[str, Any] = state
UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa )
UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 )
for step in range(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 )
UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model(
states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ),
1.0,
False,
{},
)
UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1]
UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 )
UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward
UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
UpperCAmelCase__ : Tuple = torch.cat(
[timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
| 298
| 0
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ):
'''simple docstring'''
UpperCAmelCase__ : Any = "bilinear"
UpperCAmelCase__ : Any = max_size
UpperCAmelCase__ : Any = short_edge_length
def __call__( self : Dict , snake_case__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = []
for img in imgs:
UpperCAmelCase__ : int = img.shape[:2]
# later: provide list and randomly choose index for resize
UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ )
if h < w:
UpperCAmelCase__ : Optional[int] = size, scale * w
else:
UpperCAmelCase__ : int = scale * h, size
if max(snake_case__ , snake_case__ ) > self.max_size:
UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ )
UpperCAmelCase__ : List[str] = newh * scale
UpperCAmelCase__ : int = neww * scale
UpperCAmelCase__ : List[Any] = int(neww + 0.5 )
UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 )
if img.dtype == np.uinta:
UpperCAmelCase__ : Any = Image.fromarray(snake_case__ )
UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ )
else:
UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
UpperCAmelCase__ : Tuple = nn.functional.interpolate(
snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 )
img_augs.append(snake_case__ )
return img_augs
class lowerCAmelCase__ :
def __init__( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
UpperCAmelCase__ : Any = cfg.INPUT.FORMAT
UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY
UpperCAmelCase__ : str = cfg.PAD_VALUE
UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST
UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE
UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std
def __a ( self : Optional[int] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) )
UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images]
UpperCAmelCase__ : int = [
nn.functional.pad(
snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(snake_case__ , snake_case__ )
]
return torch.stack(snake_case__ ), torch.tensor(snake_case__ )
def __call__( self : str , snake_case__ : int , snake_case__ : int=False ):
'''simple docstring'''
with torch.no_grad():
if not isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase__ : Dict = [images]
if single_image:
assert len(snake_case__ ) == 1
for i in range(len(snake_case__ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] )
UpperCAmelCase__ : Tuple = self.aug(snake_case__ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images]
# now pad them to do the following operations
UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]:
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int:
'''simple docstring'''
assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!"
UpperCAmelCase__ : Dict = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case )
tensor[:, 1].clamp_(min=0 , max=snake_case )
tensor[:, 2].clamp_(min=0 , max=snake_case )
tensor[:, 3].clamp_(min=0 , max=snake_case )
| 359
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowerCAmelCase : Tuple = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Dict = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 298
| 0
|
"""simple docstring"""
from maths.prime_check import is_prime
def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> int:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
UpperCAmelCase__ : Optional[Any] = f'Input value of [number={number}] must be an integer'
raise TypeError(snake_case )
if is_prime(snake_case ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360
|
"""simple docstring"""
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
_lowerCAmelCase : Optional[int] = get_logger(__name__)
_lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md"""
_lowerCAmelCase : Dict = uuida().hex
_lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES
_lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str:
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += f'; torch/{_torch_version}'
if is_flax_available():
ua += f'; jax/{_jax_version}'
ua += f'; flax/{_flax_version}'
if is_onnx_available():
ua += f'; onnxruntime/{_onnxruntime_version}'
# CI will set this value to True
if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(snake_case , snake_case ):
ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() )
elif isinstance(snake_case , snake_case ):
ua += "; " + user_agent
return ua
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]:
'''simple docstring'''
if token is None:
UpperCAmelCase__ : Optional[Any] = HfFolder.get_token()
if organization is None:
UpperCAmelCase__ : Tuple = whoami(snake_case )["name"]
return f'{username}/{model_id}'
else:
return f'{organization}/{model_id}'
def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]:
'''simple docstring'''
if not is_jinja_available():
raise ValueError(
"Modelcard rendering is based on Jinja templates."
" Please make sure to have `jinja` installed before using `create_model_card`."
" To install it, please run `pip install Jinja2`." )
if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]:
return
UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None
UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case )
UpperCAmelCase__ : Tuple = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None
) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , )
UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" )
model_card.save(snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple:
'''simple docstring'''
if resolved_file is None or commit_hash is not None:
return commit_hash
UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() )
UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case )
if search is None:
return None
UpperCAmelCase__ : Dict = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
_lowerCAmelCase : Dict = os.path.expanduser(
os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface"""))
)
_lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""")
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None:
'''simple docstring'''
if new_cache_dir is None:
UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE
if old_cache_dir is None:
UpperCAmelCase__ : str = old_diffusers_cache
UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser()
UpperCAmelCase__ : Any = Path(snake_case ).expanduser()
for old_blob_path in old_cache_dir.glob("**/blobs/*" ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case )
new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
os.replace(snake_case , snake_case )
try:
os.symlink(snake_case , snake_case )
except OSError:
logger.warning(
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
_lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""")
if not os.path.isfile(cache_version_file):
_lowerCAmelCase : Any = 0
else:
with open(cache_version_file) as f:
try:
_lowerCAmelCase : List[str] = int(f.read())
except ValueError:
_lowerCAmelCase : Optional[int] = 0
if cache_version < 1:
_lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
"""The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """
"""existing cached models. This is a one-time operation, you can interrupt it or run it """
"""later by calling `diffusers.utils.hub_utils.move_cache()`."""
)
try:
move_cache()
except Exception as e:
_lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__))
logger.error(
F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
"""file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """
"""message and we will do our best to help."""
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, """w""") as f:
f.write("""1""")
except Exception:
logger.warning(
F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
"""the directory exists and can be written to."""
)
def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str:
'''simple docstring'''
if variant is not None:
UpperCAmelCase__ : int = weights_name.split("." )
UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:]
UpperCAmelCase__ : Optional[int] = ".".join(snake_case )
return weights_name
def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *,
snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple:
'''simple docstring'''
UpperCAmelCase__ : List[str] = str(snake_case )
if os.path.isfile(snake_case ):
return pretrained_model_name_or_path
elif os.path.isdir(snake_case ):
if os.path.isfile(os.path.join(snake_case , snake_case ) ):
# Load from a PyTorch checkpoint
UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(snake_case , snake_case , snake_case ) ):
UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case )
return model_file
else:
raise EnvironmentError(
f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" )
):
try:
UpperCAmelCase__ : List[Any] = hf_hub_download(
snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
warnings.warn(
f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , )
return model_file
except: # noqa: E722
warnings.warn(
f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , )
try:
# 2. Load model file as usual
UpperCAmelCase__ : Dict = hf_hub_download(
snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
"login`." )
except RevisionNotFoundError:
raise EnvironmentError(
f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '
"this model name. Check the model page at "
f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' )
except EntryNotFoundError:
raise EnvironmentError(
f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' )
except HTTPError as err:
raise EnvironmentError(
f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' )
except ValueError:
raise EnvironmentError(
f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'
f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'
f' directory containing a file named {weights_name} or'
" \nCheckout your internet connection or see how to run the library in"
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." )
except EnvironmentError:
raise EnvironmentError(
f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '
f'containing a file named {weights_name}' )
| 298
| 0
|
"""simple docstring"""
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase__ ( __magic_name__ ):
SCREAMING_SNAKE_CASE_ =(PNDMScheduler,)
SCREAMING_SNAKE_CASE_ =(('''num_inference_steps''', 50),)
def __a ( self : Optional[int] , **snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = {
"num_train_timesteps": 1_0_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**snake_case__ )
return config
def __a ( self : int , snake_case__ : str=0 , **snake_case__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = dict(self.forward_default_kwargs )
UpperCAmelCase__ : Tuple = kwargs.pop("num_inference_steps" , snake_case__ )
UpperCAmelCase__ : List[str] = self.dummy_sample
UpperCAmelCase__ : Dict = 0.1 * sample
UpperCAmelCase__ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config(**snake_case__ )
UpperCAmelCase__ : str = scheduler_class(**snake_case__ )
scheduler.set_timesteps(snake_case__ )
# copy over dummy past residuals
UpperCAmelCase__ : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case__ )
UpperCAmelCase__ : Tuple = scheduler_class.from_pretrained(snake_case__ )
new_scheduler.set_timesteps(snake_case__ )
# copy over dummy past residuals
UpperCAmelCase__ : List[Any] = dummy_past_residuals[:]
UpperCAmelCase__ : List[Any] = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
UpperCAmelCase__ : Dict = new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
UpperCAmelCase__ : str = scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
UpperCAmelCase__ : Optional[int] = new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __a ( self : List[Any] ):
'''simple docstring'''
pass
def __a ( self : Optional[int] , snake_case__ : int=0 , **snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = dict(self.forward_default_kwargs )
UpperCAmelCase__ : Dict = kwargs.pop("num_inference_steps" , snake_case__ )
UpperCAmelCase__ : Tuple = self.dummy_sample
UpperCAmelCase__ : List[str] = 0.1 * sample
UpperCAmelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config()
UpperCAmelCase__ : List[Any] = scheduler_class(**snake_case__ )
scheduler.set_timesteps(snake_case__ )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase__ : Dict = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case__ )
UpperCAmelCase__ : int = scheduler_class.from_pretrained(snake_case__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(snake_case__ )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase__ : Tuple = dummy_past_residuals[:]
UpperCAmelCase__ : str = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
UpperCAmelCase__ : Any = new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
UpperCAmelCase__ : int = scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
UpperCAmelCase__ : Optional[int] = new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def __a ( self : Dict , **snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.scheduler_classes[0]
UpperCAmelCase__ : int = self.get_scheduler_config(**snake_case__ )
UpperCAmelCase__ : Tuple = scheduler_class(**snake_case__ )
UpperCAmelCase__ : str = 1_0
UpperCAmelCase__ : int = self.dummy_model()
UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter
scheduler.set_timesteps(snake_case__ )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase__ : List[Any] = model(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[int] = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase__ : Any = model(snake_case__ , snake_case__ )
UpperCAmelCase__ : Any = scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ ).prev_sample
return sample
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = dict(self.forward_default_kwargs )
UpperCAmelCase__ : List[str] = kwargs.pop("num_inference_steps" , snake_case__ )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ : List[Any] = self.get_scheduler_config()
UpperCAmelCase__ : List[str] = scheduler_class(**snake_case__ )
UpperCAmelCase__ : Optional[Any] = self.dummy_sample
UpperCAmelCase__ : List[Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ):
scheduler.set_timesteps(snake_case__ )
elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ):
UpperCAmelCase__ : Any = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase__ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase__ : Any = dummy_past_residuals[:]
UpperCAmelCase__ : Tuple = scheduler.step_prk(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample
UpperCAmelCase__ : List[Any] = scheduler.step_prk(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase__ : Tuple = scheduler.step_plms(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample
UpperCAmelCase__ : List[str] = scheduler.step_plms(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __a ( self : Tuple ):
'''simple docstring'''
for timesteps in [1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=snake_case__ )
UpperCAmelCase__ : int = self.scheduler_classes[0]
UpperCAmelCase__ : Union[str, Any] = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase__ : Tuple = scheduler_class(**snake_case__ )
scheduler.set_timesteps(1_0 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , )
def __a ( self : str ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ )
def __a ( self : Optional[int] ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=snake_case__ )
def __a ( self : List[str] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case__ )
def __a ( self : str ):
'''simple docstring'''
for t in [1, 5, 1_0]:
self.check_over_forward(time_step=snake_case__ )
def __a ( self : Optional[Any] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ):
self.check_over_forward(num_inference_steps=snake_case__ )
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = 2_7
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ : Optional[int] = self.dummy_sample
UpperCAmelCase__ : List[Any] = 0.1 * sample
UpperCAmelCase__ : List[Any] = self.get_scheduler_config()
UpperCAmelCase__ : str = scheduler_class(**snake_case__ )
scheduler.set_timesteps(snake_case__ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase__ : Dict = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample
def __a ( self : Any ):
'''simple docstring'''
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ : Dict = self.scheduler_classes[0]
UpperCAmelCase__ : Union[str, Any] = self.get_scheduler_config()
UpperCAmelCase__ : List[str] = scheduler_class(**snake_case__ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.full_loop()
UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase__ : List[Any] = torch.mean(torch.abs(snake_case__ ) )
assert abs(result_sum.item() - 198.1318 ) < 1e-2
assert abs(result_mean.item() - 0.2580 ) < 1e-3
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase__ : str = torch.mean(torch.abs(snake_case__ ) )
assert abs(result_sum.item() - 67.3986 ) < 1e-2
assert abs(result_mean.item() - 0.0878 ) < 1e-3
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Any = self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 )
UpperCAmelCase__ : Tuple = torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase__ : int = torch.mean(torch.abs(snake_case__ ) )
assert abs(result_sum.item() - 230.0399 ) < 1e-2
assert abs(result_mean.item() - 0.2995 ) < 1e-3
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 )
UpperCAmelCase__ : Tuple = torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase__ : Tuple = torch.mean(torch.abs(snake_case__ ) )
assert abs(result_sum.item() - 186.9482 ) < 1e-2
assert abs(result_mean.item() - 0.2434 ) < 1e-3
| 361
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" )
UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids
UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss
UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy()
UpperCAmelCase__ : List[Any] = -21.22_8168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
| 298
| 0
|
"""simple docstring"""
from statistics import mean, stdev
def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int = 3 )-> list:
'''simple docstring'''
UpperCAmelCase__ : Tuple = min(snake_case )
UpperCAmelCase__ : Optional[int] = max(snake_case )
# normalize data
return [round((x - x_min) / (x_max - x_min) , snake_case ) for x in data]
def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int = 3 )-> list:
'''simple docstring'''
UpperCAmelCase__ : Dict = mean(snake_case )
UpperCAmelCase__ : Tuple = stdev(snake_case )
# standardize data
return [round((x - mu) / (sigma) , snake_case ) for x in data]
| 362
|
"""simple docstring"""
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = parent
UpperCAmelCase__ : int = batch_size
UpperCAmelCase__ : int = seq_length
UpperCAmelCase__ : List[str] = is_training
UpperCAmelCase__ : Union[str, Any] = use_input_mask
UpperCAmelCase__ : Optional[Any] = use_token_type_ids
UpperCAmelCase__ : Any = use_labels
UpperCAmelCase__ : List[Any] = vocab_size
UpperCAmelCase__ : Any = embedding_size
UpperCAmelCase__ : List[str] = hidden_size
UpperCAmelCase__ : List[Any] = num_hidden_layers
UpperCAmelCase__ : int = num_hidden_groups
UpperCAmelCase__ : Union[str, Any] = num_attention_heads
UpperCAmelCase__ : List[str] = intermediate_size
UpperCAmelCase__ : Optional[Any] = hidden_act
UpperCAmelCase__ : List[Any] = hidden_dropout_prob
UpperCAmelCase__ : Tuple = attention_probs_dropout_prob
UpperCAmelCase__ : str = max_position_embeddings
UpperCAmelCase__ : Any = type_vocab_size
UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size
UpperCAmelCase__ : Union[str, Any] = initializer_range
UpperCAmelCase__ : Tuple = num_labels
UpperCAmelCase__ : List[str] = num_choices
UpperCAmelCase__ : Union[str, Any] = scope
def __a ( self : int ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : Optional[int] = None
UpperCAmelCase__ : Any = None
if self.use_labels:
UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self : Any ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : str = AlbertModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ )
UpperCAmelCase__ : Optional[int] = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Dict = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_labels
UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : str = self.num_labels
UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.num_choices
UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ )
model.to(snake_case__ )
model.eval()
UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ : Tuple = model(
snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) : Optional[Any] = config_and_inputs
UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =(
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ =(
{
'''feature-extraction''': AlbertModel,
'''fill-mask''': AlbertForMaskedLM,
'''question-answering''': AlbertForQuestionAnswering,
'''text-classification''': AlbertForSequenceClassification,
'''token-classification''': AlbertForTokenClassification,
'''zero-shot''': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ =True
def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if model_class in get_values(snake_case__ ):
UpperCAmelCase__ : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ )
UpperCAmelCase__ : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case__ )
return inputs_dict
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Dict = AlbertModelTester(self )
UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 )
def __a ( self : Dict ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case__ )
def __a ( self : str ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case__ )
def __a ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case__ )
def __a ( self : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case__ )
def __a ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase__ : Dict = type
self.model_tester.create_and_check_model(*snake_case__ )
@slow
def __a ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def __a ( self : List[str] ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" )
UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , snake_case__ )
UpperCAmelCase__ : Union[str, Any] = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
| 298
| 0
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> bool:
'''simple docstring'''
UpperCAmelCase__ : Tuple = 0
for ch in input_str:
UpperCAmelCase__ : int = ord(snake_case )
UpperCAmelCase__ : Union[str, Any] = pow(2 , snake_case )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 363
|
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any:
'''simple docstring'''
UpperCAmelCase__ : List[str] = [1]
for i in range(2 , snake_case ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
UpperCAmelCase__ : Union[str, Any] = []
UpperCAmelCase__ : str = list(range(snake_case ) )
# Find permutation
while factorials:
UpperCAmelCase__ : str = factorials.pop()
UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 298
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.